STN[®] Screen Dictionary

for Structure Searching 3rd Edition

Copyright © 2011 American Chemical Society All rights reserved

Table of Contents

STN® Screen Dictionary for Structure Searching	
Types of Screens	
The STN Screen Dictionary	
Using the Screen Dictionary	
STN Substructure Search Query Development	
Appendix I: Substructure Profile Development	
Example of Substructure Search Profile Development	
Searching for Multicomponent Substances	
Appendix II: Tautomer and Alternating Bonds	83
Tautomers, Alternating Bonds, and Substructure Search	
The Screen Dictionary	

STN® Screen Dictionary for Structure Searching

Introduction

This dictionary replaces the CAS Online Screen Dictionary for Substructure Search, 2^{nd} Edition, published in 1981. The STN structure search environment has changed greatly since that time, so a new version of the screen dictionary is valuable. The screen frequency data was collected in May 2005.

The Screen Dictionary Today

The primary use of the screen dictionary in today's search environment is to:

- Document the total list of available screens
- Support the addition of screens to enable a structure search query to run to completion within existing system limits
- Represent structural information that cannot be represented by structures

What is a Screen?

A screen, also called a filter, is a numerical code, 1-4 digits in length, which represents a structural feature of a chemical substance.

Screens

This introduction explains the various types of screens and how to find them in the dictionary.

A query screen set is automatically generated from a structure query in the STN search command. The search strategy may be enhanced by manually adding additional screens.

Structure Search Queries

In the STN structure search system, a search query may be defined by using STN Express[®], with the Structure Query Search Assistant of STN[®] on the WebSM, or with the online STRUCTURE command. From the search query, STN creates a set of screens.

Screen Set Refinement

In a structure search, the query screen set is refined by keeping only those screens that have a very low frequency of occurrence in the search file and therefore assist in uniquely representing the search query.

Structure Search Process

The search process uses this refined screen set in the first step (SCREENING) of the structure search to retrieve a set of candidate answers¹ for the query. The candidate answers are then verified against the query using an atom-by-atom and bond-by-bond comparison (ITERATION) of the query and the candidate answers. Candidates that pass iteration are entered into the answer set (represented by an L-number).

Adding Screens to STN Structure Searches

Details concerning the addition of the screens from this dictionary to your query may be found in *A Guide to Adding Screens in STN Structure Searching*, available at www.cas.org.

Screen-Only Searches

Details on building "screen-only" search queries are found in Appendix I (Substructure Profile Development, page 43) and Appendix II (Tautomer and Alternating Bonds, page 83).

Screen Capable Databases

Screens may be used with any STN structure search except in the MARPAT® and LMARPATSM databases. At present, databases that support the use of screens are:

- CAS REGISTRYSM/ZREGISTRY/LREGISTRYSM
- CASREACT®/LCASREACTSM
- CHEMINFORMRX
- DISMONLINE
- DRUGU/LDRUG
- GMELIN97
- PS
- REAXYSFILE
- WPINDEX/WPIDS/WPIX (Derwent World Patents Index®)

¹ Candidate answers may be viewed with the EXTEND option for the structure search. For more details, enter HELP EXTEND at an arrow prompt (=>).

Topics in the Introduction

This introduction explains the various types of screens and how to find them in the dictionary. These discussions are organized into the following sections:

- Types of screens
- Structure fragments and search screens
- The screen dictionary
- Using the screen dictionary
- STN Substructure Search Query Development
- Appendixes

Screen Authority List

The STN Screen Dictionary for Structure Searching is the master list of all screens recognized by the STN structure search system.

- The appropriate dictionary screens are added during the search file-building process to provide an easily searchable database.
- You can use the dictionary to refine a search query, enabling the search to run to completion within system limits.
- You can use the screens to specify search parameters that cannot easily be represented by structural fragments.

Dictionary Organization

The STN Screen Dictionary for Structure Searching is organized by:

- The type of screens and ordered within that grouping so that it can be used to find the appropriate screen
- Screen number order so that any given screen number may be found to ascertain its structure

Structure Fragments

Most of the structure fragments are derived from what is termed the "graph" of the structure query connection table.² This describes the non-hydrogen atoms and the bonds between them that comprise the basic structure of the substance.

² A connection table is an atom-bond matrix that mathematically represents the substance structure within the database.

Hydrogens and Connection Tables

The term "hydrogen" will be used throughout this introduction to mean H, D, T, and higher hydrogen isotopes (e.g., ⁴H, ⁵H, etc.), and "non-hydrogen" to mean any other element and isotope.

"Normal" hydrogen atoms (i.e., monovalent H) are not described explicitly in the connection table, but only implicitly. Hydrogen count data is not carried in the structure record, but calculated when needed (the number of hydrogen atoms present on a given atom is equal to its valence less bonding requirements and the absolute value of any charge present).

The presence of "normal" hydrogen atoms is ignored by all substructure search screens except the Hydrogen Augmented Atom (HA) and Twin Augmented Atom (TW) screens. These screens consider all hydrogen atoms (H, D, or T) as H.

Deuterium and Tritium

The presence of deuterium is indicated through the Graph Modifier (GM) "deuterium" screen (2045), and tritium and higher isotopes (e.g., ⁴H, ⁵H, etc.) through the GM "tritium" screen (2046).

Unusual Hydrogen Atoms

"Unusual" hydrogen atoms are explicitly described in the connection table record and are effectively treated just as non-hydrogen atoms. These are predominantly hydrogen atoms with a valence greater than one, as needed to comply with structuring conventions for "bridge" hydrogens in boron cage compounds or the hydrogens in metal hydrides. They also include the atoms in hydrogen molecules where the hydrogen—hydrogen bonds must be described in the connection table.

The presence of "unusual" hydrogen is indicated only by their inclusion in the AC counts and in DC and CS connectivity values. There is no Element Composition (EC) screen corresponding to "unusual" hydrogen described in the connection table (i.e., an EC H screen). (The GM EC H screen specifies the presence of hydrogen ions described as single atom fragments.)

Screens and Structure Components

A basic structure and simple derivatives of a basic structure (i.e., hydrates and simple metal or acid salts) that are described via the single atom fragment (SAF) portion of the structure record are considered to be one-component substances. A SAF (single non-hydrogen element, e.g., HCl or Na) leads to the generation of Graph Modifier Element (GME) fragments. More complex derivatives involving multiatom fragments are multicomponent substances and each component has its own connection table and screen set.

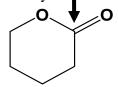
Number of Occurrences

Each screen includes a count or number of occurrences that specifies the number of times that the fragment appears in the structure;³ a count of one, though, is not explicitly shown in the dictionary listings. This count is a minimum value, not an exact value. A count of 2, for example, means that the fragment appears two or more times. A structure that contains five oxygen atoms, for example, is retrieved by a search query that specifies, via the EC 3 O element count screen, that three or more oxygen atoms must be present.

-

³ In the discussions that follow, "fragment" refers to an item of search data generated for a substance, and "screen", to a search term listed in the dictionary. The distinction is made because some screens indicate the presence of any number of different fragments, due to screen number sharing.

Types of Screens


Introduction

There are 12 types of screens, three describing "clusters" of atoms, three describing linear strings of atoms, and six describing other structural features.

- AA Augmented Atom Screens
- HA Hydrogen Augmented Atom Screens
- TW Twin Augmented Atom Screens
- AS Atom Sequence Screens
- BS Bond Sequence Screens
- CS Connectivity Sequence Screens
- AC Atom Count Screens
- DC Degree of Connectivity
- EC Element Count Screens
- RC Ring Count Screens
- TR Type of Ring Screens
- GM Graph Modifier Screens

Augmented Atom (AA) Screens

The **augmented atom** (**AA**) **screen** is the most important of the three "cluster" classes. It describes an atom and its immediate non-hydrogen attachments, with the screen description citing the central atom first and then its attachments in element symbol order; bonds to the central atom are described in the more specific AA screens, while more generic screens use less specific bond descriptions. The indicated carbon atom, for example, could thus be described at three different levels of specificity:

where the AA indicates the screen type and the "1" that the screen occurs one or more times; the bond symbols *1 and -2 represent a single ring bond and a double chain bond, respectively, while * and - represent simply ring and chain bonds of any value and a blank represents any bond.

Augmented Atom (HA and TW) Screens

The other members of this family are the **hydrogen augmented atom** (**HA**) and **twin augmented atom** (**TW**) screens, which add hydrogen count specifications to the basic AA description. HA screens give the hydrogen count for the central atom, TW screens for the central atom and one attached atom.

⁴ The counts of "1" are shown here for clarity; normally, only counts of 2 or higher are explicitly shown.

Linear Sequence (AS) Screens The **linear sequence** family of screens describes linear 4- to 6-atom strings and includes three classes of screens, each describing an atom string in a different manner. The example screens shown

below are describing the same 5-atom string (NCNCO) indicated in the structure given here.

An **atom sequence** (**AS**) screen specifies the element values of the atoms in the string and the types of bonds between them (i.e., whether these bonds are ring or chain), as in:

AS 1 N * C * N * C - O

Linear Sequence (BS, CS) Screens A **bond sequence** (**BS**) screen specifies both type and value for the bonds between the string atoms but uses only dummy "A" element symbols to represent the atoms, as in:

BS 1 A *1 A *1 A -2 A

A **connectivity sequence (CS)** screen specifies the connectivity values (the number of non-hydrogen attachments) of the atoms in the string and the types of bonds between them, as in:

CS 1 2 * 2 * 3 * 3 - 1

Other Classes (AC, DC, EC, RC, TR, GM) Screens Other classes of screens describe other aspects of structures.

- Atom count (AC) screens specify the number of atoms present.
- Degree of connectivity (DC) screens specify the minimum number of atoms having at least a specified number of non-hydrogen atoms attached to them.
- Element count (EC) screens specify the number of atoms present of specified elements that are present.
- Ring count (RC) and type of ring (TR) screens specify the rings that are present.
- Graph modifier (GM) screens specify special structural features and substance classes.

Summary

In general, augmented atom (AA) and atom sequence (AS) screens are the most precise screens. Effective screen profiles can be developed using only these two types of screens.

When analyzing a query to determine which screens are most helpful, concentrate on AA and AS fragments that contain several heteroatoms or unusual bonding patterns, since these fragments are the most likely to give useful (i.e., highly specific) screens.

The types of structural fragments that generally lead to useful AA and AS screens are discussed later. The other types of screens are generally less useful, but can still often provide good selectivity for those queries where they are applicable.

Screen Types

Screen types are discussed and illustrated via examples for the following structure:

Note

The hydrochloride fragment is described in the structure record as a single atom fragment (SAF); as such, the appropriate screen to describe it is a Graph Modifier Element (GME) screen.

Atom and Bond Symbols

The **augmented atom** and **sequence** families of screens, to be discussed next, describe groups of atoms and the bonds between them. The bond symbols used in their screen definitions are the following:

- * = any ring bond (value not defined)
- = any chain bond (value not defined)
- *1 = single ring bond
- -1 = single chain bond
- *2 = double ring bond
- **-2** = double chain bond
- *3 = triple ring bond
- -3 = triple chain bond
- *4 = alternating (aromatic or completely conjugated) or tautomeric or delocalized ring bond⁵
- -4 = tautomeric or delocalized chain bond⁵

In addition to these bond symbols, a "blank" symbol is used to represent any bond, ring or chain, of any value.

Note

Bond value specifications are exact. A *2 symbol, for example, represents only a double ring bond, <u>not</u> a double or alternating ring bond.

Augmented Atom (AA) Screens

AA screens are descriptions of atoms and their non-hydrogen attachments. Bonds may be unspecified, specified just as ring or chain type, or completely specified, using the bond symbols shown in the table given earlier. The level of bond specificity used for AA screens in the screen dictionary depends on the elements involved:

- Screens for the frequently occurring C-N bond, for example, usually completely specify bonds, as in AA C -1 N, AA C -2 N, etc.
- Screens for the less common C-P bonds cite only bond types, as in AA C * P and AA C P.
- Screens for the uncommon **P**–**P** bond is simply **AA P P**, with no bond specification at all.

⁵ Appendix II (page 83) discusses the definition of tautomer and alternating bonds, how they are handled in CAS REGISTRY, and how tautomer and alternating bonds must be considered when a search query is defined.

AA Screens

In the description of an AA fragment, the central atom is cited first, followed by its attachments in element symbol order. If bonds are specified, a secondary ordering cites * ring bonds before - chain bonds, and complete bond specifications in the order *1 *2 *3 *4 -1 -2 -3 -4.

Thus, in the example structure, carbon atom *C* could be described by a number of AA fragments including AA C C C N, AA C * C - C * N, and AA C * 4 C - 1 C * 4 N.

AA's using out-of-order attachment citations, such as AA C N C C or AA C - C * C * N, are not valid and cannot be found in the dictionary.

Note

An augmented atom fragment may be a complete description of a central atom and its environment, as in **AA** C *1 C *1 C -2 O, or just a partial description, as in **AA** C -1 C -2 O or **AA** C * C * C - O.

In the latter case, additional attached atoms may or may not be present in structures containing the fragment; there is no way to prohibit additional attachments to the central atom without completely describing it, through use of a HA or TW screen, for example, or several AA screens combined with OR logic.

Hydrogen Augmented Atoms (HA)

These screens are augmented atoms whose definitions include a specification of the hydrogen attached to the central atom. The HA fragments used as screens are only those that occur relatively frequently, most having carbon, nitrogen, or oxygen central atoms.

For the example structure, the **HA O H -1 C** fragment is used to describe the hydroxy group attached to atom f.

Twin Augmented Atoms (TW)

These screens are augmented atoms whose definitions include the specification of the hydrogen attached to the central atom and to one of its attached atoms. Only a few TW screens are present in the screen dictionary, to describe common occurrences of –CH₃, –NH₂, –OH, and –SH groups.

For the example structure, the **TW** \mathbf{C} *4 \mathbf{C} *4 \mathbf{C} -1 \mathbf{O} **H** fragment is used to describe atom \mathbf{f} .

Notes

Several points should be noted about HA and TW fragments and the specification of hydrogen atoms:

- HA and TW screens are the only screens that may be used to specify the presence of "normal" hydrogen atoms (i.e., monovalent ¹H). All other search screens simply ignore them:
 - The AC screen specifies a count of non-hydrogen atoms.
 - There are no EC screens for H.
 - H atoms are not cited in AA or AS screens.
 - Only bonds between non-hydrogen atoms are cited in BS screens.
 - Non-hydrogen connectivity values are used in DC and CS screens.
- Hydrogen specification is an exact count of the number of attached hydrogens (including D or T, if present), not an "or more" count. These counts follow the atom's element symbol and appear as follows: "C" indicates a carbon atom with no attached hydrogens; "C H", a carbon atom with one hydrogen; "C H2", a carbon with two hydrogens, etc.
- HA and TW screens cannot be used to specify the presence of hydrogen on nitrogen or chalcogen (O, S, Se, or Te) atoms involved in tautomeric situations.

Unlike AA screens, the HA and TW screens present in the screen dictionary completely describe the central atom, so that it may have no additional attachments beyond those shown in the screen definition. This is due, however, to the choice of definitions to be included in the dictionary and is not a requirement implicit in the nature of HA and TW screens.

Atom Sequence (AS)

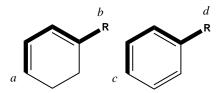
These screens are descriptions of linear sequences of 4, 5, or 6 atoms. Bond types may be specified for the more common AS fragments, but bond values are not used.

In a query for the example structure, the b-c-d-e atom sequence is described by AS N * C - C - O or the equivalent AS O - C - C * N.

As a user aid, screen dictionary entries for AS screens, as well as BS and CS screens, are "double posted". If the screen definition is not symmetrical, both the "forward" and "reverse" definitions are entries. Both definitions for the AS example given here appear in the dictionary.

Note

These sequences, as well as those in BS and CS screens, are linear, so that an atom cannot appear twice in any given sequence. The screen AS Cl - C * C * C * C - Cl, for example, could not be used to describe 1,1-dichlorocyclopropane, since the disubstituted carbon atom is cited twice in the sequence.


Bond Sequence (BS)

These screens are descriptions of linear sequences of 3, 4, or 5 bonds, always specifying the bond types and often the bond values. For clarity, the BS descriptions include "A" dummy atom symbols between the bond symbols.

In a query for the example structure, the BS screen used to describe the *a-b-c-d-e* bond sequence is **BS A *4 A *4 A -1 A -4 A** or the equivalent **BS A -4 A -1A *4 A *4 A**.

Note

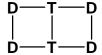
Bond sequence definitions are exact and do not imply alternative bond specifications. Where tautomer or alternating bonds exist, *4 and -4 bond symbols must be used in BS descriptions, not the usual "fixed" *1 and -1 single and *2 and -2 double bond symbols. Thus, for example, the BS screen **BS A *2 A *1 A *2 A -1 A** is used to describe the indicated bond path (a - b) in the structure containing a cyclohexadiene ring but not in the structure (c - d) containing the benzene ring; the screen **BS A *4 A *4 A *4 A -1 A** is used to describe the path in that substance.

Connectivity Sequence (CS)

These screens are descriptions of non-hydrogen connectivities for linear sequences of 4, 5, or 6 atoms, often including bond types but never bond values. The connectivity values here are the exact number of non-hydrogen attachments, not the usual "or more" specification, so that, for example, a "1" always indicates a terminal atom and a "2" an atom with exactly two non-hydrogen attachments.

For the example structure, the CS fragment used to describe the a-b-c-d-e 5-atom sequence is CS 3 * 2 * 3 - 3 - 1 or the equivalent CS 1 - 3 - 3 * 2 * 3.

Ring Count (RC)


These screens specify the minimum number of rings present in the structure. Technically speaking, this is a count of the ring closure pairs present in the structure record, which is equal to the minimum number of bonds that have to be broken to open all rings.

The RC 2 screen is used to describe the example structure.

Type of Ring (TR)

These screens describe the node sequences of rings of 3-7 atoms. The symbol "**D**" is used to indicate a non-fused ring atom (an atom attached to exactly two other ring atoms), and "**T**", to indicate a fusion point or bridgehead atom with three or more bonds to other ring atoms.

The "smallest set of smallest rings" definition is used to define a "ring" here, so that the "envelope" rings circumscribing smaller rings are not considered. In the simple bridged ring shown here, there are two DDTT rings but no DDTDDT ring; the 6-membered envelope ring is not recognized by the TR screen generation procedure.

There is also a TR screen that simply provides an indicator that an 8-membered or larger ring is present.

For the example structure, if you were to specify that the two 6-membered rings were to be isolated (i.e., could not be part of larger ring systems), the **TR 2 DDDDDD** screen is used to describe them.

Note

Both D and T are exact node symbols. If you were to allow fusion to the benzene ring in a query for the example structure, then all fusion node possibilities have to be specified or a loss of retrieval occurs.

Atom Count (AC)

These screens are used to specify the minimum number of non-hydrogen atoms present in the graph (i.e., excluding any atoms described as single atom fragments).

The AC 17 screen is used to describe the example structure.⁶

Degree of Connectivity (DC)

These screens specify the minimum number of atoms having at least a specified number of non-hydrogen atoms attached to them. DC screens are provided which specify non-hydrogen connectivities from three or more to six or more.

The **DC 6 3** screen, specifying the presence of six or more atoms having non-hydrogen connectivities of three or more, is used to describe the example structure.

Element Composition (EC)

These screens specify the minimum number of atoms of each element (except H, D, and T) present in the CT graph (i.e., again excluding atoms described in SAFs). The common elements have EC screens with specific counts; carbon, for example, has 13 EC screens ranging from EC 4 C to EC 40 C, and sulfur has EC S to EC 5 S.

The EC screens for the less common elements such as gold or lead all have counts of one, specifying simply the presence of one or more atoms of the elements.

The EC 12 C, EC Cl, EC N, and EC 3 O screens are used to describe the example structure, whose molecular formula is $C_{12}H_8ClNO_3$. HCl.

⁶ Actually, since the **AC 17** screen does not appear in the screen dictionary, the **AC 16** screen is used in its place.

Note

The Cl EC screen is **EC Cl**, not **EC 2 Cl**. The Cl atom of the HCl SAF is <u>not</u> described via an EC screen.

Graph Modifier (GM)

Most GM screens are Graph Modifier Element (GM E) screens that are used to describe the elements cited in the Single Atom Fragment (SAF) portion of the structure record.

In a query for the example structure, the GM E Cl screen is used to specify the presence of the hydrochloride salt.

Other GM Screens

Other GM screens are used to specify the following:

- Unusual structural features
 Unusual mass, valence, or charge attributes of atoms in the graph of the connection table or the SAF portion of the structure.
- Multicomponent substance data
 The presence of two or more to four or more components and the presence of SAFs.
- Chemical substance class identifiers, classification of substances as:
 - AlloysMulticomponent substances
 - Incompletely described substances
 Polymers
 - Minerals Radical ions
 - Mixtures

with further subclassifications for incompletely described substances and polymers.

Screen Generation in Structure Search

The procedure that generates the 12 types of fragments just discussed and builds the screen search files for the STN search system performs an analysis of each structure. The procedure is briefly summarized here as background information.

Structure Search File Building

These are the steps taken to create substructure search screens for a substance:

- A fragment generation step, in which structure fragments and other search data are generated from the substance connection table
- A subsequent screen generation step to check the generated fragments against a dictionary, since the generation procedure is exhaustive, creating all possible structure fragments
- Recording of the presence of structure fragments that are cited in the dictionary (Those fragments not cited are ignored. 7)

Most of the structure fragments are generated from what is termed the graph of the connection table; this describes the atoms and bonds that comprise the basic structure of the substance.

Multicomponent Structures

Simple derivatives of this basic structure (i.e., hydrates and simple metal or acid salts) that are described via the single atom fragment (SAF) portion of the record lead to the generation of GME fragments. In more complex derivatives involving multiatom fragments, each multiatom fragment is described by a connection table (from which structure fragments are generated) and single-atom fragments are described as SAFs.

A search screen includes a count or number of occurrences that gives the number of times that the fragment appears in the structure. This is a minimum value, not an exact value. A count of 2, for example, means that the fragment appears two or more times. The "or more" ability is implemented during the screen generation step that creates the bit string used in searching.

Example

If the structure contained five oxygen atoms, for example, the fragment generation step creates an **EC 5 O** fragment. The screen generation step then sets all EC O fragments with a count of five or less (i.e., the screens **EC O** through **EC 5 O**), so that, for example, the structure is retrieved by a search query specifying, via the **EC 3 O** screen, that three or more oxygen atoms must be present.

⁷ These fragments are for the most part very frequently occurring and thus of little selectivity, or else are so rare that they will not be used enough in searching to justify their inclusion in a dictionary of limited size.

Fragment Generation

The fragment generation procedure generates all possible fragments, using exhaustive procedures. (While this might seem inefficient, it is both easier and faster than the generation of only those fragments that appeared in the screen dictionary.) The augmented atom generation procedure, for example, generates AA fragments for each non-hydrogen atom in the graph, using an exhaustive procedure that considers all possible combinations of attached atoms and bond specification levels. For the carboxy group carbon (atom *d*) of the example structure shown earlier, the procedure begins with the most specific **C -1 C -4 O -4 O** fragment and generates 14 others, yielding the fifteen fragments shown below:

The subsequent screen generation step checks the screen dictionary for each of the generated fragments, and finds only six of them, shown underlined above, to be present. The bits for these fragments are set in the screen search record bit string.

Note

It should be pointed out that the AA fragment generation procedure creates **only one** AA fragment of each specific type possible for each central atom. For the sample structure, for example, there are three O C fragments generated (i.e., an **AA 3 O C**) but only two C O fragments. Although there are three oxygen atoms attached to carbon atoms, there are only two carbons (atoms *d* and *f*) attached to oxygens. As a consequence, when using AA screens for which counts greater than one are provided, you should take care that the count selected does correspond to the number of different central atoms.

The STN Screen Dictionary

Introduction

In the STN search system, your query is defined by the system in terms of screens and sets of screens combined with Boolean logic. The more frequently occurring screens are automatically removed from the query to facilitate a timely search process. This screen dictionary allows you to locate screens for manual addition to the search query to bring the predicted results within system limits. The dictionary is an ordered listing of the screens used in the STN structure search system.

Two different orderings are provided:

- <u>Screen order</u> groups screens by type, in the order AA, HA, TW, AS, BS, CS, RC, TR, AC, DC, EC, and GM. Within each type grouping, screens are ordered by screen definition, then by number of occurrences, and finally by screen number.
- <u>Screen number order</u> Under each screen number, entries are ordered first by screen type and then by screen definition.

Use the screen order dictionary to locate screens to add to a search query. Use the screen number order dictionary primarily for checking the screen number definitions.

Screen Definition Order

The specification of screen definition order is dependent upon the type of screen.

AA, HA, TW, AS, and BS screens are listed in increasing alphabetic order of element symbols, then bond symbols, with the bond order as shown:

(none) * *1 *2 *3 *4 - -1 -2 -3 and -4

Screen Order

This is not a strict left-to-right alphabetical ordering, but one that imposes a hierarchy. It groups screens first by the elements cited and then by bond type and value, as shown by the example:

- CS screens are listed in increasing numeric order of connectivity values, and then bond symbols. Again, this is not a strict left-to-right ordering.
- RC screens are listed in increasing order of number of occurrences, which is simply the ring count.
- TR screens are listed in increasing order of ring size, and then in increasing alphabetic order of definition.
- AC screens are listed in increasing order of number of occurrences, which is simply the atom count.
- DC screens are listed in increasing numeric order of connectivity values, and then in increasing order of number of occurrences.
- EC screens are listed in increasing alphabetic order of element symbol.
- GM screens describing "unusual" structural features appear at the beginning of the GM screen listing. The GME screens describing the presence of elements as single atom fragments (SAFs) are then listed in increasing alphabetic order of element symbol.

Screen Dictionary Format

Each line in the screen dictionary is formatted as shown:

961 AA C Br Cl # 0.25 ssss tt nn dddddddddddd x ffff

where the line fields provide the following data:

- s Screen number (leading zeros are not used)
- t Screen type
- n Number of occurrences ("or more"): In all cases where multiple numbers of occurrences are used for a screen, the entries are grouped together in increasing order of number of occurrences. Note that counts of one are not shown, nor are leading zeros used.
- **d** Definition
- x Multiple-use flag: In the screen order dictionary listing, a "#" indicates that the screen number is shared by two or more different screens, as discussed below, while a blank indicates that the screen number is unique to the screen. In the screen number order listing, the "#" flag is not used, since multiple usage is obvious from the screen groupings.
- f Frequency of appearance in the total CAS REGISTRY search file (as of May 2005): If the screen number is shared, the frequency is for structures containing any of the screens. Note that these frequencies are truncated to 0.01%, so that a frequency of 0.00% means that fewer than 0.01% of the structures contain the screen, not that no structures are present that contain the screen.

Sample pages from the screen number order and screen order dictionaries are shown as the next two pages of this section.

Sample Page in Screen Number Order

Screen Number Order

Screen Number		Fragment Definition	Freq. %
1	AS	C * C - C * C	13.51
2	AS AS	C * C - C - C C - C - C * C	34.96
3	AS	C - C * C - C	14.19
4	AS	C - C - C - C	32.65
5	AS	C * C * C * C * C	78.62
6	AS	Br- C * C - C * C C * C - C * C - Br C * C - C * C - C C - C * C - C C - C * C - C * C C - C * C - C * C C * C - C * C - F C * C - C * C - F C * C - C * C - I C * C - C * C - N C * C - C * C - N C * C - C * C - S Cl - C * C - C * C I - C * C - C * C N - C * C - C * C N - C * C - C * C S - C * C - C * C	7.08
7	AS AS AS AS AS AS AS AS AS	C * C - C * C - C C - C * C - C * C C - C * C - C * C C * C - C - C * C - C C - C * C - C - C * C C - C * C - N - C * C C - C * C - N - C * C C - C * C - S - C * C C * C - N - C * C C * C - N - C * C - C C * C - N - C * C - C C * C - S - C * C - C C * C - S - C * C - C	6.85
8	AS	C * C - C - C * C	6.91
9	AS AS	C * C - C - C - C C - C - C - C * C	17.57
10	AS	C - C * C * C - C	12.64

Sample Page in Screen Type Order

Augmented Atoms

Scree	en		Fra	gment					Freq.
Numbe				initi					%
11011100	-		201		011				Ū
935	AA		A	*2A					34.69
937	AA		A	*3A					0.14
936	AA		A	*4A					72.06
938	AA		A	-2A					59.17
939	AA		A	-4A					39.02
940	AA		A	* A	* A	* A			41.18
941	AA		A	* A	- A	- A			12.51
942	AA	2	A	* A	- A	- A			3.34
943	AA	3	A	* A	- A	- A			1.07
944	AA		A	- A	- A	- A			73.89
945	AA		A	* A	* A	* A	* A		7.17
946	AA	2	A	* A	* A	* A	* A		1.92
947	AA		A	* A	* A	* A	- A		7.64
948	AA	2	A	* A	* A	* A	- A		3.57
949	AA	3	A	* A	* A	* A	- A		1.36
1820	AA		As	As				#	0.35
1820	AA		As	В				#	0.35
1552	AA		As	* C				#	1.15
1558	AA		As	M				#	3.13
1391	AA		As	* M				#	6.30
1392	AA		As	- M				#	6.25
1667	AA		As	-4N				#	2.86
1820	AA		As	P				#	0.35
1820	AA		As	Se				#	0.35
1820	AA		As	Si				#	0.35
1820	AA		As	Te				#	0.35
952	AA		As	х				#	0.53
1820	AA		В	As				#	0.35
1820	AA		В	В				#	0.35
1552	AA		В	* C				#	1.15
953	AA		В	- C					0.39
1558	AA		В	M				#	3.13
1391	AA		В	* M				#	6.30
1392	AA		В	- M				#	6.25
954	AA		В	N					0.22
1667	AA		В	-4N				#	2.86
955	AA		В	* 0				#	0.30
955	AA		В	- 0				#	0.30
1820	AA		В	P				#	0.35
1820	AA		В	Se				#	0.35
1820	AA		В	Si				#	0.35
1820	AA		В	Te				#	0.35
952	AA		В	х				#	0.53
956	AA		Br	C					4.36
1552	AA		С	* As				#	1.15

2127 Screen Numbers

Although there are only 2127 screen numbers, there are almost 6000 different screen definitions in the dictionary. To increase the number of screens available, many screen numbers are associated with two or more definitions. Screen number 961, for example, is used for six AA screens describing the presence of two unlike halogen atoms on a carbon:

AA	C	\mathtt{Br}	Cl	AA	C	Cl	F
AA	C	Br	F	AA	C	Cl	I
AA	C	Br	I	AA	C	F	I

The screen order dictionary entries for these six AA screens are all flagged with the "#" multiple-use marker. The frequency of appearance cited is 0.16%, and is the same for all six screens; 0.16% of the file is structures containing at least one of any of the six different fragments.

Selectivity

Since the addition of such a screen number to a search query seems to limit the query to retrieve only structures containing any of the associated fragments, it might seem that this approach does not benefit the selectivity of the search. In practice, there is actually selectivity observed, since other features in the structure assist in the selectivity.

Screen Number Sharing Schemes

Several different schemes have been used to set up multiple screens sharing a screen number:

- There are many cases where several related AA screens share a screen number. The six possible AAs describing a carbon atom attached to two different halogen atoms (e.g., AA C Br Cl) are specified by 961, for example. To narrow down retrieval to a specific fragment, you combine ("AND") 961 with additional AA screens, 956 AA Br C and 1347 AA C Cl, for example, to select the bromo–chloro species.
- Most elements do not have specific screen numbers for either EC or GME screens, nor is there a distinction made between the element appearing in the connection table (CT) and appearing as a single atom fragment (SAF). The approach taken assigns screen numbers to groups and series of elements, as shown by the table on the next page, so that a specific element is selected by combining two screens with AND logic, one screen specifying a vertical group from the periodic table and the other screen a horizontal series, silver, for example, is pinpointed by screens 1920 AND 1921 (specifying group Ib and transition series II, respectively).
- The most common elements, such as Al or Br, have specific screen numbers assigned to them, while the least common elements, such as Ac, can be accessed only via a generic screen specifying a group or series.
- As a consequence of this approach, the screen dictionary listings for EC and GME screens have been replaced with a table specifying the screen number(s) to be used to specify any particular element, as shown by the sample table entries which follow:

	-more" ount		t Count raph)	-	Modifie SAF)	er		or GM + SA	F)	
Ac	1							1919	0.19%	max.
Ag	1					1920	AND	1921	0.57%	max.
Al	1							1922	1.27%	
Br	1 2 3 4	1939 1940 1941	1.12% 0.30% 0.18%	2030	0.55%			1938	5.30%	

_

⁸ The less common elements occur so infrequently that the CT/SAF distinction is of little practical value. The CT/SAF distinction is made only for nine common elements (Br, Ca, Cl, H, I, K, N, Na, and O), which appear frequently enough as SAFs that distinct GME screens are beneficial.

⁹ Group designations in the tables are those used in Europe, not the U.S.

Generic Element Count and Graph	Screen 1918	Freq. 14.84%	Description "metals"	Elements all except Ar As At B Br C Cl F H He I He I Kr N Ne O P Rn
Modifier				S Se Si Te Xe
Screens	1967	2.00%	group Ia	Cs Fr K Li Na Rb
	1936	1.24%	group IIa	Ba Be Ca Mg Ra Sr
	1988	0.53%	group IIIa	La Sc Y
	1984	1.39%	group IVa	Hf Ti Zr
	2001	1.12%	group Va	Nb Ta V
	1966	2.44%	group VIa	Cr Mo W
	1991	1.96%	group VIIa	Mn Re Tc
	1965	6.72%	group VIII	Co Fe Ir Ni Os Pd Pt Rh Ru
	1920	2.10%	group Ib	Ag Au Cu
	1956	1.03%	group IIb	Cd Hg Zn
	1923	2.93%	group IIIb	Al B Ga In Tl
	1983	5.61%	group IVb	Ge Pb Si Sn
	1925	6.12%	group Vb	As Bi P Sb
	2003	86.62%		O S
	• • •			
	2029	0.61%	"SAFs" al	l except Br Ca Cl H I K N Na O

Screen Number Sharing

In many cases, related AS, BS, or CS screens share a screen number. With BS screens in particular, there are sets of related screens describing two rings linked by a short chain, and each specific BS fragment appears in two sets of screens, one set having fragments with the same ring bonds but different combinations of chain bonds, and the other set having fragments with the same chain bonds and differing ring bonds. Screen 834, for example, specifies two rings linked by three -1 bonds, while 845 specifies two rings with *4 bonds linked by different combinations of three chain bonds. The fragment BS A *4 A -1 A -1 A -1 A *4 A appears in both screen sets and is pinpointed by 834 AND 845.

Implicit Screen Number Sharing

Finally, there is an implicit screen number sharing accomplished through the use of three generic element symbols, "A" representing any atom, "M" representing any metal, and "X" representing any halogen.

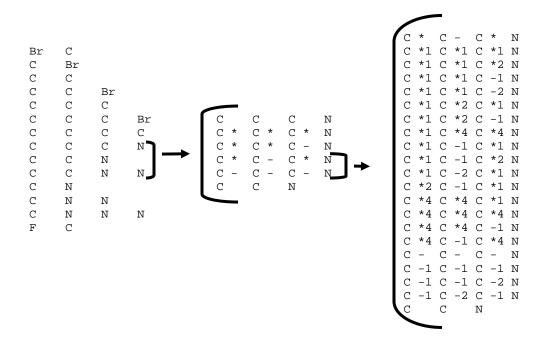
The 937 screen AA A *3 A thus represents any two atoms connected by a cyclic triple bond, while the 1390 screen AA C M specifies any carbon–metal bond and the 1364 screen AA C X X X specifies a carbon atom attached to three halogen atoms in any combination.

Using the Screen Dictionary

Introduction

The screen dictionary enables you to add screens to your search strategy by using the tables in this document. In some cases, this simply requires locating the desired screen in the dictionary. In other cases, when the desired screen is not in the dictionary, you will need to identify the best screen or screens that are available. This section discusses how screens are found in the dictionary, with emphasis on the **augmented atom** and **sequence** families of screens.

Finding AA, HA, and TW Screens

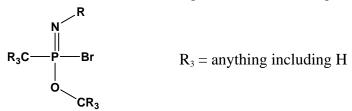

The augmented atom (AA), hydrogen augmented atom (HA), and twin augmented atom (TW) screens are relatively easy to locate in the screen dictionary listing, once you have become accustomed to the *hierarchical ordering* used for these screens. In the description of an augmented atom:

Step	Action
1	Cite the central atom first.
2	Cite its attachments in element symbol order.
3	If bonds are specified, a secondary ordering cites * ring bonds
	before - chain bonds.
4	Cite complete bond specifications in this order:
	*1 *2 *3 *4 -1 -2 -3 -4

You should thus look for AA C *1 C *4 C *4 N, for example, and not for AA's using out-of-order attachment citations, such as AA C *4 N *1 C *4 C or AA C *4 C *1 C *4 N.

Screen Descriptions

These descriptions are listed in increasing order of element symbols, and then bond symbols, resulting in the hierarchical ordering as illustrated here:



Screen Specificity

When an AA screen describing an atom is sought, check for the most specific screen possible under the constraints imposed by the query structure – a screen describing the central atom and all of its attached atoms, with bond type and value specified. If the most specific screen, the "target" screen, is not present in the dictionary, then check for less specific screens. These screens are derived from the "target" screen by decreasing the number of attached atoms and by reducing the level of bond specificity.

Example

As an example, consider the structure shown below. The most specific AA fragment based on P as the central atom is **P -1 Br -1 C -2 N -1 O**, and this "explodes" into a total of 57 AA fragments of various degrees of specificity: ¹⁰

P -1 Br -1 C	-2 N -1 O	P - Br - C	- N - O	P	Br	C	N	0
				_		_		U
P -1 Br -1 C	-2 N	P - Br - C	- N	P	\mathtt{Br}	C	N	
P -1 Br -1 C	-1 O	P - Br - C	- 0	P	\mathtt{Br}	C	0	
P -1 Br -2 N	-1 O	P - Br - N	- 0	P	\mathtt{Br}	N	0	
P -1 C -2 N	-1 O	P - C - N	- 0	P	C	N	0	
P -1 Br -1 C		P - Br - C		P	\mathtt{Br}	C		
P -1 Br -2 N		P - Br - N		P	\mathtt{Br}	N		
P -1 Br -1 O		P - Br - O		P	\mathtt{Br}	0		
P -1 C -2 N		P - C - N		P	C	N		
P -1 C -1 O		P - C - O		P	C	0		
P -2 N -1 O		P - N - O		P	N	0		
P -1 Br or	Br -1 P	P - Br or	Br - P	P	Br	or	\mathtt{Br}	P
P -1 C	C -1 P	P - C	<u>C - P</u>	P	C		C	P
P -2 N	N -2 P	P - N	N - P	P	N		N	P
P -1 O	0 -1 P	P - O	O - P	P	0		0	P

¹⁰ Note that the two-atom AA fragments may be represented in two distinct forms, and these forms are not equivalent. The fragment **AA P -1 Br**, for example, describes a central P atom with an attached Br atom, while the fragment **AA Br -1 P** describes a central Br atom with an attached P atom. The distinction occurs when numbers of occurrences are considered, the –SO₂ sulfonyl group has the fragments **AA S -2 O** and **AA 2 O -2 S**, for example, since only one fragment is created for the S central atom, but two are created for the two different O central atoms.

AA Fragments

By checking the screen dictionary, you will find only seven of these AA fragments, shown underlined in the illustration, and one is redundant (1688 implies 1686):

1533 AA C - P	2.98%
2000 121 0 1	
1686 AA N - P	0.60%
1688 AA N -2 P	0.09%
1722 AA O -1 P	2.22%
1743 AA P C N	0.29%
1744 AA P C O	1.25%
1752 AA P N O	0.49%

The six AA screens together (omitting 1686) define almost the entire desired augmented atom, but do not describe the P–Br bond. Two additional screens are needed: the generic **P X** screen specifying a phosphorus–halogen bond (either ring or chain) and an EC screen to specify the presence of Br in the connection table:

1561	AA	X	P	0.42%
1938	EC	Br		5.30%

Thus, the you would seek the desired specific AA fragment via a set of eight screens combined with AND logic:

1533 1561 1688 1722 1743 1744 1752 1938

Maximum retrieval is 0.09%, the retrieval of screen 1688, the rarest screen.

Worst Case

This example of using AA screens represents a "worst case", more involved than usually encountered in practice. It was chosen so that a number of screens are needed to describe the desired AA fragment, to illustrate the techniques needed to handle difficult cases. Most AA fragments needed in typical substructure searches can either be found in the screen dictionary or be handled by specifying two or three smaller AA screens; only those AA fragments containing several of the less common heteroatoms have to be analyzed as shown in the preceding example.

HA Screens

You can seek hydrogen augmented atom (HA) screens in the same manner as AA screens. Note that the selection of HA screens is rather limited:

- All HA screens have at least one hydrogen attached to the central atom.
- Only a limited set of elements may be specified as attached atoms:
 - C central atom: C, N, O, S, or X (generic halogen) attached atoms
 - N central atom: C, N, O, or S attached atoms; two generic screens are also provided for N-"hetero" (As, B, O, P, S, Se, Si, or Te)
 - O central atom: C or N attached atoms; two generic screens are provided for O-O or O-S and for O-"hetero" (As, B, P, Se, Si, or Te)
 - Al, As, B, Ge, P, S, Sb, Se, Si, Sn, or Te central atom: C attached atoms only

TW Screens

You can seek twin augmented atom (TW) screens in the same manner as AA screens. The selection of TW screens is very limited. The central atom is always a carbon atom with zero, one, or two attached hydrogens. Attached atoms are limited to carbon atoms and one atom with H specified: a CH₃, NH₂, OH, or SH.

AS Screens

When you need atom sequence (AS) screens, check for long paths through heteroatoms and through links between rings and chains. Then break down each path into overlapping 4- to 6-atom sequences to be located in the screen dictionary. Note that an atom should not appear twice in any given path, since the sequence screens describe only <u>linear</u> sequences. (There is, of course, no restriction on an atom appearing in two or more different paths.)

AS Example

Consider the structure shown below, where a 10-atom path containing six heteroatoms can be traced from the oxo substituent on the left to the nitro group on the right. Break down this 10-atom sequence into smaller 4- to 6-atom fragments to be located in the dictionary, since the sequence screens are "double posted", with an a-b-c-d sequence also entered in the screen dictionary as d-c-b-a. The breakdown of the 10-atom sequence can be done on a simple left-to-right basis.

AS Screens

By checking the screen dictionary, you will find nine of these AS fragments, shown underlined in the illustration, resulting in seven AS screens with bond types specified and four more generic AS screens without bond types specified.

174	AS	C * C - N - O	#	6.36%
248	AS	C - N - N - C		4.27%
386	AS	N - C * C - N		1.42%
394	AS	N C C N O	#	3.00%
396	AS	N - C * C - N - O	#	0.72%
431	AS	N C N N		5.69%
433	AS	N * C - N - N		0.55%
167	AS	N - N - C * C		2.67%
393	AS	N N C C N		3.65%
450	AS	N N C C N O	#	0.51%
429	AS	O - C * N * C - N	#	1.44%

Redundant Screens

Check the coverage of the 10-atom sequence by these 11 screens. Five screens are found to be unnecessary: four are contained in longer sequences and one is a less specific generic screen.

```
O - C * N * C - N - N - C * C - N - O
O - C * N * C - N
                                            429
        N C
                                            431
                                                 unneeded - implied by 433
        N * C - N - N
                                            433
            C - N - N - C
                                            248
                 N - N - C * C
                                            167
                 N N C
                            C
                                            393
                                                 unneeded - part of 450
                                  N
                     N C C
                                  N
                                            450
                     N - C * C - N
                                            386
                                                 unneeded – part of 396
                                            394
                                                 unneeded - part of 450
                     N C C N
                                      0
                     N - C * C - N - O
                                            396
                         C * C - N - O
                                            174 unneeded – part of 396
```

Eliminating these five screens leaves six screens to be used to describe the 10-atom path.

```
O - C * N * C - N - N - C * C - N - O
O - C * N * C - N
                                               429
                                                       1.44%
         N * C - N - N
                                                       0.55%
                                               433
             C - N - N - C
                                               248
                                                        4.27%
                  N - N - C * C
                                               167
                                                       2.67%
                  {\tt N} {\tt N} {\tt C} {\tt C} {\tt N} {\tt O}
                                               450
                                                       0.51%
                       N - C * C - N - O
                                               396
                                                        0.72%
```

Combine these screens with AND logic. Maximum retrieval is 0.51%, the retrieval of screen 450, the rarest screen in the set.

BS and CS Screens

You can find bond sequence (BS) and connectivity sequence (CS) screens in a similar manner. Keep in mind two special aspects of these two screen types:

- Many BS screens appear in two sets of related screens, and it is necessary to use both screen numbers connected with AND logic to specify the desired screen.
- These are generally sets of related screens describing two rings linked by a short chain, with each specific BS fragment appearing in two sets of screens: one set has fragments with the same ring bonds but different combinations of chain bonds, and the other set has fragments with the same chain bonds and differing ring bonds. Screen 834, for example, specifies two rings linked by three -1 bonds, while screen 845 specifies two rings with *4 bonds linked by different combinations of three chain bonds. The fragment BS A *4 A -1 A -1 A -1 A *4 A appears in both screen sets and is pinpointed by 834 AND 845.
- In CS screens, the connectivity values are the exact number of non-hydrogen attachments, not the usual "or more" specification, so that, for example, a "1" always indicates a terminal atom and a "2" an atom with exactly two attachments.

TR Screens

The type of ring (TR) screens describe rings of 3-7 atoms as node sequences and also provide an indicator that an 8-membered or larger ring is present. The symbol "D" is used to indicate a non-fused ring atom (attached to exactly two other ring atoms), and "T" is used to indicate a fusion point or bridgehead atom with three or more bonds to other ring atoms. The "smallest set of smallest rings" definition is used to define a "ring" here, so that "envelope" rings circumscribing smaller rings are not considered. In the simple bridged ring shown here, there are two DDTT rings but no DDTDDT ring, since the 6-membered envelope ring is not recognized by the screen generation procedure.

TR Screen Permutations

For the 3- to 7-membered rings, screens for all possible unique D and T combinations are present in the dictionary listing, ordered alphabetically within groupings by ring size. For a given D and T combination, there are usually several possible representations. The 4-membered ring of the example above might be cited as DDTT, DTTD, TDTT, or TTDD. The dictionary entry will always be the representation that is first if the alternative representations were ordered alphabetically, here DDTT.

AC, RC, and DC Screens

The atom count (AC), ring count (RC), and degree of connectivity (DC) screens are all very easy to locate and use because these screens are simply counters. The lookup process merely finds the desired count in the number of occurrences column of the dictionary listing. If the desired count is not present, the next lower count that is present should be used. (Remember that the numbers of occurrences are "or more" specifications and state that the feature appears $\underline{\bf n}$ or more times in the structure; the DC connectivity values are also "or more" specifications.)

EC and GM E Screens

The element count (EC) and graph modifier element (GME) screens are likewise easy to use, provided that you refer to the screen tables and not to the EC and GM screen listings themselves. The tables are provided to facilitate the use of the EC and GM screens, since most elements do not have dedicated EC and GM screen numbers and must be specified by combining two generic screens with AND logic.

Three tables of screens are provided in the screen dictionary, instead of the EC and GME screen listings:

- Table I Specific Element Count and Graph Modifier Screens
- Table II Generic Element Count and Graph Modifier Screens
- Table III Generic Element Count and Graph Modifier Screens in Screen Number Order

Table I

Lists EC and GM screens in element order. These screens fall into three classes, as shown by these example entries from the table:

"Or-	more"	Element	: Count	Graph	Modifier	EC or	GM		
Count		(CT Graph)		(5	SAF)	CT + :	CT + SAF)		
_	_								
Ac	1					1919	0.19%	max.	
Ag	1					1920	AND		
						1921	2.10%	max.	
Al	1					1922	1.27%		
\mathtt{Br}	1			2030	0.551.%	1938	5.30%		
	2	1939	1.12%						
	3	1940	0.30%						
	4	1941	0.18%						

Elements

Most elements can be specified only as present in the structure as a whole, either in the connection table (CT) itself or in a single atom fragment (SAF). These screens appear in the column headed " \mathbf{EC} or \mathbf{GM} ($\mathbf{CT} + \mathbf{SAF}$)".

More Common Elements

The **more common elements**, such as Al or Br in the example entries above, have a dedicated screen number to specify the presence of one or more atoms of the element in the CT and/or as a SAF.

Less Common Elements

The **less common elements**, such as Ag, are specified by combining two generic screens with AND logic, one screen specifying the elements in a vertical group¹¹ from the periodic table and the other those in a horizontal series. These screens are listed in Tables II and III. Note that <u>the frequency of occurrence cited for such an element is a maximum value, not an actual value</u>, and is the lower of the frequencies for the two AND'ed screens. As a reminder, the frequency cited is followed by the abbreviation "max."

¹¹ Group designations in the tables are those used in Europe, not the U.S.

Rarest Elements

The **rarest elements**, such as Ac, can be specified only via a generic screen for a periodic series. The frequency of occurrence cited for such an element is a maximum value, not an actual value, and is simply the frequency of occurrence of structures containing one or more atoms of any element in the series. Again, the frequency cited is followed by the abbreviation "max."

Very Common Elements

The **very common elements**, such as Br in the examples above, can be specified as present in the connection table or as present as an SAF. Here, the screen for a count of 1 ("one or more") is always a composite CT + SAF screen, while screens for counts of 2 or higher, in the column headed "**Element Count (CT Graph)**", refer to atoms of the element present in the connection table graph itself.

The <u>nine elements</u> that most frequently occur as SAFs have dedicated screens specifying the presence of the element as an SAF. These screens are in the column headed "<u>Graph Modifier (SAF)</u>" and are provided for Br, Ca, Cl, H, I, K, N, Na, and O.

Note

Table I also provides screens for the specification of "halogen" in the CT graph. These screens, found under the generic halogen element symbol "X", specify the total "or more" count of halogen atoms present in the CT, whether F, Cl, Br, or I.

Table II

Lists the generic EC/GM screens by category. These screens simply record the presence of one or more atoms of any of the cited elements, whether in CT or SAF. Two special generic screens should be mentioned:

- 1918 "metals" specifies the presence of any metal atom.
- 2029 "SAFs" specifies the presence as a single atom fragment of any element except Br, Ca, Cl, H, I, K, N, Na, and O, the nine elements with specific SAF screens.

Table III

Lists the generic EC/GM screens in screen number order, and is provided for your convenience.

The GM "unusual features" screens are also quite easy to use, should they be needed. These screens describe the following:

- Unusual structural features: unusual mass, valence, or charge attributes of atoms in the graph of the connection table or the SAF portion of the structure
- Multicomponent substance data: the presence of 2-4 or more components and the presence of SAFs
- Chemical substance class identifiers

Classification of substances as:

– alloys– multicomponent substances

incompletely described substancesmineralspolymersradical ions

- mixtures

with further subclassifications for incompletely described substances and polymers

A complete list of these screens is provided on the following page.

Special Purpose	Screen	Description	Freq
GM Screens	•		_
		Structural feature screens	
	2039	abnormal mass - all isotopic	
		specifications	0.97%
	2045	deuterium isotope	0.49%
	2046	tritium and higher H isotopes	
		(e.g., ⁴ H, ⁵ H, etc.)	0.06%
	2047	isotope at unknown location (IUL)	0.05%
	2041	abnormal valence	32.34%
	2040	charge - all charges: fixed,	
		tautomeric or delocalized	12.50%
	2042	delocalized charge only	0.10%
	2076	tautomer	39.88%
		** ***	
		Multicomponent substance screens	
	2127	2 or more components	18.61%
	2077	3 or more components	7.24%
	2078	4 or more components	4.55%
	2079	single atom fragment (SAF)	6.69%
		Ch	
		Chemical substance class identifier screens	_
		these screens are not mutually exclusive	
	substance	may belong to as many classes as are app	ropriate.
	2050	alloy	3.22%
	2082	CASREACT	14.04%
	2049	coordination compound	8.16%
	2048	incompletely defined (ID) substance	1.43%
	2071	<pre>ID - unknown structure (ID molform)</pre>	0.21%
	2072	<pre>ID - unknown point of attachment</pre>	0.99%
	2073	ID - ester	0.14%
	2074	ID - hydrogen (bond)	0.10%
	2053	manual registration	221.62% ¹²
	2052	mineral	0.05%
	2051	mixture (substance named as "mixt.	
		with" in CA/CAPLUS)	0.29%
	2043	polymer (general category)	4.18%
	2067	homopolymers and copolymers $[(A)_X,$	
		(A.B) _x , etc.]	3.20%
	2068	polymers defined as structural	
		repeating units (SRUs)	1.48%
	2069	SRU with end groups $[X-(-Y-)_n-Z]$	0.52%
	2070	SRU without end groups [-(-Y-) _n -]	1.00%
	2054	radical ion	0.23%

The value greater than 100% is due to sequence registrations. The percentage is based on the total number of structure connection tables.

STN Substructure Search Query Development

Introduction

Your substructure search query may be created using the structure drawing tools provided by STN. The factors usually considered in creating a structure query are:

- What is the basic substructure desired
- Whether an "open" (SSS) or "closed" (CSS) substructure search will retrieve the desired answers
- Will screens be necessary or desirable

The latter point may not be known until a SAMPLE search has been completed and results and Full File Projections analyzed. If screens (filters) are needed or desirable, they should be added as a separate set of L-numbers and then combined using Boolean operators (usually AND or NOT) with the structure L-number(s).

Note

Structure L-numbers and screen L-numbers may not be enclosed within the same set of parentheses.

A detailed discussion with examples of adding screens to a query may be found in *A Guide to Adding Screens in STN Structure Searching*, available at www.cas.org.

The SCREEN Command

The SCREEN command provides for the input of a single screen or a set of screens combined using Boolean operators (AND, OR). More complex screen combinations may be handled using the QUERY command.

- AND logic connects a set of screens to specify that all of the screens must be present.
- OR logic specifies that at least one of the screens must be present.

To use this command, at an arrow prompt (=>), enter "SCREEN" or "SCR" and the screen expression. The system assigns an L-number to the screen expression.

AND and OR Operators

A screen expression consists of screen numbers, separated by AND or OR. When both AND and OR are used in a list of screen numbers, the AND is executed first. If no operators separate the screen numbers, AND is assumed. Parentheses and NOT logic are not allowed in the SCREEN command.

NOT Operator

Since the NOT operator is not allowed in the SCREEN command and your total screen expression requires parentheses or NOT logic, first use the SCREEN command to build several smaller sets of screen L-numbers. Then combine these L-numbers with the QUERY command. The QUERY command does allow parentheses and NOT logic.

SCREEN Command Example

=> SCREEN

ENTER SCREEN EXPRESSION OR (END):2127 OR 2043 L2 SCREEN CREATED

=> S L1 NOT L2 SSS FULL

(where L1 is a structure query)

Query Command Example

=> SCR 2043 AND 2077

L3 SCREEN CREATED

=> SCR 2078

L4 SCREEN CREATED

=> QUERY

ENTER LOGIC EXPRESSION OR (END): ${f L3}$ NOT ${f L4}$ L5 QUE L3 NOT L4

=> S L1 AND L5 FULL

(where L1 is a structure query)

Appendix I: Substructure Profile Development

Introduction

STN structure searchers do not normally build screen-only structure queries. This appendix is presented to illustrate the techniques used in building screen-only structure queries in case such is desired.

Initial Profiling Steps

Follow these steps:

- 1. Analyze the query to determine the basic structural components.
- 2. Develop an overall encoding strategy for the components.
- 3. Identify "key" structural fragments to encode the components.
- 4. Obtain the screen (fragment) numbers from the screen dictionary.
- 5. Develop the Boolean logic strategy to combine the selected screens using the SCREEN and QUERY commands.

Screen Query Analysis

The analysis of the search question into its structural components is carried out to the extent that the structural fragments corresponding to each component can be connected in a simple Boolean expression (i.e., an un-nested expression formed without the use of parentheses to group sets). This is necessary because the SCREEN command provides only for the input of either a single screen (fragment) number or a series of screen numbers connected by Boolean operators in an un-nested expression. More complex logic expressions must be handled via the QUERY command.

Screen Query Boolean Expressions

The Boolean expressions that are accepted by the SCREEN command are thus limited to the following, where ### is used to represent a screen number:

- ### AND ### ... AND ###
 - AND logic is used to connect a set of screens to specify that all of the screens must be present.
- ### ### ... ###

If no operator is present, AND logic is assumed.

- ### OR ### ... OR ###
 - OR logic is used to specify that at least one of the screens must be present.
- ### AND ### OR ### AND ### ... AND ### OR ### etc.

Alternative sets of screens may be specified via the SCREEN command, since the AND operator has priority over the OR operator. The screens connected with AND logic are grouped before the OR operator is applied, effectively resulting in (### AND ###) OR (### AND ###)... AND ###) OR ###, etc.

Simple Query Strategy

The encoding strategy for a simple query containing no structural variables is naturally also simple. Just select fragments, obtain screen numbers for the fragments, and combine the screens with AND logic.

Uncommon Structural Features

It might even be unnecessary to describe the entire query. If a portion of the structure being sought is very uncommon, encoding only that portion might provide sufficient specificity. Then you could simply browse through the retrieved substances to select those substances that meet the query specification and to review for possible interest those related substances containing the uncommon structural feature, but not meeting the full query specification. ¹³

Example

For example, if a search query includes the substructure:

$$R \longrightarrow C \longrightarrow C \longrightarrow N$$
 $R = xxx, yyy, or zzz$

Three screens describe the C–C–N moiety:

The bond sequence screen specifying the chain triple–single–triple bond path is so selective that it fully defines the C–C–C–N moiety. The two AA screens can be omitted from the search. In addition, a test search on the BS screen alone may retrieve so few structures that it is not necessary to add screens to define the "R" portion of the query.

Note, however, that when a search query specifies alternatives for some portion of the substructure, you must describe either all of the alternatives in the encoded query or none at all. If some but not all of the alternatives are described in the encoded query, the result is likely to be missed answers and a loss of recall.

¹³ This approach might decrease the precision of the search, but it does not affect the recall. If only a portion of the query structure is encoded and searched, the retrieved substances include any and all substances on file that contain the specified screens, so possible answers are never lost due to a partial specification of the query structure.

Structural Variables

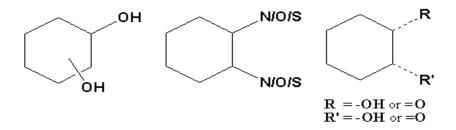
Once structural variables are introduced into a search query, encoding strategies become more complex. A search query may specify alternatives for the graph (topology), nodes (element values), or bonds of the substructure being sought, as illustrated below with three queries for substituted cyclohexanes:

Alternative Graph Alternative Nodes Alternative Bonds

When a search query contains such variables, you are combining a number of searches for different substructures into a single search. This can often be done with little effort, and more complex queries can be created as you become more experienced. Only a few quite complex queries will need to be broken down and searched as multiple queries with less complex structural variables.

Strategy Development

The discussions that follow first consider how to develop overall encoding strategies for the three example queries shown earlier. After a discussion of "key" structural fragments, those structural fragments most important to a search query, the analysis of these three example queries continues.


"Fixed" and "Variable"

When a search query specifies alternatives for the graph, nodes, or bonds of the substructure, the initial analysis of the query should break the substructure down into "fixed" and "variable" portions:

- The "**fixed**" portion(s) of the query *must always be present* and is in every relevant substance that is an answer to the query.
- The "variable" portion(s) of the query describe sets of alternatives, and one alternative from each set must always be present in any substance that is an answer.

Fixed and Variable Examples

For the three example queries, the rings are assumed to be isolated cyclohexane rings (i.e., rings not part of a larger ring system). The fixed and variable portions of the queries are as follows:

Alternative Graph

Fixed:

- cyclohexane ring
- two -OH groups on ring

Variable:

- position of -OH groups (1,2 1,3 or 1,4)

Alternative Nodes

Fixed:

- cyclohexane ring
- position of substituents
- single bonds to ring

Alternative Bonds

Fixed:

- cyclohexane ring
- two O's on ring in fixed positions

Variable: Variable:

- N/O/S elements - R & R' -OH or =O

"Key" Structural Fragments

"Key" structural fragments are the most specific fragments available in the screen dictionary to describe a substructure. These are the low-frequency screens. Since the screen dictionary is set up to allow encoding of a wide range of search queries, from very specific to very general, the screens likewise range from the specific to the general. The general screens are found with higher frequency in the substances present in the search file. For example, the following screens from the dictionary, listed in order of increasing specificity, can be used to encode a carboxylic acid group:

2005	EC	2	0				70.64%
1518	AA		С	_	0	- O	29.91%
1526	AA		С	-4	0	-40	11.09%

- Screen 2005 simply specifies the presence of at least two oxygens.
- Screen 1518 is more precise, specifying the presence of at least one carbon atom having two oxygens attached by chain bonds of any value.
- Screen 1526 is the most precise, specifying the presence of at least one carbon atom attached to two oxygens by equalized chain bonds.

Clearly, the most precise screen for "carboxylic acid" is 1526. The other screens can be omitted, since these specifications are implied in the 1526 screen.

Two Query Aspects

Most key structural fragments describing a query substructure can be identified by concentrating on two aspects of the query:

• Fully defined portions of the substructure: When bond values can be specified, useful low-frequency screens can often be found even for substructures that seem to be common, as shown by the AA screens listed below describing a carbocycle with an oxygen substituent:

```
C *
1275 AA
         C * C - O 45.33%
                             1135 AA
                                          C * C - O 35.34%
1276 AA 2 C * C - O 23.50% 1136 AA 2 C *
                                          C * C - O 17.07%
1279 AA C *1 C -1 O 10.84% 1138 AA C *1 C *1 C -1 O 8.84%
1280 AA 2 C *1 C -1 O 4.74% 1139 AA C *1 C *1 C -2 O 5.34%
1281 AA 3 C *1 C -1 O 2.71%
                            1140 AA 2 C *1 C *2 C -2 O 1.31%
1282 AA 4 C *1 C -1 O 1.93%
                             1142 AA 2 C *1 C *2 C -1 O 1.32%
1283 AA C *1 C -2 O 16.45%
1286 AA C *2 C -1 O 1.67%
1290 AA C *4 C -1 O 25.19%
1291 AA 2 C *4 C -1 O 10.71%
1292 AA 3 C *4 C -1 O 3.45%
1293 AA 4 C *4 C -1 O 1.58%
```

• "Unusual" portions of the substructure containing several heteroatoms, uncommon elements, several multiple bonds, uncommon ring sizes (rings of 3, 4, 7, 8, or more atoms), or large polycyclic ring systems

Anything unusual is likely to be of low frequency and thus useful, even if the feature can only be described by a generic (but still uncommon) screen.

Using Low-Frequency Screens

The screen dictionary has been designed, by a careful selection of the screens that are provided, to assist you in defining a search query with low-frequency screens wherever possible.

A look at the AA screen section, for example, shows almost 1000 screens with carbon as the central atom. Most of these screens include one or more heteroatoms among the attached atoms, and most have bond values specified.

Carbon is the most common element in a file of organic substances, and this depth of detail is necessary to get screens specific enough to be useful. Phosphorus, on the other hand, is relatively uncommon in the file substances, and only a few more than 50 AA screens have it as their central atom, with bonds specified for only a few. The most common of these generic screens has a frequency of only 6.30%, and most of them have frequencies under 2.00%.

Most Precise Screens

In general, augmented atom (AA) and atom sequence (AS) screens are the most precise screens. Effective screen profiles can be developed using only these two types of screens. You can concentrate on AA and AS fragments that contain several heteroatoms or unusual bonding patterns, initially looking at larger fragments and longer sequences. The fragments most likely to give useful screens include the following:

- AA fragments with carbon as a central atom and several attached heteroatoms
- AA fragments with carbon as a central atom and an attached heteroatom, where bond values can be specified
- AA fragments with a central heteroatom
- AA fragments with carbon as a central atom and three or four attached atoms (describing a ring fusion point or bridgehead atom, a ring atom with one or two acyclic substituents, or a chain branch point)
- AS sequences containing several heteroatoms
- AS sequences containing both ring and chain bonds (describing a chain-ring-chain or ring-chain-ring path)

Larger Structure Fragments

If the larger fragments and longer sequences cannot be found in the screen dictionary, you can break them down into smaller and more generic fragments and sequences:

- Large and specific AA fragments can be made smaller by specifying fewer attached atoms (removing carbon atoms first, then heteroatoms), and more generic by removing bond value specifications and, if necessary, bond type specifications.
- Specific 6-atom AS sequences used to cover a path through the substructure can be made smaller simply by covering the path with 4- and 5-atom sequences, and more generic by removing the bond type specifications.

Other Screens

The other types of screens are less generally useful but can provide good selectivity when they are applicable. These screens and their uses, along with some cautionary notes, are illustrated in the following sections.

HA and TW Screens

Hydrogen augmented atom (HA) and twin augmented atom (TW) screens are useful when the presence of hydrogen on an atom must be specified. The selection of screens is a bit limited:

- Most HA screens have C, N, or O as their central atom, with only very generic screens available for other central heteroatoms.
- TW screens have carbon central atoms and C, N, O, or S as the attached atom with hydrogen specified.

HA and TW Limitations

Several limitations on the use of HA and TW screens should be noted:

- The hydrogen specifications in these screens are exact counts of the number of attached hydrogens, not "or more" counts.
- The HA and TW screens present in the screen dictionary completely describe the central atoms and may have no additional attachments beyond those shown in the screen definitions.
- HA and TW screens cannot be used to specify the presence of hydrogen on nitrogen or chalcogen (O, S, Se, or Te) atoms involved in tautomeric situations.

TR Screens

Type of ring (TR) screens are primarily useful when describing the following:

- Isolated rings or systems that are large polycyclic ring systems
- Rings with 3, 4, 7, 8, or more nodes, or spiro systems
- When describing structures that contain several isolated 6-membered rings

D and T Symbols

The D and T symbols are used to encode TR definitions and are exact specifications. You must be cautious when using TR screens to encode queries where the ring systems are allowed to have additional rings fused to them or to have bridges, for example, when a ring system in a query may be part of a larger system (e.g., a substituted benzene ring is described, but a properly substituted naphthalene or other polycyclic system is acceptable).

TR Limitation

TR screens are not used to describe the ring unless all of the possible TR screens are used and grouped with OR logic. For a query specifying a 1,4-disubstituted benzene ring, six TR screens are needed.

					<u>fusion points</u>	R
	1867	TR	DDDDDD	64.12%	none	6 2
OR	1874	TR	DDDDTT	31.00%	2,3 or 5,6	
OR	1878	TR	DDDTDT	1.04%	2,6 or 3,5	5 3
OR	1883	TR	DDTDDT	0.53%	2,5 or 3,6	4
OR	1884	TR	DDTDTT	0.64%	2,3,5 or 2,3,6	Ţ
					or 2,5,6 or 3,5,6	R
OR	1889	TR	DTTDTT	3.09%	2,3,5,6	

(Screens 1878, 1883, and 1884 retrieve structures containing benzene rings with large macrocycle bridges, structures that are unlikely but still possible.)

RC Screens

Ring count (RC) screens are useful only for describing either structures containing five or more rings or very generic structures.

BS Screens

Bond sequence (BS) screens are useful when the query structure contains chain-ring-chain or ring-chain-ring paths with specified bond values or paths containing multiple bonds.

Note that bond sequence definitions are exact and do not imply alternative bond specifications. Where tautomer or alternating bonds exist, *4 and -4 bond symbols must be used in BS descriptions, not the usual *1 and *2 or -1 and -2 single and double bond symbols. You must use several BS screens, grouped with OR logic, to describe a bond path that might contain tautomeric or alternating bonds.¹⁴

¹⁴ Appendix II discusses the definition of tautomer and alternating bonds, how they are handled in the CAS REGISTRY, and how tautomer and alternating bonds must be considered when a search query is defined.

CS Screens

Connectivity sequence (CS) screens are useful when the query structure contains chain–ring–chain or ring–chain–ring paths through atoms with known fixed connectivities.

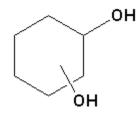
Since the connectivity values cited in these screens are exact non-hydrogen connectivities (not "or more" values), CS screens are not used to describe paths through atoms with uncertain connectivities (i.e., atoms where substitution is possible but not explicitly required) unless OR logic is used to group CS screens containing all possible combinations of connectivity values for such atoms.

GM Screens

The GM "unusual structural features" screens are useful when the query structure must contain a charge or an atom of abnormal mass. The GM "abnormal valence" screen is needed only when describing a substructure where the unusual valence is not implied by an AA screen (e.g., the screen is useful when searching for a structure containing a –ClO₃ perchloryl group, but not for one containing an –NO₂ nitro group, since the latter is adequately described by the screen AA N O O).

The GM screens provide access to multicomponent substance data and chemical substance class identifiers. These are primarily useful for special-purpose searches.

EC Screens


The element count (EC) and graph modifier element (GME) screens are useful when the query structure contains metal atoms or single atom fragments (SAFs), or when the query structure is so loosely specified that only very generic screens can be used.

AC Screens

The atom count (AC) screens are useful only when the query structure is very generic and rather large.

First Example

Going back to the first of the three examples under discussion, the alternative graphs query, the analysis of the query proceeds as follows:

Fixed: - cyclohexane ring - two -OH groups on ring

Variable: – position of –OH groups (1,2 1,3 or 1,4)

• The "key" features are the two –OH groups, and these can be described by three screens. Although the third screen (1136) probably adds little selectivity over that provided by the second (1280), there is no reason not to include it with the AND'ed set of screens once it has been selected. The number of screens in the AND'ed set does not affect the performance of the search: 15

• Only two screens are available to describe the isolated cyclohexane ring, and only one is somewhat selective: 16

• For the variable portion of the structure, three AS screens can be used:

Continued on next page

¹⁵ Note, though, that this is not true for screen sets grouped with OR logic, nor should it be taken to mean that redundant screens (e.g., EC 6 C for the query under discussion) should ever be included in a search specification.

¹⁶ An experienced searcher would be aware that many structures contain isolated benzene and pyridine rings. These common rings lead to the high frequency of the TR DDDDDD screens. The combination of 985 and 1867 is useful in specifying an isolated cyclohexane ring.

First Example (continued)

When the search is performed, the "fixed" screens are combined in one set with AND logic and the "variable" screens are combined in another set with OR logic.

Set A: 1701 AND 1136 AND 1280 AND 985 AND 1867

Set B: 496 OR 482 OR 470

Query: A AND B

Second Example

For the second of the three examples, the alternative bonds query, the analysis of the query proceeds as follows:

• The "key" features are the N/O/S substituents. Although they are in the variable portion of the structure, their positions are fixed so that a set of three AS screens, to be combined with OR logic, can be used:

```
496
           O - C * C - O #
                                   7.98%
      AS
           O - C * C - S #
                                   7.98%
496
      AS
403
           O - C * C - N #
                                   6.11%
                                            Set A
      AS
496
           S - C * C - S #
                                   7.98%
      AS
           S - C * C - N #
403
      AS
                                   6.11%
           N - C * C - N #
386
      AS
                                   1.42%
```

• Two screens are available to describe the isolated cyclohexane ring:

When the search is performed, the "fixed" screens are combined in one set with AND logic and the "variable" screens in another with OR logic, as follows:

Set A: 496 OR 403 OR 386

Set B: 985 AND 1867

Query: A AND B

Second Example Precision

If the description of the variable portion of the structure is not selective enough, you can add AA screens describing the ring atoms. This makes the search logic more complex since all six alternative structures must be described:

496 AND 1136	AS AA 2	O - C * C		7.98% Set C 17.07%
496 AND 1135 AND 1158	AS AA AA	O - C * C C * C * C	- 0	7.98% 35.34% Set D 7.91%
403	AS	O - C * C	- N #	6.11%
AND 1135	AA	C * C *	C - O	35.34% Set E
AND 1097	AA	C * C *	C - N	28.97%
496	AS	S - C * C		7.98% Set F
AND 1159	AA 2	C * C *		1.93%
403	AS	S - C * C	- N #	6.11%
AND 1158	AA	C * C *	C - S	7.91% Set G
AND 1097	AA	C * C *	C - N	28.97%
386	AS	N - C * C	- N #	1.42% Set H
AND 1098	AA 2		C - N	10.75%
Query: B AND	(C OR	D OR E OR	F OR G OR	Н)

Third Example

For the last of the three examples, the alternative nodes query, the analysis of the query proceeds as follows:

• The "key" features are the R and R' substituents. They are in the variable portion of the structure. Since two oxygen atoms will always be attached to the ring, two generic screens (specifying bond types but not bond values) describing the O-ring substitution will always be present, whether the R and R' groups are –OH or =O:

1136	AA	2	C *	C *	C -	0	17.07%	Set A
496	AS		0 -	C * C	- O	#	7.98%	

• Three sets of screens are needed to describe the three possible combinations of –OH and =O substituents:

Jiiioiiiatioiis oi	on and —o substituents.	
701 HA	2 O H -1 C 7.80%	
.280 AA	2 C *1 C -1 O 4.74%	Set B
885 BS	A -1 A *1 A -1 A 23.45%	
700 HA	O H -1 C 20.14%	
138 AA	C *1 C *1 C -1 O 8.84%	Set C
139 AA	C *1 C *1 C -2 O 5.34%	
886 BS	A -1 A *1 A -2 A 14.04%	
140 AA	2 C *1 C *1 C -2 O 1.31%	Set D
891 BS	A -2 A *1 A -2 A 1.95%	

• Two screens are available to describe the isolated cyclohexane ring:

When the search is performed, the set groupings and logic are as shown:

 Set A:
 1136 AND 496 AND 985 AND 1867

 Set B:
 1701 AND 1280 AND 885
 -OH and -OH

 Set C:
 1700 AND 1138 AND 1139 AND 886
 -OH and =O

 Set D:
 1140 AND 891
 =O and =O

 Query:
 A AND (B OR C OR D)

Too Generic Query

As an example of what might happen when a search query becomes so generic that it begins to present problems, consider the following query describing an isolated cyclohexane ring with two substituents, where the graph, nodes and bonds are all variable:

$$R = -OH \text{ or } = O \text{ or } -SH \text{ or } = S \text{ or } -NH_2 \text{ or } = NH$$

$$R' = -OH \text{ or } = O \text{ or } -SH \text{ or } = S \text{ or } -NH_2 \text{ or } = NH$$

$$R'$$

Although this query might seem rather simple, it describes 54 different structures. There are three different substitution positions (1-2, 1-3, and 1-4), and 18 combinations of R and R' (six combinations of R and R' considering just the elements involved, and three combinations of R-ring and R'-ring bonding), for a total of 3 x 18 = 54 possibilities. Since a search query explicitly describing all of these possibilities is obviously too complex to be practical, an easier, though less specific, approach needs to be developed.

Generic Strategy Development

As before, two screens describe the isolated cyclohexane ring:

For this query, AS screens are the key screens, since they allow the specification of both the R and R' elements and the substitution positions to be combined in a single set of screens.

A check of the screen dictionary shows that only nine different AS screens are needed. There are 18 (6 x 3) different combinations of R and R' elements and substitution positions, since the screens for combinations of O and S atoms on the ring share screen numbers. Using "O/S" to represent the generic atoms in the AS screens specifying either O or S atoms, these screens are the following:

```
496 AS
            O/S - C * C - O/S
                                            7.98%
            O/S - C * C - N
    403 AS
                                            6.11%
OR
                 - C * C - N
    386 AS
                                            1.42%
OR
            O/S - C * C * C - O/S
OR
    482 AS
                                            6.67%
    375 AS
            O/S - C * C * C - N
                                            4.45% Set B
OR
    361 AS
                 - C * C * C - N
OR
                                            1.84%
    470 AS
            O/S - C * C * C * C - O/S #
                                            7.27%
OR
                                           5.24%
OR
    348 AS
            O/S - C * C * C * C - N
                 - C * C * C * C - N
    342 AS
                                            2.33%
OR
```

These nine screens are OR'ed together in one set to specify the ring substitution patterns.

Substituent Screens

A third set of screens can be set up to describe the possibilities for the R and R' substituents. Describing the 18 different combinations of R and R' is not practical, since this requires 18 sets of screens, each containing 2-4 screens. Instead, the description specifies only the six different possibilities for one substituent. This can be done with one set of six screens OR'ed together. The screen set is as follows:

	1700	HA	Ο	Η	-1 C 20.14%	5
OR :	1139	AA	С	*1	C *1 C -2 O 5.34%	5
OR :	1771	HA	S	Η	-1 C 0.85%	s Set C
OR :	1162	AA	С	*1	C *1 C -2 S # 0.448	5
OR :	1568	HA	N	Н2	-1 C 7.57%	5
OR :	1255	HA	N	Η	-2 C 4.33%	5

A look at the frequencies with which these screens occur shows that the set of nine screens OR'ed together adds almost no specificity to the search. Since the substitution positions have been fairly well specified by the set of AS screens, the set of BS screens adds little more to the search than the specification of substituent-ring bonds.

Splitting a Query

A better approach for this query is to split the query into several simpler queries. An inspection of the frequencies for the set of screens that describe the substituents shows that the screens for the oxygen substituents –OH and =O are much less specific than the screens for the S and N substituents. The search query can, therefore, be divided into two queries, one searching for two O substituents (R and R' are limited to –OH and =O) and one searching for at least one S or N substituent. If recall and precision for either search remain unsatisfactory, the two queries could be divided still further. The first could be split into three queries, each looking for a particular combination of –OH and =O substituents, while the second could be split into two queries, one looking for one O substituent and one S or N substituent, the other for two S or N substituents.

NOT Logic

The final aspect of substructure search profile development to be considered is the use of NOT logic, whereby you can specify a screen or set of screens that should **not** appear in any structure that is an answer to the search. While this ability can be very useful, it can also be very harmful if misused, causing you to miss legitimate answers to the search query.

NOT Logic Can Be Harmful

The potential for harm arises because a substance is not included as an answer if it contains the specified fragment(s) anywhere in its structure, not just in the portion of the structure defined by the screens grouped by AND and OR logic that describe the substructure sought by the query. If you are looking for nitroso compounds, for example, use the screen for C–N=O:

1642 AA N -1 C -2 O 5.21% Set A

as a key screen, and you will find that most of the retrieved answers contain nitro groups, not nitroso groups. If you used NOT logic to specify that no answer should contain screen 1680, the key screen for a nitro group.

1680 AA N O O 5.54% Set B

By specifying A NOT B in the search logic, the number of answers retrieved by the search decreases to much less than before. However, the NOT logic rejects legitimate answers along with the undesired structures that did not contain nitroso groups, since *all* structures containing a nitro group are rejected, *including those structures that contained both a nitro and a nitroso group*.

Safely Using NOT Logic

NOT logic can safely be used when you indeed want to exclude any structure containing an undesired fragment or set of fragments. A query for polycyclic hydrocarbons, for example, shows the proper use of NOT logic, since you are not interested in any structure containing elements other than C and H. The query is then described as follows:

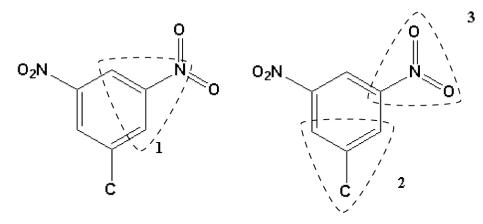
AND	1942 1839		4 2	С					90.13% 62.14%	Set A
OR OR OR	1918 1925 2003 2019	J .	o Vb	(O (Pc	S) Se	Te)		14.51% 6.96% 81.49% 0.63%	
OR OR	1929 1924		_					F I) Ne	29.63% 0.01%	Set B
					Rn	Xe)			
OR	1932	EC		В					1.02%	
OR	1992	EC		N					62.13%	
OR	2026	EC		Si					2.63%	
Search	logic:	A NOT	В							

Example of Substructure Search Profile Development

Search Query

The steps in the development of a profile can be illustrated by using the following query:

This query, as with most substructure queries, has structural variables: the position of the –OR group and the value of R. The strategy for this query will consider both the "fixed" portion and the "variable" portion of the structure when deriving the components and their Boolean logic relationship.


Query "Fixed" Portion

Every relevant substance that is an answer to the query must contain the "fixed" portion of the structure:

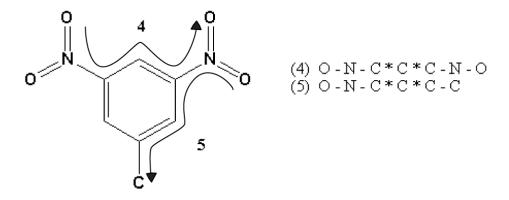
The discussion that follows describes in detail how this structure is analyzed in terms of augmented atom and linear sequence fragments and how these fragments are, in turn, analyzed in terms of search screens present in the dictionary.

"Fixed" Portion Analysis

To begin the analysis of the "fixed" portion of the structure, select the best augmented atom fragments available: the substituted ring atoms and the nitrogens of the nitro groups. The AA fragments are as shown:

- (1) C *4 C *4 C -1 N
- (2) C *4 C *4 C -1 C
- (3) N -1 C -2 O -2 O

Since the benzene ring is a very common ring, there is no need to describe it via AA fragments beyond that implicit in the C *4 C *4 C sections of fragments (1) and (2).

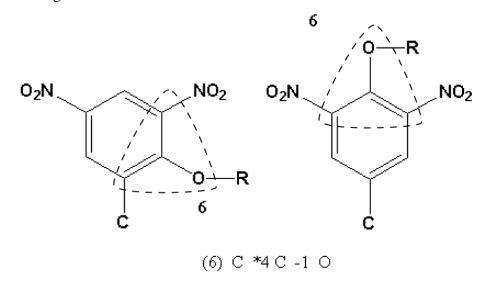

Screen Dictionary Fragments

Locate each of these fragments in the screen dictionary:

The first two fragments are exactly matched by screens in the dictionary, even the desired number of occurrences of fragment (1). The second screen, though, is quite common and does not add any significant specificity to the search. Fragment (3) describing the nitro groups cannot be found as is, but is adequately handled by two screens, the first describing a C–N=O substructure and the second effectively describing two nitro groups.

Atom Sequence Fragments

Continue the analysis of the "fixed" portion of the structure by selecting the best atom sequence fragments available: the atom sequences between the two nitro groups and between either nitro group and the carbon substituent. The AS fragments are as shown:


Locate each of these fragments in the screen dictionary:

367 AS
$$O - N - C * C * C - N 1.02\%$$
 (4) 71 AS $C - C * C * C - N - O 1.36\%$ (5)

The first fragment is a symmetrical seven atom sequence, and the screen citing six of these atoms is the best available – the screen dictionary only describes sequences of 4, 5, or 6 atoms. The second fragment of six atoms is exactly matched by a screen.

"Variable" Portion Analysis

Begin the analysis of the "variable" portion of the structure by selecting the best augmented atom fragments available that describe the substitution of the –OR group on the ring. Note that either substitution position results in the same augmented atom:

Locate the fragment in the screen dictionary:

Although not an exact match, the screen is adequate for describing the –OR substitution on a benzene ring. Check at a more generic level without the specification of bond values, and you will find another screen to describe the fragment:

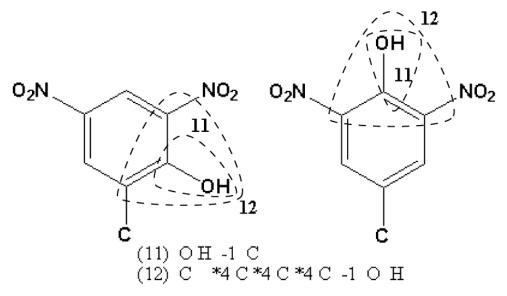
The screen is common enough, though (35.34% frequency), that it likely does not provide any additional specificity to the search.

Atom Sequence Fragments

Continue the analysis of the "variable" portion of the structure by selecting the atom sequence fragments that describe the substitution of the –OR group on the ring. Note that the two substitution positions result in two quite different atom sequences between the carbon substituent and the –OR group, but the same atom sequence between either nitro group and the –OR group:

- (7) O-C *C-C
- (8) O-C*C*C*C-C
- (9) O-N-C*C-O
- (10)0-C*C*C*C-N-0

Locate the fragments in the screen dictionary:


490 AS
$$O - N - C * C - O$$
 1.17% (9)

348 AS O - C * C * C - N
$$4.48\%$$
 (10)

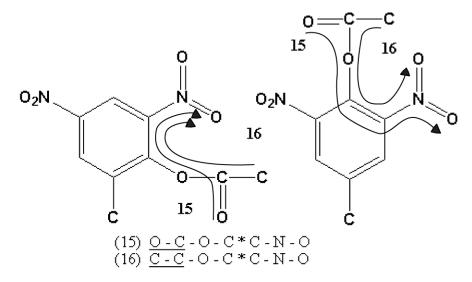
The first three sequences are exactly matched by dictionary screens, and a 6-atom screen describes the last sequence. Note that the 490 screen is included in the "fixed" portion of the query, since that sequence is always present in the structure. The "variable" portion of the structure here is described by (119 AND 348) OR (41).

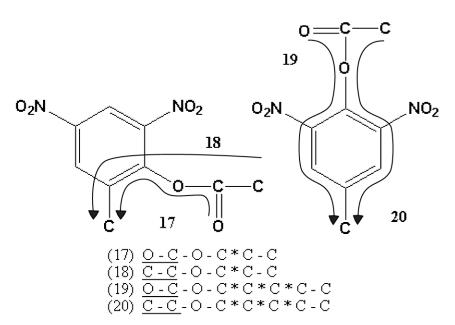
Further "Variable" Portion Analysis

Continue the analysis of the "variable" portion of the structure by selecting fragments that describe the different possibilities for the -OR group. For the case of R = H, giving an -OH substituent, HA and TW fragments are the obvious choice:

Both screens are present in the dictionary:

Since the more specific TW screen "contains" the HA screen, the HA screen is ignored.


Second Case


For the second case where R = -C(=O)-C, giving an -O-C(=O)-C ester linkage substituent, both AA and AS fragments are considered. Two AA fragments describe the ester linkage:

Both AA screens are present in the dictionary, the O - C - C screen being effectively equivalent to the O -1 C -1 C screen sought; neither screen is very selective.

AS Fragments

Continuing with this case, select the AS fragments, first those sequences between the -O-C(=O)-C substituent and a nitro group, then those between the -O-C(=O)-C substituent and the -C substituent:

Selected AS Screens

Since AS screens have already been selected to describe the -OR group, screens selected here do include one or more atoms of the -C(=O)-C substructure, shown underlined above. As before, the two substituent positions result in two quite different atom sequences between the carbon substituent and the -O-C(=O)-C group, but the same atom sequence between either nitro group and the -O-C(=O)-C group. Checking the dictionary results in the following screens:

```
409
    AS
               - O - C * C - N 0.36% (15)
271
           - O - C * C - N - O 0.42% (15 & 16)
    AS
           - C - O - C * C 14.37% (16, 18 & 20)
183
    AS
        C
        C - O - C * C - C
                                6.93% (17 & 18)
123
    AS
              - O - C * C
193
                                  4.71% (17 & 19)
    AS
```

Screen 123 is specific to one position of substitution of the –O–C(=O)–C group and is omitted; the other four screens are applicable for either position of substitution.

Third case: R = Metal

For the third case, where R = (metal), the screen is simply the generic "metals" screen 1918.

1918 GM "metals" 14.84% (15)

SAMPLE Screen Profile

A sample screen profile for the query, showing the various components, the screens selected to encode the components, and the Boolean logic used to group the screens is shown here. Since there are many highly selective screens available, the less selective screens with frequencies above 20% are omitted.

AND AND	1121 1642 1681	AA 2 C AA N AA 2 N	*4 C *4 C -1 N -1 C -2 O O O	8.53% 5.21% 1.28%
AND AND AND AND	367 71 1290 490	AS O AS C AA C AS O	- N - C * C * C - N - C * C * C - N - O *4 C -1 O - N - C * C - O	1.02% Set A 1.36% 25.19% 0.94%
AND	119 348	AS O AS O	- C * C - C - C * C * C * C - N	18.18% Set B 5.24%
	41	AS O	- C * C * C * C - C	19.86% Set C
	1832	TW C	*4 C *4 C -1 O H	6.53% Set D
	409	AS N	- C * C - O - C - O	0.36%
AND AND AND	271 183 193	AS C AS C AS	- O - C * C - N - O * C - O - C * C	0.42% Set E 14.37% 4.71%
	1918	"meta	ls"	14.84% Set F

Screens 367, 71, and 490 are perhaps the most important screens for the query, since they are very precise ones. They retrieve a substance containing an aromatic ring with *meta* N substituents, with *meta* N and C substituents, and with *ortho* N and O substituents, respectively, and even make a partial specification for the presence of a nitro group.

Structural Features

The structural features described by these screen sets are as follows:

- Set A: The "fixed" portion of the query structure that must be present, regardless of the position of the –OR group or the nature of R
- Set B: The "variable" portion of the structure when the –OR group is attached to the ring between the carbon substituent and either nitro group
- Set C: The "variable" portion of the structure when the –OR group is attached to the ring between the two nitro groups
- Set D: The "variable" portion of the structure when the -OR group is -OH
- Set E: The "variable" portion of the structure when the –OR group is –O–C(=O)–C
- Set F: The "variable" portion of the structure when the –OR group is –O–(metal)

In the search query, group the sets as:
A AND (B OR C) AND (D OR E OR F)

Estimating Retrieval

The maximum number of structures that the query will retrieve can be estimated by considering the frequencies of the search screens used and how they are grouped together. In a set of screens grouped with AND logic, the maximum retrieval is that of the most infrequent (i.e., most specific) screen, so the retrieval for the six screen sets considered individually is as follows:

Set A	Set B	Set C	Set D	Set E	Set F
0.94%	5.24%	19.84%	6.53%	0.42%	14.84%

For the full search query, the limiting factor is the most specific intermediate screen set. Here, the frequencies of sets OR'ed together is summed to maximize the retrieval for the intermediate "OR" set.

Search logic: A AND (B OR C) AND (D OR E OR F)

 Set A
 Set (B OR C)
 Set (D OR E OR F)
 Search

 0.94%
 25.08%
 21.79 %
 0.94%

Actual Retrieval

The actual retrieval is somewhat lower than the maximum 0.94%, due to the coordination of a number of uncommon screens in set A. The actual retrieval of a search is usually only about half that estimated in this manner.

Searching the Query

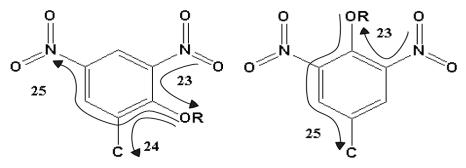
Input the query profile in the STN structure search system by using the SCREEN command or STN Express or STN on the Web to describe the six screen sets and the QUERY command to describe the Boolean logic relationship between the sets.

```
=> FIL REG
=> SCREEN
ENTER SCREEN EXPRESSION OR (END):1121 AND 1642 AND 1681 AND
367 AND 71 AND 1290 AND 490
      SCREEN CREATED
=> SCR 119 AND 348
L2 SCREEN CREATED
=> SCR 41
L3
      SCREEN CREATED
=> SCR 1832
      SCREEN CREATED
=> SCR 409 AND 271 AND 183 AND 193
L5
     SCREEN CREATED
=> SCR 1918
      SCREEN CREATED
=> QUERY
ENTER LOGIC EXPRESSION OR (END): L1 AND (L2 OR L3) AND (L4 OR
     QUE L1 AND (L2 OR L3) AND (L4 OR L5 OR L6)
L7
```

You can now do a SAMPLE search to test the query, review results, and decide whether to search the full file or revise the query.

"Typical" Search Query

Based on the results of some developmental studies, the "typical" search query requires the input of 10-15 "good" screens to optimize the search precision. If a sample search shows that an excessive number of structures are likely to be retrieved by a full search, it may be desirable to extend the analysis of the query to derive additional search screens. For the example query, since all relevant AA and AS screens have been identified, bond and connectivity sequence (BS and CS) screens can be added.


BS Screens

Begin the analysis of the query to identify bond sequence (BS) screens by examining the "fixed" portion of the structure. Bond sequences between the two nitro groups and between either nitro group and the carbon substituent are as shown:

Since bond sequence screens describe sequences of 3-5 bonds, one BS screen describes both of these fragments:

Further BS Screens

Continue the analysis by selecting BS screens to describe the position of the –OR group on the ring. You will find three fragments:

- (23) A -2 A -1 A *4 A -1 A
- (24) A-1A*4A-1A
- (25) A -1 A *4 A *4 A *4 A -1 A

Screens corresponding to all three fragments are found in the dictionary:

Of these three screens, only 895 is useful. Screen 889 is contained within 895, and 868 is probably too general to add any specificity to the search. Since screen 895 is present regardless of the position of the –OR group, add it to the set of "fixed" screens.

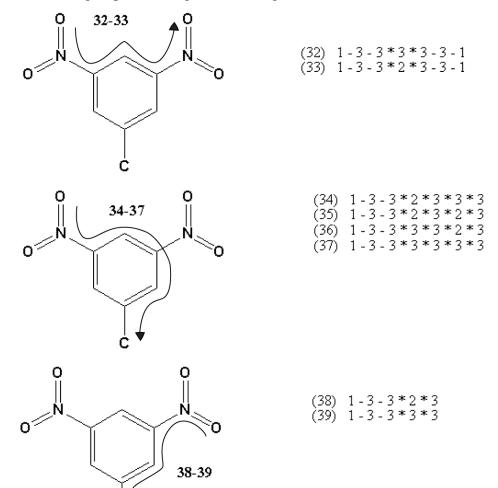
Still More BS **Screens**

Continue the analysis of the "variable" portion of the structure continues by selecting BS fragments that describe the different possibilities for the –OR group. You will not find new fragments for the cases where R = H or metal. For the case where R = -C(=O)-C, giving an -O-C(=O)-C substituent, you will find six BS fragments, although the fragments are quite similar:

- (26) A -2 A -1 A *4 A -1 A -1 A -1 A
- (27) A -2 A -1 A *4 A -1 A -1 A -2 A
- (28) A -1 A *4 A *4 A *4 A -1 A (29) A -1 A *4 A *4 A *4 A -2 A

(30) A -1 A *4 A *4 A *4 A -1 A -1 A -2 A (31) A -1 A *4 A *4 A *4 A -1 A -1 A -1 A

By checking the dictionary, you will find five screens describing these fragments:


Of these screens, only the first three are present for both positions of the -O-C(=O)-C group, and only 898 and 828 are selective enough to be useful. **CS Screens**

The analysis of the query structure to identify connectivity sequence (CS) screens is more complex than the previous analyses. The difficulties arise from the specification of exact non-hydrogen connectivities in the CS screens, where a "2", for example, stands for an atom with exactly two attachments, not an atom with two or more attachments. As a consequence, consider not only the query structure itself but also the possibility of substitution on the query structure. In the "fixed" portion of the query, there are four atoms with variable connectivity, as shown:

- atoms *a*, *b*, and *c* may have connectivities of either 2 or 3; at least one of these atoms will have a connectivity of 3 because of the presence of the –OR group
- atom d may have a connectivity of
 1, 2, 3, or 4 due to its definition as
 CR'₃, where R' may be anything (including H)

CS Screen Analysis

For the analysis of the structure for connectivity screens, consider three paths: the path from one nitro group to the other and the "long" and "short" paths from a nitro group to the ring atom bearing the carbon substituent.

You will find only four CS screens to describe these paths:

In the search profile, group these screens (712 OR 700) to describe the structure with or without a substituent on atom a, and (576 OR 571) to describe the structure with or without a substituent on atom b (or its equivalent, atom c).

Further CS Screens

Continue the analysis of the "variable" portion of the structure for connectivity sequence screens by selecting screens that describe the different possibilities for the –OR group. For the case of R = H, giving an –OH substituent, consider the path between the HO– and a nitro =O, since this path is independent of the position of the –OH group on the ring.

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_3N
 O_4O
 O_4O

You will find two CS screens to describe this path:

More CS Screens

For the second case where R = -C(=O)-C, giving an -O-C(=O)-C ester linkage substituent, consider the path between the carbonyl =O and a nitro =O, since this path is independent of the position of the group on the ring.

$$C - C = 0$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_3N
 O_41
 O_41
 O_41
 O_41
 O_5
 O_6
 O_6
 O_7
 O_8
 O

You will find three CS screens to describe this path:

556 CS
$$1 - 3 - 2 - 3 * 3$$
 $10.21%$ (41)

CS Screens for Metals

For the third case, where R = (metal), you do not need to find CS screens. This eliminates the need to check structuring conventions to determine how the O-metal bond is described.

Refining the Query

Group the new BS and CS screens to describe structural features in the same fashion as in the previous examples.

- Set AA: The "fixed" portion of the query structure that must be present:

 882 BS A -2 A -1 A *4 A *4 A -1 A 7.58%

 AND 895 BS A -2 A -1 A *4 A -1 A 7.01%
- Set BB: The "variable" portion when the –OR group is attached to the ring between the carbon substituent and either nitro group:

 no new screens
- Set CC: The "variable" portion when the –OR group is attached to the ring between the two nitro groups:

 no new screens
- Set DD: The "variable" portion when the –OR group is –OH:

• Set EE: The "variable" portion when the –OR group is –O–C(=O)–C:

- Set FF: The "variable" portion when the –OR group is –O–(metal): no new screens
- Set GG: The structure with or without a substituent on the ring between the nitro groups:

• Set HH: The structure with or without a substituent on the ring between a nitro group and the carbon substituent:

```
576 CS 1 - 3 - 3 * 3 18.41% OR 571 CS 1 - 3 - 3 * 2 * 3 14.13%
```

SCREEN Command

The SCREEN command can be used to define the five new screen sets, and the QUERY command can then be used to add them to the search profile as shown:

```
A AND AA AND (B OR C) AND ( (D AND DD) OR
(E AND EE) OR F) AND GG AND HH
=> FIL REG
=> SCR 1121 AND 1642 AND 1681 AND 367 AND 71 AND 1290 AND 490
      SCREEN CREATED
=> SCR 119 AND 348
      SCREEN CREATED
L2
=> SCR 41
      SCREEN CREATED
=> SCR 1832
L4
      SCREEN CREATED
=> SCR 409 AND 271 AND 183 AND 193
L5
      SCREEN CREATED
=> SCR 1918
      SCREEN CREATED
=> SCR 882 AND 895
L7 SCREEN CREATED
=> SCR 575 AND 576
L8 SCREEN CREATED
=> SCR 898 AND 828 AND 556 AND 576 AND 657
L9 SCREEN CREATED
=> SCR 712 OR 700
L10 SCREEN CREATED
=> SCR 576 OR 571
L11 SCREEN CREATED
=> QUERY
ENTER LOGIC EXPRESSION OR (END):L1 AND L7 AND (L2 OR L3) AND
  ((L4 AND L8) OR (L5 AND L9) OR L6) AND L10 AND L11
      QUE L1 AND L7 AND (L2 OR L3) AND ((L4 AND L8) OR (L5 AND
      L9) OR L6) AND L10 AND L11
```

The maximum retrieval for each set is as shown:

```
Set A
        Set B
                Set C
                         Set D
                                 Set E
                                          Set F
0.94%
        5.24%
                19.84%
                        6.53%
                                 0.42%
                                         14.84%
Set AA Set DD Set EE Set GG
                                Set HH
7.01%
        15.42%
                                 32.54%
                4.41%
                         7.78%
```

For the full search query, the limiting factor is the most specific intermediate screen set, still set A. The introduction of the new screen sets, though, nevertheless helps to decrease the actual search retrieval.

Searching for Multicomponent Substances

Multicomponent Substances

Multicomponent substances, in the STN databases, are substances such as addition compounds, alloys, copolymers, hydrates, mixtures, and salts. When structured according to CAS REGISTRY structuring conventions, each component is shown separately, with dots separating the individual structures. For example:

The number of components is one more than the number of dots used in the CAS "dot-disconnect" structuring convention and does not depend on any coefficients or multipliers that might be present. In the above examples, the first four are two-component substances and the last two are three-component substances.

Single Atom Fragments

A component that contains only one non-hydrogen atom (to which hydrogen may be attached) is usually handled as a single atom fragment (SAF) by the CAS REGISTRY system. Exceptions are made for one-component substances that contain only one non-hydrogen atom (e.g., sodium and water), which are described by single-atom connection tables. As a consequence of screen number sharing, though, most elements do not have distinct screen numbers for the EC screen and the GM screen that specify an element's presence in the connection table (CT) graph and as an SAF, respectively. The distinction is made only for nine common elements (Br, Ca, Cl, H, I, K, N, Na, and O), which appear frequently enough as SAFs that distinct GM screens are beneficial. All of these elements except H also have the usual CT/SAF screen number that may be used to specify the element appearing in either CT or SAF.

Multicomponent Screen Assignments

In the STN structure search system, the search screens recorded for a multicomponent substance are obtained by generating the screens for each component. After performing a Boolean OR operation between them, add the appropriate GM multicomponent screen(s). For example, the substance

$$H_2N$$
 NH_2 . 2 H_2N CO_2H

has element count screens EC 6 C, ¹⁷ EC 2 N, and EC 2 O. The screens EC 12 C, EC 3 N, EC 4 N, etc., are not set due to the OR'ing and ignoring of multipliers and coefficients.

⁻

¹⁷ Although seven C atoms are present, there is no EC 7 C screen, so EC 6 C is used instead.

Search Query Encoding

This approach to search screens leads to the following considerations for search query encoding:

- When an ordinary query is encoded, no special action is needed to retrieve multicomponent substances that contain the desired substructure in one of the components.
- Special care should be taken with the use of NOT logic. If you are looking for acyclic structures, for example, you would miss multicomponent substances that contain an acyclic structure as one of the components if the search includes a NOT group to reject cyclic structures containing the RC 1 fragment.
- When a query is encoded for a multicomponent substance, you should follow the same procedure used for screen generation:
 - First, select the sets of screens for each component considered separately.
 - Second, combine these sets into a composite set by taking all screens that appeared in only one set and the screens with the highest numbers of occurrences that appeared in two or more sets.

For example, a search for:

would have a composite screen set including the screens shown underlined above, to which the GM screen for a multicomponent substance with two or more components (2127) can be added.

Appendix II: Tautomer and Alternating Bonds

Introduction

This appendix discusses tautomer and alternating bonds, their definitions, how they are handled in CAS REGISTRY, and how they must be considered when a search query is defined.

The first section of this appendix is a reprint of a paper by CAS staff that discusses tautomerism and alternating bonds in CAS REGISTRY and provides complete definitions of these bonds.

The second section discusses the formulation of search queries and provides some general guidelines for query encoding. A number of common tautomeric substructures are also presented, as a user aid.

Tautomeric Bonds

It is important to note that all normalized bonds are represented in CAS REGISTRY screens by the *4 and -4 bond symbols:

*4 = alternating (aromatic or completely conjugated) or tautomeric or delocalized ring bond

-4 = tautomeric or delocalized chain bond

[Reprinted from the Journal of Chemical Information and Computer Sciences, **1980**, *20*, 18.] Copyright © 1980 by the American Chemical Society and reprinted by permission of the copyright owner.

The Chemical Abstracts Service Chemical Registry System. VII. Tautomerism and Alternating Bonds

J. MOCKUS* and R. E. STOBAUGH

Chemical Abstracts Service, Columbus, Ohio 43210

Received December 3, 1979

The Chemical Abstracts Service (CAS) Chemical Registry System is a computer-based information system that uniquely identifies chemical substances on the basis of their molecular structure. Substances that have several possible chemically equivalent representations are difficult to portray precisely by a single structure diagram or connection table. Among the major causes of this problem are aromatic rings, whose alternating single and double bonds can be represented in more than one way, and tautomerism, an equilibrium involving single/double bond shifts coupled with hydrogen migration. The CAS Chemical Registry System handles the problem by algorithmically recognizing tautomeric and alternating bond structures, replacing the explicit single and double bonds with special normalized bonds, and associating the migrating tautomeric hydrogen with groups of atoms rather than just single atoms. This article describes the normalization techniques used in handling alternating bonds and tautomeric bonds, as well as substructure search aspects involving these bond types, and denormalization procedures required for algorithmic structure display and name generation.

INTRODUCTION

The Chemical Abstracts Service (CAS) Chemical Registry System is a computer-based system for the unique identification of chemical substances on the basis of structure.1 The initial, experimental system, Registry I, began operation in 1964 and established the viability and validity of the registration concept for fully defined organic substances. In 1968, the scope of the system was increased as it began to handle additional classes of substances. The system, now known as Registry II, began to be integrated into the CAS indexing operation. In 1974, the most recent version, Registry III, made major adjustments in the Registry structure records to provide increased support to the process of generating names for the Chemical Abstracts (CA) Chemical Substance Index, and also to computer-based structure output operations through explicit identification of the ring systems present in a substance. As its use has expanded, the CAS Chemical Registry System has proven to be reliable and consistent as a structure identification

method and has become an essential CAS production tool supporting CA index input and compilation. It has also found widespread interest and support in the scientific and technical community.

The foundation of the CAS Chemical Registry System is an algorithm that generates a unique and unambiguous machine-readable description of the molecular structure of a substance. The principal component of the machine record is a connection table, a detailed description of the atoms and bonds that comprise the basic structure of the substance. Other components describe stereochemical characteristics, isotopic labeling, and derivatives (salts, hydrates, etc.).

The representation of a chemical substance by a unique structure diagram or connection table poses problems to both chemists and chemical information systems when the substance has several possible representations, chemically equivalent but structurally distinct. Resonant or aromatic bonds which have characteristics of both single and double bonds are one major

0095-2338/80/1620-0018\$01.00/0 © 1980 American Chemical Society

Figure 1. Purine representations.

cause of problems, and tautomerism, an equilibrium involving single/double bond shifts coupled with hydrogen migration, is the other (see Figure 1). These phenomena are quite common; about 70% of the structures in the CAS Registry Master File are aromatic, possessing rings containing alternating single and double bonds, and about 25% exhibit tautomerism.

To a chemist, the multiple representations of a substance resulting from tautomerism and alternating or aromatic bonds usually pose only minor problems. Their equivalence is recognized with little effort, as the result of chemical training and experience.

To a chemical information system based on structural diagrams (or their machine equivalents, connection tables), tautomerism and alternating bonds hinder the representation of a single chemical substance by a single diagram. The CAS Chemical Registry System handles the problem by normalizing (i.e., recognizing the equivalence of) tautomeric and alternating bond structures, replacing the explicit single and double bonds with special tautomer and alternating bonds, and associating the migrating hydrogen in a tautomer with a group of atoms rather than just a single atom. Since single/double bond patterns and specific migrating group locations have been replaced by normalized data, all forms of the tautomeric structure lead to the same Registry III structure record. Thus, the six possible representations of purine shown in Figure 1, each containing six single and four double bonds in differing arrangements, all lead to the same Registry III connection table containing one single bond, three tautomer bonds, and six alternating bonds (see structure 1g).

OVERVIEW OF ALTERNATING BONDS AND TAUTOMERISM

Alternating bonds are a compromise approach to the chemist's concept of aromatic bonds, bonds which have characteristics of both single and double bonds. The chemist represents such bonds with circles or dotted lines, or with alternating single and double bonds. In the latter case, it is implicitly understood that the actual arrangement of single and double bonds is not critical as long as they alternate. In the purine example (see Figure 1), structures 1a and 1e would be considered simply as different representations of an alternating bond situation, as would 1b and 1f.

Tautomerism is a state of equilibrium of two or more molecular structures that differ in the location of a mobile group, usually a hydrogen atom. Bonding changes occur at the same time as migration of the mobile group. In the purine example, the 1a-1b-1c-1d and 1e-1f equilibria are due to tautomerism. Tautomer and alternating bond situations may overlap, as shown by the purine example. The implications of this overlap will be discussed later.

The CAS Registry III System definition of tautomerism also allows migrating positive and negative charges, even though these would be considered more properly cases of resonance

The 1-2-1-2... indicates the alternating single and double bond path traced by the alternating bond identification procedure.

Figure 2. Identification of alternating bonds.

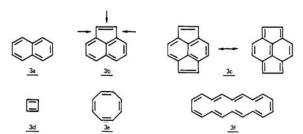


Figure 3. Alternating bond examples.

or charge delocalization. Only simple cases, such as the carboxylate or phosphate anions, are handled this way. More complex cases, such as the cycloheptatrienyl (tropylium) cation or the cyclopentadienyl anion, are handled with special delocalized charge procedures.

Alternating Bonds. The CAS Registry III System uses a path-tracing procedure to identify alternating bonds. It searches through a structure, backtracking when necessary, to find cyclic paths in which the bonds are alternately single and double, marking the bonds as alternating in such paths as they are found (see Figure 2). The search is exhaustive, tracing all possible paths.

The alternating bond procedure will accept a normalized bond in place of an explicit single or double bond on the assumption that the normalized bond could assume the required value. This approach is necessary for proper treatment of overlapping tautomers and alternating bonds, as will be discussed later. In addition, it speeds up the identification process by reducing the number and size of the paths that are traced.

At this point, it would be appropriate to consider the relationship between the chemist's aromatic bonds and the CAS Chemical Registry System's alternating bonds. Aromaticity is still an unsettled topic; for example, chemists would probably agree that the bonds in 3a-3c (see Figure 3) were aromatic and those in 3d and 3e were not, and would argue about 3f. The CAS Chemical Registry System procedures would find all bonds to be alternating except those emphasized in 3b, the sole criterion being the alternating single/double cyclic path.

These structures illustrate two key points. First, the substructure searcher must be concerned with the CAS Chemical Registry System's alternating bond concept and must look at a chemist's aromatic substructure from this viewpoint. Secondly, the searcher must always consider the environment of the substructure. For example, the three emphasized bonds in 3b are fixed single and double when the system is isolated, but are alternating bonds when the substructure is embedded in a larger system (3c).

Tautomerism. Tautomerism is a state of equilibrium in which a mobile group, typically a hydrogen, migrates between atoms with concurrent changes in bonding.² The basic generic tautomeric structure is

$$HM-Q=Z \Rightarrow M=Q-ZH$$

where M and Z are endpoints and Q is a centerpoint. In the

$$R - C - CH_3 \longrightarrow R - C = CH_2$$

$$O + CH_2 - CH_3 \longrightarrow R - CH_2 - CH_2 - CH_2$$

$$R - CH_2 - C \longrightarrow R - CH = CH_2 - CH_2$$

$$R - CH_2 - C \longrightarrow R - CH = CH_2 - CH_2$$

$$R - CH_2 - C \longrightarrow R - CH_2 - CH_2 - CH_2$$

Figure 4. Tautomers not recognized by the CAS Registry III System.

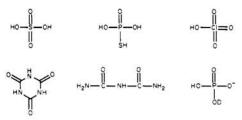


Figure 5. Tautomer examples.

CAS Registry III System, Q can be carbon or most any nonmetallic element, but M and Z are limited to nitrogen and chalcogen atoms. Olefinic and keto-enol tautomers are not recognized as such and are registered (and named by CAS) as distinct structures, as are other variations (see Figure 4).

This definition follows general chemical practice. The normalized tautomers are (1) substances whose names usually describe the structure as a whole, such as the trivial name Barbituric acid (cross-referred to the CA preferred name 2,4,6(1H,3H,5H)-Pyrimidinetrione); (2) structures where tautomerism affects only minor details of the name, such as substituent locants; or (3) functional groups where one form is invariably selected over the alternative, such as an amide over an imidic acid. Tautomers that are not normalized, such as keto-enol tautomers (the most common tautomeric system), are those whose alternative forms usually receive distinct names. Acetone, for example, is the trivial name of 2-Propanone but not its tautomer 1-Propen-2-ol, CH₂—C-(OH)CH₂.

Using the generic HM—Q=Z tautomeric structure, the CAS Registry III System requires that

- the centerpoint Q may be C, N, P, As, Sb, S, Se, Te, Cl, Br, or I, with any acceptable valence;
- the endpoints M and Z may be trivalent N or bivalent chalcogen (O, S, Se, or Te) in any combination;
- the centerpoint-endpoint tautomer bonds may be either cyclic or acyclic, or both types in combination;
- the mobile group H may be hydrogen (H or its isotopes D or T) or a -1 charge.

Tautomers handled by the CAS Registry III System are not limited to the basic three-atom HM—Q=Z substructure. Larger tautomers may be linear, as in HM— $(Q=N)_n$ —Q=Z, where "N" is trivalent nitrogen, or cyclic, or branched. A centerpoint may have more than two attached endpoints, as in HM— $Q(=Z)_n$ or $Z=Q(-MH)_n$. Finally, the mobile groups in a tautomer may be all alike or may be different types in combination. (Examples are shown in Figure 5.) The description of a tautomer group in a Registry III structure record cites all of the endpoints in the group and the number of each type of mobile group that is associated with the endpoints. Centerpoints are not explicitly identified, but can be found readily by a check of the structure record connection table.

Tautomers are identified by a procedure that searches for potential endpoints, i.e., nitrogen or chalcogen atoms, that are doubly bonded to an atom acceptable as a centerpoint. When such a two-atom set is found, the remaining attachments of

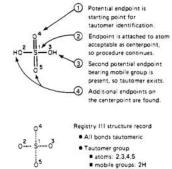


Figure 6. Tautomer identification.

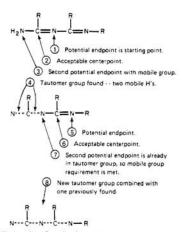


Figure 7. Example of endpoint reuse.

Figure 8. Tautomeric +1 charges.

the centerpoint are checked. If a potential endpoint bearing a mobile group is found, all qualifying endpoints and their mobile groups are included in the tautomer group, and the centerpoint-endpoint bonds are marked as tautomer bonds (see Figure 6). As with alternating bond identification, a previously normalized bond may be used wherever a single or double bond is required. In addition, previously identified nitrogen endpoints may be reused to expand a tautomer group by the addition of endpoints attached to a new centerpoint (see Figure 7)

The CAS Registry III System also recognizes a variety of tautomers in which the mobile group is a +1 charge (see Figure 8). This addition to the general tautomer definition was provided so that an "onium" substructure common in dyes could be normalized.

Different input representations result in different structure records when the bond shared by a tautomer and an alternating bond situation (at ->=) is allowed to have either value.

Figure 9. Multiple bond representations problem.

OVERLAP OF TAUTOMERS AND ALTERNATING BONDS

Tautomers and alternating bonds may overlap, as shown by the purine example (Figure 1). This possibility required careful consideration during the design of the CAS Registry III System so that multiple representations of a single structure would not be created by the normalization procedures.

Two distinct bond values for cyclic tautomer and alternating bonds are used in the connection table of the CAS Chemical Registry System structure record (in addition to the usual single, double, and triple bond values). Bonds that could be regarded as either tautomer or alternating bonds because of overlap (i.e., could be assigned either bond value) are arbitrarily classified as alternating bonds. If this were not done, the assigned bond values would depend on the bonding in the structure as input to the CAS Chemical Registry System (which could affect whether the bond was first recognized as tautomer or alternating), and this would lead to multiple representations of a single substance (see Figure 9).

Since tautomer and alternating bond situations may overlap, the two normalization procedures must be able to reuse previously normalized bonds of either type. The tautomer procedure, for example, must be able to use either tautomer or alternating bonds during its search for tautomers, not just tautomer bonds alone. If this were not done, the multiple representation problem would be quite severe.

Since tautomer bonds may be used in the identification of alternating bonds, and vice versa, the normalization procedures may need to be applied more than once to a given structure. After the identification of tautomers, for example, a new alternating bond path involving one of the just-normalized tautomer bonds might exist. If the normalization procedures were applied only once, some bonds might not get normalized, and multiple representations would result. In the CAS Registry III System, the alternating bond and tautomer procedures are applied alternately, in that order, until both procedures have been applied at least once and the last-used procedure has not found anything new to normalize (see Figure 10). (The alternating bond procedure is applied first simply because it is more likely to find bonds to be normalized.) Some structures require more than one or two passes. Structure 11a (in Figure 11) requires four passes before all the bonds are normalized, the process ending after the fourth tautomer pass. Larger systems, shown generically by 11b, would need still more.

Different input representations lead to the same structure record when the shared bond is always assigned an alternating value.

Figure 10. Alternating and tautomer bond identification.

Figure 11. Structures requiring several normalization passes.

TAUTOMERS, ALTERNATING BONDS, AND SUBSTRUCTURE SEARCH

Tautomers and alternating bonds have always presented problems for substructure search systems, and this will most likely always be the case. This is true whether the system requires detailed encoding by the searcher or whether the searcher can input a query via a structure diagram. (In the latter case, the system's query input conventions must be designed carefully so that valid retrievals are not lost due to an incorrect treatment of tautomerism and alternating bonds thus causing an incorrect interpretation of a query. The key point, as has been mentioned earlier, is that the searcher must consider potentially tautomeric or alternating substructures with respect to their possible surroundings in full structures. This usually means searching for both fixed-bond and normalized-bond variations of such substructures.

The searcher must keep in mind the CAS Registry III System definition of tautomerism while framing search questions. Thus, most bonds to nitrogen or chalcogen atoms must be regarded as potentially tautomeric. Only when there is clearly no possibility of a tautomer, as in an ether linkage (R-O-R'), should the searcher look for fixed-bond substructures alone.

Similarly, many cyclic bonds which by themselves are not alternating bonds become alternating bonds when the substructure is embedded in a larger system. Fixed-bond substructures alone should be sought only when alternating-bond substructures are clearly impossible.

DENORMALIZATION OF TAUTOMERS AND ALTERNATING BONDS

Denormalization is an algorithmic procedure which regenerates single and double bonds from normalized tautomer and alternating bonds and fixes the positions of mobile groups (see Figure 12). Bond and mobile group placement follows input structuring conventions and nomenclature rules. Denormalization algorithms have been developed at CAS for use in

Figure 12. Example of denormalization.

Figure 13. Examples of delocalized bonds.

algorithmic structure display and name generation.3,4

The denormalization algorithm used in name generation, which is the more recent and more accurate of the two, is incorporated in an algorithm which generates the systematic names of organic compounds for CA indexes from Registry III connection tables. It denormalizes the acyclic portions of tautomers prior to analysis for naming, since bond placement here primarily depends on structural considerations. Alternating bonds are also denormalized at this point, following input graphic standards for double bond placement. Cyclic tautomers and overlapping tautomer and alternating bond situations are denormalized during analysis for naming, when the preferred CA Index Name for the structure is being selected. Nomenclature rules such as "lowest locants for indicated hydrogen", "lowest locants for substituent prefixes", etc., determine double bond placement. The denormalization algorithm used in structure display operates similarly, although it must use a "best guess" approach to handle cyclic tautomers and overlapping tautomer-alternating situations since it does not have nomenclature rules to guide it.

OTHER ASPECTS

Delocalized bonds and charges are used to represent such species as allyl cations or cyclopentadienyl anions (see Figure 13). These bonds are identified by a chemist before the structure is input to the CAS Chemical Registry System, rather than by a machine procedure during registration.

Registry III includes a tautomer override feature that can be used to keep potential tautomers from being normalized. It is used only in those rare cases (only a few hundred to date)

Figure 14. Application of the tautomer override feature.

when a specific tautomer which is not the CA preferred form for naming is emphasized (see Figure 14).

SUMMARY

Tautomerism and alternating (aromatic) bonds hinder the representation of a chemical substance by a single structural diagram or its machine equivalent, a connection table. The CAS Chemical Registry System handles the problem by normalizing such structures: replacing the explicit single and double bonds with special normalized bonds, so that all input representations lead to the same unique Registry III structure record. Denormalization procedures to regenerate the single and double bonds in accordance with input structuring conventions and nomenclature rules have been developed for use in the generation of structure diagrams and CA Index Names from CAS Registry III structure records.

ACKNOWLEDGMENT

The development of the CAS Chemical Registry System was substantially supported by the National Science Foundation. Chemical Abstracts Service, a division of the American Chemical Society, gratefully acknowledges this support.

REFERENCES AND NOTES

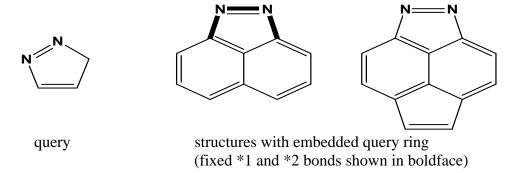
- Dittmar, P. G.; Stobaugh, R. E.; Watson, C. E. "The Chemical Abstracts Service Chemical Registry System. I. General Design", J. Chem. Inf. Comput. Sci. 1976, 16, 111-121.
 "Chemical Abstracts Index Guide", 1977, 100I-103I.
- Dittmar, P. G.; Mockus, J.; Couvreur, K. M. "An Algorithmic Computer Graphics Program for Generating Chemical Structure Diagrams", J. Chem. Inf. Comput. Sci. 1977, 17, 186-192. Mockus, J.; Isenberg, A. C.; Vander Stouw, G. G. "Algorithmic Generation of Chemical Abstracts Index Names. I. General Design", in
- preparation.

Tautomers, Alternating Bonds, and Substructure Search

Introduction

Tautomers and alternating bonds present little or no problem to the substructure searcher if potentially tautomeric or alternating substructures are always considered with regard to their possible surroundings in full structures. This usually means searching for both fixed-bond and normalized-bond variations of such substructures or, alternatively, searching with less specific screens that specify only bond types and not bond values.

What to Consider


Keep in mind the CAS REGISTRY definition of tautomerism while framing search questions. Thus, most bonds to nitrogen or chalcogen (O, S, Se, or Te) atoms must be regarded as potentially tautomeric. Only when there is clearly no possibility of a tautomer, as in an R-O-R' ether linkage, for example, should you look for fixed-bond substructures alone.

Similarly, many cyclic bonds which by themselves are not alternating bonds become alternating bonds when the substructure is embedded in a larger ring system. Fixed-bond substructures alone should be sought only when alternating-bond substructures are clearly impossible.

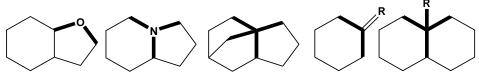
Alternating Bonds

When a substructure search query contains a ring system, consider the possibility of alternating bonds when encoding the query. Many cyclic bonds which by themselves are not alternating bonds may become alternating when the query ring system is embedded in a larger ring system, as shown by the following example.

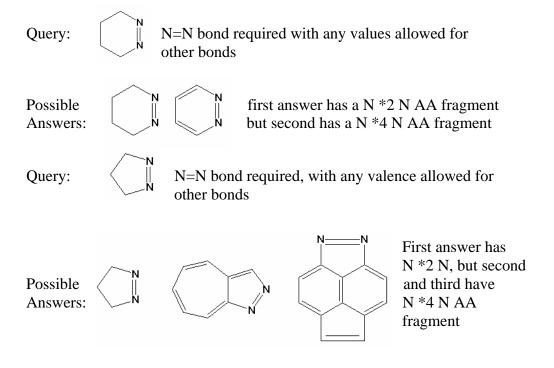
Example

If a query were encoded with fixed single and double *1 and *2 bond values, structures containing the query ring embedded in a larger ring with alternating *4 bonds would not be retrieved as answers to the search, and this would probably be undesirable. Better recall would be obtained if the query were encoded without the specification of bond values for the cyclic bonds.

Three Cyclic Bond Cases


In general, there are only three cases where cyclic bond values may be included in a query without concern for a possible loss of recall:

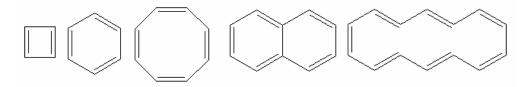
- If the ring system contains *4 alternating bonds, they can always be specified as *4 bonds. Once the alternating single/double bond path exists in a ring system, it is there to stay, even if the sought ring system is embedded in a larger ring system.
- If the query specifies that the ring system should be "isolated" (i.e., that it is not permitted to be part of a larger ring system), then fixed *1 and single and double bonds may be specified as desired. (This is not true for rings containing N atoms, as discussed in the tautomer section.)


"Isolated" cyclohexene ring with only one double bond

• If the ring system contains atoms that can have only *1 single bonds due to structural restraints or substitution considerations, those bonds (shown boldface in the examples below) cannot participate in an alternating path and can be specified as *1 bonds.

Rings Having Alternative Element Values

If the query ring system contains atoms having alternative element values specified, or "don't care" atoms or bonds, then use caution when specifying fixed *1 and *2 single and double bonds. Specify these bond values only when no structure meeting the other query specifications can have *4 alternating bonds. Otherwise, either bond values should not be specified at all or both fixed and alternating bond variations should be sought. As examples, consider the following queries:



Fixed *1 and *2 Bonds

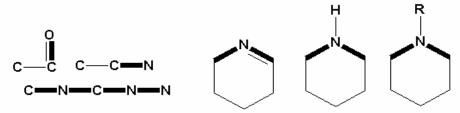
When all things are considered, it would be best to avoid specification of fixed *1 and *2 single and double bond values except when alternating bonds are clearly impossible. While this approach might affect the precision of the search by increasing the number of irrelevant structures that were retrieved, it provides total recall of structures that are possibly relevant.

Aromaticity

As a final point, you should remember that the CAS REGISTRY alternating bond concept is based simply upon the presence of paths containing alternating single and double bonds. The chemist's concept of aromaticity is another matter, as shown by the these structures. All contain alternating bonds, but only some are generally considered to be aromatic.

Tautomers

When you encode a substructure search query, consider many bonds to nitrogen or chalcogen (O, S, Se or Te) atoms as potentially tautomeric bonds, especially when the query substructure about these atoms is not fully defined. Only when there is clearly no possibility of a tautomer, when a chalcogen atom has two non-hydrogen substituents or a nitrogen atom has three, should you seek fixed-bond substructures alone.


Tautomer Rules

Given the basic tautomeric structures HM-Q=Z and M=Q-ZH, where the:

- Center point **Q** is C, N, P, As, Sb, S, Se, Te, Cl, Br, or I.
- End points **M** and **Z** are trivalent N or bivalent chalcogen in any combination.

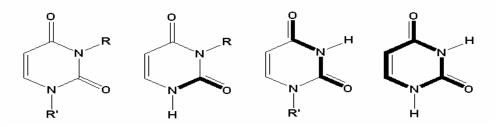
It is easy to see how many bonds must be considered as potentially tautomeric.

If the query contains an end point–center point pair HM–Q or M=Q, with the possibility of the second "Z" end point being found on the center point "Q", then the M–Q or M=Q bond is potentially tautomeric. Consider both fixed-and tautomer-bond possibilities when the query profile is encoded. The examples below illustrate this, with the potentially tautomeric bonds shown in boldface.

Nontautomeric Cases

Nontautomeric situations, where fixed-bond substructures can and should be sought, are those where a nitrogen or chalcogen atom is substituted so that it cannot participate in the single/double bond equilibrium, or where a HM-Q or M=Q end point-center point situation exists but a second end point cannot be present on the center point.

Three Types of Substructures


The correct treatment of a substructure search query thus requires you to recognize and properly encode three types of substructures:

- Tautomeric situations: Encoded with -4 and *4 tautomer bonds
- Nontautomeric situations: Encoded with fixed single and double bonds
- Potentially tautomeric situations: Encoded with both tautomeric- and fixed-bond alternatives specified, or with a more generic approach with only bond types but not bond values specified

As a user aid, some common tautomeric substructures are shown on page 95.

Tautomers and Alternating Bonds

Note that you must also recognize the interaction between tautomeric situations and alternating bonds. The single/double bond shifts associated with alternating bonds can lead to a tautomeric situation, and vice-versa. For example, in the leftmost structure

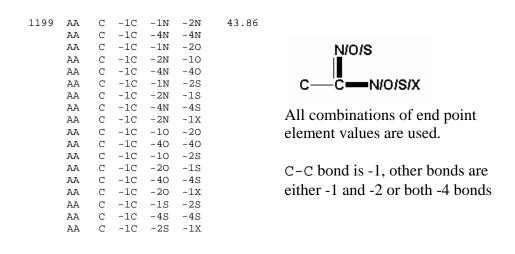
Alternating and tautomer bonds shown in bold

the possible bond values depend on whether or not the R and R' groups could be hydrogen. Any case where an -NH- was present would lead to *4 bonds between the N atom and one or both of its neighbors and -4 bonds between those atoms and their attached oxygens, and if both R and R' were hydrogen, the ring would contain alternating bonds.

N-Atom in a Ring

It was previously noted that bond values could safely be specified in a query describing an "isolated" ring system, but that this was not true for rings containing nitrogen atoms. This exception is due to the possibility of the ring bonds to the N atoms being tautomeric, which would depend on the substitution on the adjacent atoms. As examples, consider the three rings used earlier to illustrate potentially tautomeric bonds, shown here together with substituted rings where the potentially tautomeric bonds are in fact tautomeric.

Common Tautomeric Substructures

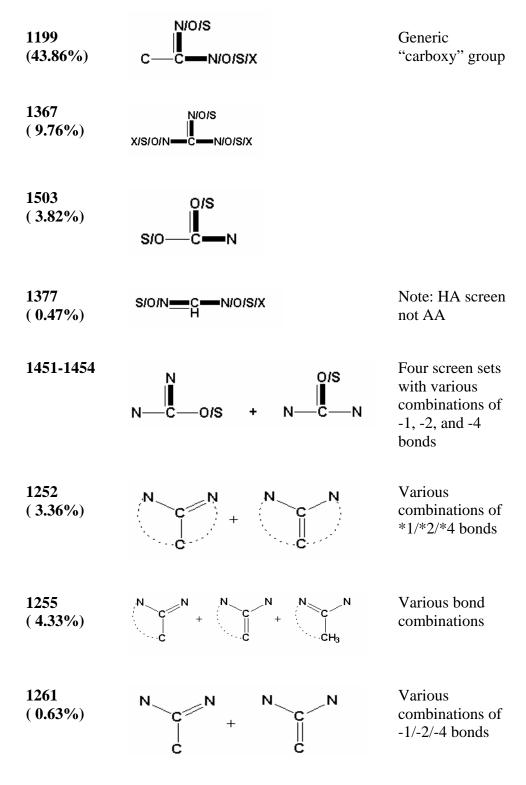

Note

Most bonds in the example substructures are tautomeric, but this may change if the hydrogen atoms in -OH, -NH-, and $-NH_2$ are replaced with non-hydrogen atoms.

AA Screens and Tautomer Combinations

As a user aid, the screen dictionary contains a number of augmented atom screens that describe common potentially tautomeric groups. These screens group sets of related AA fragments having various combinations of fixed single and double bonds and tautomeric bonds, and some also include alternative element possibilities. One such set is shown below, and the most useful of the screens are given in the figure on the next page.

Screen 1199 Example


Note

No special effort is needed to make use of these special screens, since their screen numbers would be retrieved in the same manner as other screen numbers, by a check of the screen dictionary for a desired fragment.

Final Point

The final point to be noted about tautomers is that any structures having tautomeric D or T or tautomeric charges will be retrieved together with the structures with tautomeric H. No special coding is necessary. If the search is specifically for structures with tautomeric D, T, or charge, then the appropriate Graph Modifier (GM) screen should be used: 2040 GM "charge", 2045 GM "deuterium", or 2046 GM "tritium". The 2076 GM "tautomer" screen may also prove to be useful for special cases.

AA Screen Sets for Potentially Tautomeric Substructures

Notes

- This list illustrates the major screen sets for potentially tautomeric substructures. It is not a complete list, since a number of screens for less common substructures have not been included.
- The use of "N/O/S" as an element symbol, for example, indicates that the atom may have any of the cited values. The screen set includes all possible combinations of elements.
- Boldface bonds or the phrase "various combinations..." indicates combinations of single and double bonds or tautomeric bonds.
- The lines in the drawings for screen sets 1252 and 1255 indicate rings implied by the use of cyclic bonds in the fragment descriptions.

The Screen Dictionary

The sections of the Screen Dictionary follow in this order:

Augmented Atoms
Hydrogen Augmented Atoms
Twin Augmented Atoms
Atom Sequences
Bond Sequences
Connectivity Sequences
Atom Count
Degree of Connectivity
Ring Count
Type of Rings
Element Count and Graph Modifier Fragments
Screen Number Order

AA Screens

The **augmented atom (AA) screen** describes an atom and its immediate non-hydrogen attachments, with the screen description citing the central atom first and then its attachments in element symbol order; bonds to the central atom are described in the most specific AA screens, while more generic screens use less specific bond descriptions. The indicated carbon atom, for example, could thus be described at three different levels of specificity:

where the AA indicates the screen type and the "1" that the screen occurs one or more times; ¹ the bond symbols *1 and -2 represent a single ring bond and a double chain bond, respectively, while * and - represent simply ring and chain bonds of any value and a blank represents any bond.

AA Screen Definitions Bonds may be unspecified, specified just as ring or chain type, or completely specified using bond symbols. The level of bond specificity used for AA screens in the screen dictionary depends on the elements involved:

- screens for the frequently occurring C-N bond, for example, will usually completely specify bonds, as in AA C-1 N, AA C-2 N, etc.
- screens for the less common C-P bonds cite only bond types, as in AA C*P and AA C-P
- the screen for the uncommon P-P bond is simply AA P P, with no bond specification at all

The central atom is cited first, followed by its attachments in element symbol order. If bonds are specified, a secondary ordering cites * ring bonds before - chain bonds, and complete bond specifications in the order *1 *2 *3 *4 -1 -2 - 3 -4.

¹ The counts of "1" are shown here for clarity; normally, only counts of 2 or higher are explicitly shown.

Screen Number				! [Fragment Definition	:		Fr	equency Percent
935	AA		A	*2A					34.69
937	AA		A	*3A					0.14
936	AA		A	*4A					72.06
938	AA		A	-2A					59.17
939	AA		A	-4A					39.02
940	AA		A	* A	* A	* A			41.18
941	AA		Α	* A	- A	- A			12.51
942	AA	2	A	* A	- A	- A			3.34
943	AA	3	A	* A	- A	- A			1.07
944	AA		A	- A	- A	- A			73.89
945	AA		A	* A	* A	* A	* A		7.17
946	AA	2	A	* A	* A	* A	* A		1.92
947	AA		Α	* A	* A	* A	- A		7.64
948	AA	2	Α	* A	* A	* A	- A		3.57
949	AA	3	A	* A	* A	* A	- A		1.36
1820	AA		As	As				#	0.35
1820	AA		As	В				#	0.35
1552	AA		As	* C				#	1.15
1558	AA		As	M * M				#	3.13
1391 1392	AA		As	* M - M				# #	6.30
1667	AA AA		As As	- M -4N				#	2.86
1820	AA		As	-4N P				#	0.35
1820	AA		As	Se				#	0.35
1820	AA		As	Si				#	0.35
1820	AA		As	Te				#	0.35
952	AA		As	X				#	0.53
1820	AA		В	As				#	0.35
1820	AA		В	В				#	0.35
1552	AA		В	* C				#	1.15
953	AA		В	- C					0.39
1558	AA		В	M				#	3.13
1391	AA		В	* M				#	6.30
1392	AA		В	- M				#	6.25
954	AA		В	N					0.22
1667	AA		В	-4N				#	2.86
955	AA		В	* 0				#	0.30
955	AA		В	- O				#	0.30
1820	AA		В	P				#	0.35
1820	AA		В	Se				#	0.35
1820	AA		В	Si				#	0.35
1820	AA		В	Te				#	0.35
952	AA		В	X				#	0.53
956	AA		Br	. C					4.36
1552	AA		C	* As				#	1.15
1344	AA		C	- As	* C			#	2.97
1345	AA		C	-1As	*1C			#	0.47
1345	AA		C	-1As	*2C			#	0.47
1346	AA		C	-1As	*4C			#	2.63
1190 1020	AA 77		C	-1As	-3C			# #	0.20
1552	AA AA		C	-2As * B	-2C			#	0.14 1.15
953	AA		C	- В				#	0.39
1344	AA		C	- в - в	* C			#	2.97
1345	AA		C	-1B	*1C			#	0.47
1010	$\alpha\alpha$		_	ייד	10			#	U . 1/

Screen Number					Fragment Definition		F	requency Percent
1345	AA		С	-1B	*2C		#	0.47
1346	AA		C	-1B	*4C		#	2.63
1190	AA		C	-1B	-3C		#	0.20
1020	AA		C	-2B	-2C		#	0.14
956	AA		С	Br				4.36
957	AA	2	C	Br				0.80
958	AA		C	Br	Br			0.09
959	AA		С	- Br	* C			3.55
960	AA	2	С	- Br	* C			0.64
961	AA		C	Br	Cl		#	0.16
961	AA		С	Br	F		#	0.16
961 962	AA AA		C C	Br - Br	1 * N		#	0.16 0.11
968	AA		C	- BI	1/			14.86
969	AA	4	C	-2C				3.19
971	AA	2		-3C				1.56
972	AA	4	C	-3C				0.28
974	AA		C	* C	* C			83.26
975	AA		С	* C	- C			70.68
976	AA	2	С	* C	- C			51.36
977	AA	3	С	* C	- C			30.91
978	AA	4	C	* C	- C			18.42
1367	AA		C	-4N	-40	-1X	#	9.76
979	AA	5	C	* C	- C			9.80
980	AA		C	*1C	*1C			38.78
981	AA	2	C	*1C	*1C			32.27
982	AA	3	C	*1C	*1C			24.82
983	AA	4	С	*1C	*1C			18.90
984 985	AA AA	5 6	C C	*1C *1C	*1C *1C			15.08 12.75
986	AA AA	7		*1C	*1C			8.38
987	AA	10	C	*1C	*1C			4.88
988	AA	14	C	*1C	*1C			2.59
992	AA		C	*1C	*2C			23.19
993	AA	2	С	*1C	*2C			16.26
994	AA	3	С	*1C	*2C			6.48
995	AA	4	C	*1C	*2C			4.73
998	AA		C	*4C	*4C			70.37
999	AA	4	C	*4C	*4C			68.05
1000	AA	7	С	*4C	*4C			46.29
1001	AA	9	С	*4C	*4C			44.62
1002	AA	12	C	*4C	*4C			41.35
1003	AA	15	C	*4C	*4C			18.54
1004 1005	AA	18	C C	*4C - C	*4C - C			16.22 59.87
1011	AA AA			-1C	- C -2C			14.27
1011	AA	2	C	-1C	-2C			8.12
1012	AA	3	C	-1C	-2C			2.10
1014	AA	6	C	-1C	-2C			0.42
1019	AA	-	C	-1C	-3C			1.58
1020	AA		C	-2C	-2C		#	0.14
1021	AA		С	* C	* C	* C		29.30
1022	AA	2	С	* C	* C	* C		19.00
1023	AA	3	C	* C	* C	* C		9.59
1024	AA	5	С	* C	* C	* C		4.24

Screen Number				•	Fragment Definition			F	requency Percent
1025	AA		С	*1C	*1C	*1C			7.74
1026	AA	2	C	*1C	*1C	*1C			5.66
1027	AA	3	С	*1C	*1C	*1C			3.23
1029	AA		С	*1C	*1C	*2C			3.99
1030	AA	2	С	*1C	*1C	*2C			0.98
1031	AA		С	*1C	*1C	-1C			16.17
1032	AA	2	C	*1C	*1C	-1C			6.87
1033	AA	3	C	*1C	*1C	-1C			2.67
1035	AA		C	*1C	*1C	-2C			1.98
1036	AA		С	*1C	*2C	-1C			10.48
1037	AA	2	C	*1C	*2C	-1C			2.50
1038	AA		C	*1C	*4C	*4C			16.87
1039	AA	2	С	*1C	*4C	*4C			8.65
1040	AA	3	С	*1C	*4C	*4C			3.02
1041	AA		C	*4C	*4C	*4C			6.96
1042	AA	2	C	*4C	*4C	*4C			4.96
1043	AA	3	С	*4C	*4C	*4C			1.64
1044	AA	2	C	*4C	*4C	-1C			53.13
1045 1046	AA AA	2	C C	*4C *4C	*4C *4C	-1C -1C			29.03 12.69
1048	AA AA	<u>5</u>		*4C	*4C	-1C			2.69
1047	AA	J	C	- C	- C	- C			21.56
1049	AA		C	-1C	-1C	-1C			18.17
1050	AA	2	C	-1C	-1C	-1C			6.13
1054	AA	_	C	-1C	-1C	-2C			4.39
1055	AA	2	C	-1C	-1C	-2C			0.79
1056	AA	_	C	C	C	C	С		10.15
1057	AA	2	C	C	C	C	C		3.79
1058	AA	3	C	C	C	C	C		0.96
1059	AA	4	C	С	С	С	С		0.56
1060	AA	5	С	С	С	С	С		0.25
1061	AA		C	* C	* C	* C	* C		1.01
1062	AA		C	* C	* C	* C	- C		3.22
1063	AA		C	* C	* C	- C	- C		3.52
1064	AA		С	- C	- C	- C	- C		3.78
1068	AA		C	С	C	C	N		2.73
1069	AA	2	C	С	C	C	N		0.43
1066	AA		C	* C	* C	- C	– N	#	1.87
1070	AA		С	* C	- C	- C	* N		0.70
1071	AA		C	- C	- C	- C	- N		1.23
1072	AA	0	C	C	C	C	0	#	7.26
1073	AA	2	C	C	C	C	0	#	1.18
1074	AA	3	C	C * C	C	C	0	#	0.25
1066 1075	AA		C	* C * C	* C	- C - C	- O * O	#	1.87
1075	AA AA		C	- C	- C	- C	* O - O	# #	1.18 3.59
1070	AA		C	- C	- C	- C	- O S	#	7.26
1072	AA	2	C	C	C	C	S	#	1.18
1073	AA	3	C	C	C	C	S	#	0.25
1066	AA	3	C	* C	* C	- C	- S	#	1.87
1075	AA		C	* C	- C	- C	* S	#	1.18
1076	AA		C	- C	- C	- C	- S	#	3.59
1065	AA		C	C	C	C	X	"	0.41
1066	AA		C	* C	* C	- C	- X	#	1.87
1067	AA		С	- C	- C	- C	- X		0.12

Screen Number					Fragment Definition			F	requency Percent
1092	AA		С	* C	* C	* N			18.01
1093	AA	2	C	* C	* C	* N			7.34
1094	AA	3	C	* C	* C	* N			2.48
1095	AA	4	C	* C	* C	* N			1.63
1096	AA	5	С	* C	* C	* N			0.82
1097	AA		С	* C	* C	- N			28.97
1098	AA	2	C	* C	* C	- N			10.75
1099	AA	0	C	* C	- C	* N			19.54
1100 1101	AA	2	C C	* C *1C	- C *1C	* N *1N			6.42 2.52
1103	AA AA		C	*1C	*1C	*2N			0.63
1103	AA		C	*1C	*1C	-1N			5.62
1106	AA		C	*1C	*1C	-2N			0.85
1107	AA		C	*1C	*2C	*1N			1.97
1108	AA		C	*1C	*2C	-1N			1.18
1109	AA		С	*1C	*4C	*4N			1.45
1110	AA		C	*1C	-1C	*1N			7.36
1112	AA		C	*1C	-1C	*2N			3.47
1113	AA		C	*1C	-2C	*1N			0.48
1114	AA		С	*2C	-1C	*1N			6.96
1115	AA	2	С	*2C	-1C	*1N			1.52
1116	AA	•	C	*4C	*4C	*1N			10.82
1117	AA	2	C	*4C	*4C	*1N			3.71
1118	AA	2	C	*4C	*4C	*4N			3.24
1119 1120	AA AA	2	C C	*4C *4C	*4C *4C	*4N -1N			1.15 23.48
1121	AA AA	2	C	*4C	*4C	-1N -1N			8.53
1122	AA	2	C	*4C	-1C	*4N			3.89
1123	AA		C	- C	- C	- N			13.50
1124	AA	2	С	- C	- C	- N			5.13
1125	AA	3	С	- C	- C	- N			3.46
1087	AA		C	-1C	-1C	-2N		#	7.76
1128	AA		C	-1C	-1C	-2N			1.48
1129	AA		C	-1C	-2C	-1N			0.47
1130	AA		С	C	C	N	N		0.19
1089	AA		C	* C	* C	- N	- N	#	0.08
1090	AA		C	* C	- C	* N	- N	#	0.12
1131 1087	AA		C C	- C -1C	- C -1C	* N	* N	#	1.00 7.76
1132	AA AA		C	-1C	-IC	-1N N	-1N O	#	0.46
1089	AA		C	* C	* C	- N	- 0	#	0.08
1090	AA		C	* C	- C	* N	- 0	#	0.12
1091	AA		C	* C	- C	- N	* 0	#	0.12
1131	AA		C	- C	- C	* N	* 0	#	1.00
1087	AA		C	-1C	-1C	-1N	-10	#	7.76
1132	AA		C	C	C	N	S	#	0.46
1089	AA		C	* C	* C	- N	- S	#	0.08
1090	AA		C	* C	- C	* N	- S	#	0.12
1091	AA		C	* C	- C	– N	* S	#	0.12
1131	AA		C	- C	- C	* N	* S	#	1.00
1087 1088	AA 77		C C	-1C C	-1C C	-1N N	-1S X	# #	7.76 0.11
1088	AA AA		C	* C	* C	– N	- X	#	0.11
1009	AA		C	* C	- C	* N	- X	#	0.12
1087	AA		C	-1C	-1C	-1N	-1X	#	7.76
-			-	-	-				

Screen Number					Fragment Definition			Frequency Percent	
1133	AA		С	* C	* C	* 0		8.35	
1134	AA	2	C	* C	* C	* 0		4.34	
1135	AA		C	* C	* C	- O		35.34	
1136	AA	2	C	* C	* C	- O		17.07	
1137	AA		С	*1C	*1C	*10		3.06	_
1138	AA		С	*1C	*1C	-10		8.84	
1139	AA		C	*1C	*1C	-20		5.34	
1140	AA	2	C	*1C	*1C	-20		1.31	
1141	AA		C	*1C	*2C	*10		0.47	
1142	AA		C	*1C	*2C	-10		1.32	_
1143	AA		C	*1C	-1C	*10		7.20	
1144	AA		C	*1C	-2C	*10		0.14	
1145	AA		C	*2C	-1C	*10		2.75	
1146 1147	AA AA	2	C C	- C	- C - C	- O		16.97 3.76	
1148	AA AA	<u>2</u> 3	C	- C	- C	- O - O		1.06	-
1087	AA	3	C	-1C	-1C	-20		# 7.76	
1151	AA		C	-1C	-1C	-20		5.56	
1152	AA	2	C	-1C	-1C	-20		0.49	
1153	AA	2	C	-1C	-2C	-10		0.34	
1168	AA		C	C	C	0	0	#	-
1169	AA		C	* C	* C	- 0	- O	# 0.10	
1091	AA		С	* C	- C	* 0	- O	# 0.12	
1131	AA		С	- C	- C	* 0	* 0	# 1.00	
1087	AA		С	-1C	-1C	-10	-10	# 7.76	
1168	AA		С	С	С	0	S	# 1.94	
1169	AA		C	* C	* C	- O	- S	# 0.10	
1091	AA		C	* C	- C	* 0	- S	# 0.12	
1091	AA		С	* C	- C	- O	* S	# 0.12	
1131	AA		С	- C	- C	* 0	* S	# 1.00	_
1087	AA		С	-1C	-1C	-10	-1S	# 7.76	
1088	AA		C	C	C	0	X	# 0.11	
1089	AA		С	* C	* C	- 0	- X	# 0.08	
1091	AA		C	* C	- C	* 0	- X	# 0.12	
1087	AA		C	-1C	-1C	-10 P	-1X	# 7.76	-
1154	AA		C	C	C	P		2.04	
1155	AA		C	- C * C	- C * C	- P * S		0.26	
1156 1157	AA AA	2	C C	* C	* C * C	* S * S		3.07 0.72	
1158	AA	2	C	* C	* C	- S		7.91	
1159	AA	2	C	* C	* C	- S		1.93	-
1160	AA	2	C	* C	- C	* S		3.95	
1161	AA		C	*1C	*1C	-1S		0.51	
1162	AA		C	*1C	*1C	-2S		# 0.44	
1162	AA		C	*1C	*2C	-1S		# 0.44	
1163	AA		C	-1C	-1C	-1S		0.85	-
1087	AA		С	-1C	-1C	-2S		# 7.76	
1165	AA		C	-1C	-1C	-2S		# 0.15	
1165	AA		С	-1C	-2C	-1S		# 0.15	
1168	AA		С	С	С	S	S	# 1.94	_
1169	AA		С	* C	* C	- S	- S	# 0.10	
1091	AA		С	* C	- C	* S	- S	# 0.12	
1131	AA		С	- C	- C	* S	* S	# 1.00	
1087	AA		С	-1C	-1C	-1S	-1S	# 7.76	
1088	AA		С	С	С	S	X	# 0.11	

Screen Number					Fragment Definition			Frequency Percent
1089 1091	AA AA		C C	* C * C	* C - C	- S * S	- X - X	# 0.08 # 0.12
1087	AA		C	-1C	-1C	-1S	-1X	# 7.76
1077	AA		C	* C	* C	- X		18.59
1079	AA		С	- C	- C	- X		1.51
1080	AA	2	С	- C	- C	- X		0.55
1081	AA	3	C	- C	- C	- X		0.35
1082	AA		C	-1C	-1C	-1X		1.18
1084 1085	AA AA		C C	-1C C	-2C C	-1X X	Х	0.35 0.86
1085	AA		C	* C	* C	- X	- X	0.23
1087	AA		C	-1C	-1C	-1X	-1X	# 7.76
1170	AA		C	* C	- Cl			11.60
1171	AA	2	С	* C	- Cl			3.88
1172	AA	3	С	* C	- Cl			0.86
1173	AA	4	С	* C	- Cl			0.39
1174	AA		C	* C	- F			5.23
1175	AA	2	С	* C	- F			1.54
1201	AA	•	C	* C	- I			0.76
1202	AA	2	C	* C	- I			0.16
2105 2099	AA AA		C C	C C	M N			# 31.14 69.37
2100	AA	2	C	C	N			62.62
1203	AA	2	C	* C	- N			32.73
1204	AA	2	C	* C	- N			13.07
1205	AA	3	C	* C	- N			4.45
1206	AA	5	C	* C	- N			0.92
1207	AA	7	C	* C	- N			0.38
1208	AA		C	*1C	*1N			27.22
1209	AA	2	С	*1C	*1N			20.48
1212	AA		C	*1C	*2N			6.60
1213	AA	2	C	*1C	*2N			1.69
1215 1216	AA		C	*1C	*4N			4.72
1216	AA AA		C C	*1C *1C	-1N -2N			8.08 1.15
1218	AA		C	*1C	$\frac{-2N}{-4N}$			0.66
1219	AA		C	*2C	*1N			14.18
1220	AA	2	C	*2C	*1N			5.96
1221	AA		С	*2C	-1N			2.66
1222	AA		C	*4C	*1N			11.39
1223	AA		С	*4C	*4N			13.12
1224	AA	3	C	*4C	*4N			3.41
1225	AA		C	*4C	-1N			24.08
1226	AA		C	*4C	-4N			1.99
1227	AA		C	- C	* N			24.24
1228 1229	AA AA	2 3	C C	- C	* N			9.01 2.39
1230	AA AA	3	C	- C -1C	*1N			16.13
1231	AA		C	-1C	*2N			7.86
1232	AA		C	-1C	*4N			5.34
1233	AA		C	-1C	-1N			35.46
1234	AA	2	C	-1C	-1N			18.10
1240	AA		С	-1C	-2N			4.59
1243	AA		С	-1C	-3N			4.12
1242	AA		С	-1C	-4N			20.28

Screen Number					Fragment Definition			F	requency Percent
1244	AA		С	-2C	*1N				0.78
1245	AA		C	-2C	-1N				1.05
1020	AA		C	-2C	-2N			#	0.14
1190	AA		С	-3C	-1N			#	0.20
1247	AA		С	* C	* N	* N			3.51
1248	AA	2	С	* C	* N	* N			0.68
1249	AA		С	* C	* N	- N			4.43
1250	AA		C	*1C	*1N	*1N			0.15
1252	AA		С	*1C	*1N	*2N		#	3.36
1253	AA		С	*1C	*1N	-1N		#	0.45
1255	AA		C	*1C	*1N	-2N		#	4.33
1255	AA		С	*1C	*2N	-1N		#	4.33
1252	AA		С	*1C	*4N	*4N		#	3.36
1255	AA		С	*1C	*4N	-4N		#	4.33
1252	AA		С	*2C	*1N	*1N		#	3.36
1255	AA		C	*2C	*1N	-1N		#	4.33
1252	AA		С	*4C	*1N	*4N		#	3.36
1252	AA		С	*4C	*4N	*4N		#	3.36
1255	AA		C	*4C	*4N	-1N		#	4.33
1255	AA		C	*4C	*4N	-4N		#	4.33
1256	AA		С	- C	* N	* N			4.52
1257	AA		C	- C	- N *1N	- N *1N			0.76
1258	AA		C	-1C				ш	0.25
1199	AA		C	-1C	-1N	-2N		#	43.86
<u>1261</u> 1199	AA AA		C C	-1C -1C	-1N -4N	-2N -4N		# #	0.63 43.86
1261	AA AA		C	-1C -1C	-4N -4N	-4N -4N		#	0.63
1261	AA		C	-1C -2C	-4N -1N	-4N -1N		#	0.63
1195	AA		C	-2C C	N	N	N	#	0.40
1090	AA		C	* C	* N	- N	- N	#	0.12
1200	AA		C	- C	* N	* N	- N	#	0.05
1196	AA		C	-1C	-1N	-1N	-1N	#	0.97
1195	AA		C	C	N	N	0	#	0.40
1090	AA		C	* C	* N	- N	- 0	#	0.12
1091	AA		C	* C	- N	- N	* 0	#	0.12
1200	AA		C	- C	* N	* N	- 0	#	0.05
1200	AA		С	- C	* N	- N	* 0	#	0.05
1196	AA		C	-1C	-1N	-1N	-10	#	0.97
1195	AA		C	С	N	N	S	#	0.40
1090	AA		C	* C	* N	- N	- S	#	0.12
1091	AA		С	* C	- N	- N	* S	#	0.12
1200	AA		C	- C	* N	* N	- S	#	0.05
1200	AA		C	- C	* N	- N	* S	#	0.05
1196	AA		С	-1C	-1N	-1N	-1S	#	0.97
1195	AA		С	С	N	N	X	#	0.40
1090	AA		С	* C	* N	- N	- X	#	0.12
1200	AA		C	- C	* N	* N	- X	#	0.05
1196	AA		С	-1C	-1N	-1N	-1X	#	0.97
1262	AA		C	* C	* N	* 0			0.53
1263	AA		C	* C	* N	- 0			12.82
1264	AA	2	C	* C	* N	- 0			3.42
1265	AA		C	* C	- N	* 0			1.51
1253	AA		C	*1C	*1N	-10		#	0.45
1266	AA		C	- C	* N	* 0			1.53
1267	AA		С	- C	- N	- 0			24.08

Screen Number				J	Fragment Definition	:		F	requency Percent
1268	AA	2	С	- C	- N	- 0			8.22
1199	AA		C	-1C	-1N	-20		#	43.86
1199	AA		С	-1C	-2N	-10		#	43.86
1199	AA		С	-1C	-4N	-40		#	43.86
1195	AA		C	С	N	0	0	#	0.40
1090	AA		С	* C	* N	- 0	- 0	#	0.12
1091	AA		С	* C	- N	* 0	- O	#	0.12
1200	AA		C	- C	* N	* 0	- O	#	0.05
1200	AA		C	- C	- N	* 0	* 0	#	0.05
1196	AA		С	-1C	-1N	-10	-10	#	0.97
1195	AA		С	С	N	0	S	#	0.40
1090	AA		C	* C	* N	- O	- S	#	0.12
1091	AA		C	* C	- N	* 0	- S	#	0.12
1091	AA		С	* C	- N	- 0	* S	#	0.12
1200	AA		C	- C	* N	* 0	- S	#	0.05
1200	AA		C	- C	* N	- 0	* S	#	0.05
1200	AA		C	- C	- N	* 0	* S	#	0.05
1196	AA		C	-1C	-1N	-10	-1S	#	0.97
1195	AA		C	C * C	N * N	0	X	#	0.40
1090 1091	AA AA		C	* C	- N	- O * O	- X - X	#	$\begin{array}{r} 0.12 \\ \hline 0.12 \end{array}$
1200	AA AA		C	- C	– N * N	* 0	- X	#	0.12
1196	AA		C	- C -1C	-1N	-10	- X -1X	#	0.03
1269	AA		C	* C	* N	* S	127	#	1.27
1270	AA		C	* C	* N	- S			0.84
1271	AA		C	* C	- N	* S			0.68
1253	AA		C	*1C	*1N	-1S		#	0.45
1272	AA		C	- C	* N	* S		"	1.39
1273	AA		C	- C	- N	- S			0.29
1199	AA		C	-1C	-1N	-2S		#	43.86
1199	AA		С	-1C	-2N	-1S		#	43.86
1199	AA		C	-1C	-4N	-4S		#	43.86
1195	AA		C	С	N	S	S	#	0.40
1090	AA		C	* C	* N	- S	- S	#	0.12
1091	AA		С	* C	- N	* S	- S	#	0.12
1200	AA		C	- C	* N	* S	- S	#	0.05
1200	AA		C	- C	- N	* S	* S	#	0.05
1196	AA		С	-1C	-1N	-1S	-1S	#	0.97
1195	AA		C	С	N	S	X	#	0.40
1090	AA		С	* C	* N	- S	- X	#	0.12
1091	AA		С	* C	- N	* S	- X	#	0.12
1200	AA		C	- C	* N	* S	- X	#	0.05
1196	AA		C	-1C	-1N	-1S	-1X	#	0.97
1197	AA		C	* C	* N	- X			0.81
1199	AA		C	-1C	-2N	-1X		#	43.86
1193	AA 77		C C	-2C	-1N	-1X v	v	#	0.25 0.40
1195 1090	AA AA		C	C * C	N * N	- X	- X	# #	0.40
1196	AA		C	-1C	-1N	- X -1X	- x -1X	#	0.12
2101	AA		C	C	-114	TV	11	π	75.88
2102	AA	2	C	C	0				60.80
1275	AA	_	C	* C	- 0				45.33
1276	AA	2	C	* C	- 0				23.50
1277	AA		C	*1C	*10				14.92
1278	AA	2	C	*1C	*10				11.83

Screen Number					Fragment Definition				Frequency Percent
1279	AA		С	*1C	-10				10.84
1280	AA	2	С	*1C	-10				4.74
1281	AA	3	C	*1C	-10				2.71
1282	AA	4	C	*1C	-10				1.93
1283	AA		С	*1C	-20				16.45
1284	AA		С	*1C	-40				2.70
1285	AA		C	*2C	*10				3.96
1286	AA		С	*2C	-10				1.67
1287	AA		C	*4C	*10				5.34
1288	AA	2	С	*4C	*10				2.39
1289	AA	3	С	*4C	*10				0.48
1290	AA	2	C	*4C	-10				25.19
1291 1292	AA	2	C	*4C	-10				10.71
1292	AA AA	3 4	C C	*4C *4C	-10 -10				3.45 1.58
1293	AA AA	- 4	C	*4C	-40				1.10
1295	AA		C	-1C	*10				11.58
1296	AA		C	-1C	-10				40.88
1302	AA		C	-1C	-20				28.91
1303	AA	2	C	-1C	-20				8.29
1306	AA		C	-1C	-40				26.47
1307	AA		С	-2C	*10				0.20
1308	AA		C	-2C	-10				0.80
1020	AA		C	-2C	-20			#	0.14
1190	AA		С	-3C	-10			#	0.20
1309	AA		C	* C	* 0	* 0			0.90
1310	AA		С	* C	* 0	- O			5.39
1311	AA		С	- C	* 0	* 0			1.47
1312	AA	_	С	- C	- O	- O			28.04
1313	AA	2	C	- C	- 0	- 0			8.84
1199	AA		C	-1C	-10	-20		#	43.86
1199	AA		C	-1C	-40	-40	0	#	43.86
1195 1091	AA AA		C C	C * C	0 - 0	0 - 0	- O	#	0.40 0.12
1200	AA		C	- C	* 0	* 0	- 0	#	0.12
1196	AA AA		C	-1C	-10	-10	-10	#	0.03
1195	AA		C	C	0	0	S	#	0.40
1091	AA		C	* C	- 0	- 0	- S	#	0.12
1200	AA		C	- C	* 0	* 0	- S	#	0.05
1200	AA		С	- C	* 0	- 0	* S	#	0.05
1196	AA		С	-1C	-10	-10	-1S	#	0.97
1195	AA		C	С	0	0	X	#	0.40
1091	AA		C	* C	* 0	- O	- X	#	0.12
1200	AA		C	- C	* 0	* 0	- X	#	0.05
1196	AA		С	-1C	-10	-10	-1X	#	0.97
1314	AA		С	С	0	S			0.64
1199	AA		C	-1C	-10	-2S		#	43.86
1199	AA		C	-1C	-20	-1S		#	43.86
1199	AA		C	-1C	-40	-4S	-	#	43.86
1195	AA		C	* C	0	S	S	#	0.40
1091 1200	AA 77		C	* C - C	- O * O	- S * S	- S - S	#	0.12 0.05
1200	AA AA		C	- C	- 0	* S	- S * S	#	0.05
1196	AA		C	-1C	-10	-1S	-1S	#	0.03
1195	AA		C	C	0	S	X	#	0.40
			-	•	•	~		"	

Screen Number					Fragment Definition	:			Frequency Percent
1091	AA		С	* C	* 0	- S	- X	#	0.12
1091	AA		C	* C	- O	* S	- X	#	0.12
1200	AA		C	- C	* 0	* S	- X	#	0.05
1196	AA		C	-1C	-10	-1S	-1X	#	0.97
1199	AA		С	-1C	-20	-1X		#	
1193	AA		C	-2C	-10	-1X		#	
1195	AA		C	С	0	X	X	#	
1091	AA		С	* C	* 0	- X	- X	#	
1196	AA		C	-1C	-10	-1X	-1X	#	
2106	AA		C	* C	P			#	
1344	AA		C	* C *1C	- P -1P			#	
1345 1345	AA AA		C C	*1C	-1P -1P			#	
1345	AA		C	*4C	-1P -1P			#	
1315	AA		C	- C	- P			#	1.30
1316	AA		C	-2C	-1P				0.11
1020	AA		C	-2C	-2P			#	
1190	AA		C	-3C	-1P			#	
2105	AA		C	C	S			#	
1317	AA		C	* C	- S			"	8.93
1318	AA	2	С	* C	- S				2.23
1319	AA	3	C	* C	- S				0.54
1320	AA		C	*1C	*1S				4.10
1321	AA	2	C	*1C	*1S				1.72
1322	AA		С	*1C	-1S				1.16
1323	AA		C	*1C	-2S			#	
1323	AA		С	*1C	-4S			#	
1324	AA		С	*2C	*1S				5.45
1323	AA		C	*2C	-1S			#	
1325	AA		C	*4C	*1S				2.38
1326 1327	AA	2	C C	*4C	*1S				0.58 7.63
1327	AA AA		C	*4C *4C	-1S -4S			#	
1323	AA		C	-1C	*1S			#	4.50
1329	AA		C	-1C	-1S				7.34
1330	AA	2	C	-1C	-1S				1.98
1331	AA	3	C	-1C	-1S				0.43
1333	AA	J	C	-1C	-2S			#	
1333	AA		C	-1C	-4S			#	
1335	AA		С	-2C	*1S				0.91
1336	AA		С	-2C	-1S				0.40
1020	AA		C	-2C	-2S			#	0.14
1190	AA		C	-3C	-1S			#	0.20
1337	AA		C	С	S	S			0.74
1199	AA		С	-1C	-1S	-2S		#	
1199	AA		С	-1C	-4S	-4S		#	
1195	AA		C	C	S	S	S	#	
1091	AA		C	* C	- S	- S	- S	#	
1200	AA		C C	- C	* S	* S	- S	#	
1196	AA		C	-1C C	-1S S	-1S S	-1S	#	
1195 1091	AA AA		C	* C	* S	- S	- X	#	
1200	AA AA		C	- C	" S * S	- S * S	- X	#	
1196	AA		C	-1C	-1S	-1S	-1X	#	
1199	AA		C	-1C	-2S	-1X	- 43	#	
			-					"	

Screen Number					Fragment Definition			F	requency Percent
1193	AA		С	-2C	-1S	-1X		#	0.25
1195	AA		C	С	S	X	X	#	0.40
1091	AA		C	* C	* S	- X	- X	#	0.12
1196	AA		C	-1C	-1S	-1X	-1X	#	0.97
1344	AA		С	* C	- Se			#	2.97
1345	AA		С	*1C	-1Se			#	0.47
1345	AA		C	*2C	-1Se			#	0.47
1346	AA		С	*4C	-1Se			#	2.63
1020	AA		С	-2C	-2Se			#	0.14
1190	AA		C	-3C	-1Se			#	0.20
1344	AA		C	* C	- Si			#	2.97
1345 1345	AA		C C	*1C *2C	-1Si -1Si			#	0.47 0.47
1345	AA AA		C	*4C	-1Si -1Si			#	2.63
1020	AA		C	-2C	-131 -2Si			#	0.14
1190	AA		C	-3C	-1Si			#	0.20
1344	AA		C	* C	- Te			#	2.97
1345	AA		C	*1C	-1Te			#	0.47
1345	AA		C	*2C	-1Te			#	0.47
1346	AA		C	*4C	-1Te			#	2.63
1020	AA		С	-2C	-2Te			#	0.14
1190	AA		C	-3C	-1Te			#	0.20
2109	AA		C	C	X			#	33.25
1176	AA		C	* C	- X				19.40
1177	AA	2	С	* C	- X				7.30
1178	AA	3	C	* C	- X				2.13
1179	AA		С	*1C	-1X				1.94
1180	AA		C	*2C	-1X				1.34
1181	AA		C	*4C	-1X				17.48
1182 1183	AA	2	C	- C	- X - X				7.92
1184	AA AA	3	C	- C	- X				0.81
1185	AA	3	C	- C -1C	- x -1x				7.60
1188	AA		C	-2C	-1X				0.69
1190	AA		C	-3C	-1X			#	0.20
1191	AA		C	-1C	-1X	-1X			4.83
1193	AA		C	-2C	-1X	-1X		#	0.25
1194	AA		С	С	X	X	X		4.37
1347	AA		C	Cl					14.11
1348	AA	2	С	Cl					4.63
1349	AA	3	С	Cl					1.04
1350	AA		С	Cl	Cl				0.77
1351	AA		C	Cl	Cl	Cl			0.35
961	AA		С	Cl	F			#	0.16
961	AA		С	Cl	I			#	0.16
1352	AA		C	- Cl	* N				0.85
1353	AA	2	C	F					10.12
1354 1355	AA	2 3	C C	F F					3.32
1355	AA AA	3	C	r F	F				1.39 5.18
1357	AA		C	F	F	F			4.49
1358	AA	2	C	F	F	F			0.88
961	AA	_	C	F	I	-		#	0.16
1359	AA		C	- F	* N			"	0.11
1386	AA		C	I					1.01

_				•	_			_	
Screen Number					Fragment Definition	: I		F	requency Percent
1387	AA	2	С	I					0.19
1388	AA	_	C	I	I				0.01
1389	AA		C	- I	* N				0.02
1390	AA		C	M					3.55
1391	AA		C	* M				#	6.30
1392	AA		C	- M				#	6.25
1393	AA		C	* N				"	49.27
1394	AA		C	*1N					40.50
1395	AA		C	*2N					14.45
1396	AA		C	*4N					20.41
1397	AA		C	-1N					58.10
1402	AA		С	-2N					6.98
1404	AA		C	-3N					4.65
1405	AA	2	C	-3N					0.94
1403	AA		C	-4N					27.74
2106	AA		С	N	N			#	36.37
1406	AA		C	* N	* N				15.53
1407	AA	2	C	* N	* N				5.53
1408	AA	3	C	* N	* N				2.43
1409	AA		С	* N	- N				8.70
1410	AA	2	С	* N	- N				1.83
1411	AA	3	C	* N	- N				0.54
1412	AA		C	*1N	*1N				2.53
1414	AA		C	*1N	*2N				6.52
1416	AA		C	*1N	*4N				3.07
1417	AA		С	*1N	-1N				1.07
1418	AA		C	*1N	-2N				0.86
1419	AA		C	*1N	-4N				0.32
1420	AA		C	*2N	-1N				0.82
$\frac{1421}{1422}$	AA AA		C	*4N *4N	*4N -1N				1.30
1423	AA		C	*4N	-1N -4N				5.40
1424	AA		C	- N	- N				6.63
1425	AA	2	C	- N	- N				1.16
1426	AA	3	C	- N	- N				0.31
1427	AA			-1N	-1N				0.60
1428	AA		C	-1N	-2N				0.29
1430	AA		C	-1N	-3N				0.14
1429	AA		C	-1N	-4N				1.22
1431	AA		C	-2N	-2N				0.02
1432	AA		С	-4N	-4N				4.68
1433	AA		С	N	N	N			5.10
1434	AA	2	C	N	N	N			1.41
1435	AA	3	C	N	N	N			0.56
1436	AA		С	* N	* N	* N		#	0.88
1437	AA		C	* N	* N	- N			2.57
1438	AA		C	- N	- N	- N			2.24
1439	AA		С	-1N	-1N	-1N		#	0.04
1367	AA		C	-1N	-1N	-2N		#	9.76
1367	AA		C	-1N	-4N	-4N		#	9.76
1367	AA		C	-4N	-4N	-4N	3.7	#	9.76
1365	AA		C	N * N	N * N	N	N	#	0.59
1200	AA		C	* N	* N	- N	- N	#	0.05
1196 1365	AA AA		C C	-1N N	-1N N	-1N	-1N O	# #	0.97 0.59
T 2 0 2	AA		C	T/I	T/V	N	U	#	0.09

Screen Number				J	Fragment Definition	: 1			Frequency Percent
1200	AA		С	* N	* N	- N	- O	#	0.05
1200	AA		C	* N	- N	- N	* 0	#	0.05
1196	AA		C	-1N	-1N	-1N	-10	#	0.97
1365	AA		C	N	N	N	S	#	0.59
1200	AA		C	* N	* N	- N	- S	#	0.05
1200	AA		C	* N	- N	- N	* S	#	0.05
1196	AA		C	-1N	-1N	-1N	-1S	#	0.97
1365	AA		C	N	N	N	X	#	0.59
1200	AA		С	* N	* N	- N	- X	#	0.05
1196	AA		С	-1N	-1N	-1N	-1x	#	0.97
1436	AA		С	* N	* N	* 0		#	0.88
1440	AA		C	* N	* N	- O			2.77
1441	AA	2	C	* N	* N	- O			0.47
1442	AA		C	* N	- N	* 0			0.15
1443	AA		С	- N	- N	- 0			2.24
1444	AA	2	C	- N	- N	- O			0.14
1439	AA		C	-1N	-1N	-10		#	0.04
1451	AA		C	-1N	-1N	-20		#	0.21
1367	AA		C	-1N	-2N	-10		#	9.76
1452	AA		С	-1N	-2N	-10		#	0.18
1367	AA		С	-1N	-4N	-40		#	9.76
1453	AA		С	-1N	-4N	-40		#	1.09
1367	AA		C	-4N	-4N	-10		#	9.76
1452	AA		C	-4N	-4N	-10		#	0.18
1367	AA		C	-4N	-4N	-40		#	9.76
1454	AA		С	-4N	-4N	-40	0	#	1.91
1365	AA		С	N * N	N * N	0	0	#	0.59
1200 1200	AA		C C	* N * N	* N - N	- O * O	- O - O	#	0.05 0.05
1200	AA AA		C	- N		* 0	- 0 * 0	#	0.05
1196	AA			- N -1N	- N -1N	-10	-10	#	0.03
1200	AA		C	* N	* N	- 0	- S	#	0.05
1200	AA		C	* N	- N	* 0	- S	#	0.05
1200	AA		C	* N	- N	- 0	* S	#	0.05
1200	AA		C	- N	- N	* 0	* S	#	0.05
1196	AA		C	-1N	-1N	-10	-1S	#	0.97
1365	AA		C	N	N	0	X	#	0.59
1200	AA		C	* N	* N	- 0	- X	#	0.05
1200	AA		С	* N	- N	* 0	- X	#	0.05
1196	AA		C	-1N	-1N	-10	-1X	#	0.97
1436	AA		С	* N	* N	* S		#	0.88
1445	AA		C	* N	* N	- S			1.97
1446	AA	2	C	* N	* N	- S			0.07
1447	AA		C	* N	- N	* S			2.29
1448	AA	2	С	* N	- N	* S			0.12
1449	AA		С	- N	- N	- S			1.12
1450	AA	2	С	- N	- N	- S			0.08
1439	AA		C	-1N	-1N	-1S		#	0.04
1367	AA		C	-1N	-1N	-2S		#	9.76
1451	AA		C	-1N	-1N	-2S		#	0.21
1367	AA		C	-1N	-2N	-1S		#	9.76
1452	AA		C	-1N	-2N	-1S		#	0.18
1367	AA		C	-1N	-4N -4N	-4S -4S		#	9.76
1453 1367	AA AA		C C	-1N -4N	-4N -4N	-4S -1S		#	1.09 9.76
1307	AA		C	— 1 111	— 1 11/	-12		#	9.10

Screen Number					Fragment Definition				Frequency Percent
1452	AA		С	-4N	-4N	-1S		#	0.18
1367	AA		C	-4N	-4N	-4S		#	9.76
1454	AA		C	-4N	-4N	-4S		#	1.91
1365	AA		C	N	N	S	S	#	0.59
1200	AA		C	* N	* N	- S	- S	#	0.05
1200	AA		С	* N	- N	* S	- S	#	0.05
1200	AA		C	- N	- N	* S	* S	#	
1196	AA		C	-1N	-1N	-1S	-1S	#	
1365	AA		C	N	N	S	X	#	
1200	AA		С	* N	* N	- S	- X	#	
1200	AA		C	* N	- N	* S	- X	#	
1196	AA		C	-1N	-1N	-1S	-1X	#	
1378	AA		C	N * N	N * N	X		#	
1379	AA		C	14	14	- X		ш	0.29
1367 1367	AA AA		C	-1N -4N	-2N -4N	-1X -1X		<u>#</u>	
1365	AA AA		C	-4N N	-4N N	X	Х	#	
1200	AA		C	* N	* N	- X	- X	#	
1196	AA		C	-1N	-1N	-1X	-1X	#	
2108	AA		C	N	0	121	121	#	
1455	AA			* N	* 0				2.73
1456	AA	2	C	* N	* 0				0.63
1457	AA	_	C	* N	- 0				14.41
1458	AA	2	C	* N	- 0				5.00
1459	AA	3	C	* N	- 0				1.38
1460	AA		С	*1N	*10				0.99
1461	AA		C	*1N	-10				0.63
1462	AA		C	*1N	-20				9.29
1463	AA		C	*1N	-40				1.16
1464	AA		С	*2N	*10				1.38
1465	AA		С	*2N	-10				0.30
1466	AA		C	*4N	*10				0.25
1467	AA		C	*4N	-10				0.95
1468	AA		С	*4N	-40				4.42
1469	AA		C	- N	* 0				1.68
1470	AA	0	C	- N	- 0				28.84
1471	AA	2	C	- N	- 0				10.44
1472	AA	3 4	C	- N	- 0				4.87
1473 1500	AA AA	4	C C	- N -1N	- 0 *10			#	3.68 2.47
$\frac{1300}{1474}$	AA		C	-1N -1N	-10				1.75
1475	AA		C	-1N -1N	-20				8.11
1501	AA		C	-2N	*10			#	
1476	AA		C	-2N	-10			П	0.13
1367	AA		C	-1N	-1N	-20		#	
1477	AA		C	-2N	-20				0.39
1502	AA		C	-3N	-10			#	
1501	AA		С	-4N	*10			#	
1478	AA		C	-4N	-40				23.05
1479	AA		С	N	0	0			4.22
1480	AA	2	С	N	0	0			0.55
1436	AA		C	* N	* 0	* 0		#	0.88
1481	AA		С	* N	* 0	- O			0.46
1482	AA		C	- N	- 0	- 0			3.78
1439	AA		С	-1N	-10	-10		#	0.04

Screen Number				Fragmen Definition				Frequency Percent
1367	AA	С	-1N	-10	-20		#	9.76
1503	AA	C	-1N	-10	-20		#	
1367	AA	C	-1N	-40	-40		#	
1367	AA	С	-2N	-10	-10		#	9.76
1367	AA	С	-4N	-10	-40		#	9.76
1365	AA	С	N	N	0	S	#	0.59
1503	AA	C	-4N	-10	-40		#	
1367	AA	С	-4N	-40	-40		#	
1365	AA	C	N	0	0	0	#	
1200	AA	C	* N	* 0	- 0	- 0	#	
1504	AA	С	- N	* 0	* 0	- O	#	
1196	AA	C	-1N	-10	-10	-10	#	
1365	AA	С	N	0	0	S	#	
1200	AA	C	* N	* 0	- 0	- S	#	
1200	AA	C	* N	- O * O	- O * O	* S	#	
1504	AA	C	- N	O	O	- S * 9	#	
1504 1196	AA AA	C C	- N -1N	* 0 -10	- 0 -10	* S -1S	#	
1365	AA AA	C	-IN		-10	-1S X	#	
1200	AA AA	C	* N	0 * 0	- 0	- X	#	
1200	AA AA	C	- N	* 0	* 0	- X	#	
1196	AA	C	-1N	-10	-10	-1X	#	
1483	AA	C	N	0	S	121	π	0.54
1436	AA	C	* N	* 0	* S		#	
1439	AA	C	-1N	-10	-1S		#	
1367	AA	C	-1N	-10	-2S		#	
1503	AA	C	-1N	-10	-2S		#	
1367	AA	C	-1N	-20	-1S		#	
1503	AA	C	-1N	-20	-1S		#	
1367	AA	C	-1N	-40	-4S		#	
1367	AA	С	-2N	-10	-1s		#	9.76
1367	AA	С	-4N	-10	-4S		#	9.76
1503	AA	C	-4N	-10	-4S		#	
1367	AA	C	-4N	-40	-1S		#	
1503	AA	C	-4N	-40	-1S		#	
1367	AA	С	-4N	-40	-4S		#	
1365	AA	С	N	0	S	S	#	
1200	AA	С	* N	* 0	- S	- S	#	
1200	AA	C	* N	- 0	* S	- S	#	
1504	AA	C	- N	* 0	* S	- S	#	
1504	AA	C	- N	- 0	* S	* S	#	
1196	AA	C	-1N	-10	-1S	-1S	#	
1365	AA	C	N * N	0	S	X	#	
1200 1200	AA	C C	* N * N	* 0	- S * S	– X – X	#	
1200	AA AA	C	- N	- O * O	* S	- X	# #	
1196	AA	C	- N -1N	-10	-1S	- x -1X	#	
1378	AA AA	C	-IN	-10	-15 X	-TV	#	
1367	AA	C	-1N	-20	-1X		#	
1367	AA	C	-1N -2N	-10	-1X -1X		#	
1365	AA	C	N	0	X	X	#	
1200	AA	C	* N	* 0	- X	- X	#	
1196	AA	C	-1N	-10	-1X	-1X	#	
1484	AA	C	N	P			"	0.29
2107	AA	C	N	S			#	

Screen Number					Fragment Definition			Fr	equency Percent
1485	AA		С	* N	* S				5.70
1486	AA	2	C	* N	* S				1.19
1487	AA		C	* N	- S				3.57
1488	AA	2	С	* N	- S				0.25
1489	AA		С	*1N	*1S				2.72
1490	AA		С	*2N	*1S				2.26
1491	AA		C	*4N	*1S				1.62
1492	AA		C	- N	- S				2.05
1493	AA	2	C	- N	- S				0.27
1500	AA		C	-1N	*1S			#	2.47
1494	AA		С	-1N	-1S				0.29
1495	AA		C	-1N	-2S				0.18
1501	AA		C	-2N	*1S			#	1.94
1496	AA		C	-2N	-1S				0.11
1497	AA		С	-2N	-2S				0.16
1502	AA		C	-3N	-1S			#	0.12
1501	AA		C	-4N	*1S			#	1.94
1498	AA		C	-4N	-4S				1.15
1499	AA		C	N	S	S			0.92
1436	AA		С	* N	* S	* S		#	0.88
1439	AA		C	-1N	-1S	-1S		#	0.04
1367	AA		C	-1N	-1S	-2S		#	9.76
1503	AA		C	-1N	-1S	-2S		#	3.82
1367	AA		C	-1N	-4S	-4S		#	9.76
1367	AA A		C	-2N	-1S	-1S		#	9.76
1367	AA		C	-4N	-1S	-4S		#	9.76
1503 1367	AA		C C	-4N -4N	-1S -4S	-4S -4S		# #	3.82 9.76
1367	AA AA		C	-4N N	-45 S	-45 S	S	#	0.59
1200	AA		C	* N	* S	- S	- S	#	0.05
1504	AA		C	- N	* S	* S	- S	#	0.00
1196	AA		C	-1N	-1S	-1S	-1S	#	0.97
1365	AA		C	N	S	S	X	#	0.59
1200	AA		C	* N	* S	- S	- X	#	0.05
1200	AA		C	- N	* S	* S	- X	#	0.05
1196	AA		C	-1N	-1S	-1S	-1X	#	0.97
1378	AA		C	N	S	X		#	0.40
1367	AA		C	-1N	-2S	-1X		#	9.76
1367	AA		С	-2N	-1S	-1X		#	9.76
1367	AA		С	-4N	-4S	-1X		#	9.76
1365	AA		С	N	S	Х	Х	#	0.59
1200	AA		C	* N	* S	- X	- X	#	0.05
1196	AA		C	-1N	-1S	-1X	-1X	#	0.97
1368	AA		C	N	X				1.28
1369	AA		С	* N	- X				1.09
1370	AA	2	С	* N	- X				0.18
1371	AA	3	C	* N	- X				0.02
1372	AA		С	*1N	-1X				0.25
1373	AA		C	*2N	-1X				0.14
1374	AA		С	*4N	-1X				0.75
1375	AA		С	-1N	-1X				0.14
1366	AA		C	N	X	X		#	0.99
1367	AA		C	-2N	-1X	-1X		#	9.76
1365	AA		C	N	X	X	X	#	0.59
1196	AA		С	-1N	-1X	-1X	-1X	#	0.97

Screen Number					Fragment Definition	:			Frequency Percent
1505	AA		С	* 0					20.22
1510	AA		C	-20					41.18
1511	AA		C	-40					31.52
2107	AA		C	0	0			#	42.77
1376	AA		С	-2N	-1X				0.06
1512	AA		C	* 0	* 0				2.94
1513	AA	2	С	* 0	* 0				0.67
1514	AA	_	С	* 0	- 0				5.68
1515	AA	2	C	* 0	- 0				1.92
1516	AA		C	*10	-10				2.36
1517 1518	AA AA		C	*10 - 0	-20 - 0				3.54 29.91
1516	AA	2	C	- 0	- 0				10.19
1520	AA	3	C	- 0	- 0				3.17
1521	AA	4	C	- 0	- 0				1.56
1522	AA		C	-10	-10				1.52
1523	AA		C	-10	-20				18.25
1524	AA	2	C	-10	-20				4.97
1525	AA		С	-10	-40				2.49
1526	AA		C	-40	-40				11.09
1527	AA	2	С	-40	-40				3.39
1551	AA		С	0	0	0		#	
1436	AA		C	* 0	* 0	* 0		#	
1439	AA		С	-10	-10	-10		#	
1367	AA		C	-10	-10	-20		#	
1367	AA		C	-10	-40	-40		#	
1367	AA		C	-40	-40	-40	0	#	
1365 1200	AA		C C	0 * 0	0 * 0	0	0	#	
1196	AA AA		C	-10	-10	- 0 -10	- 0 -10	#	
1365	AA AA			0	0	0	S	 #	
1200	AA		C	* 0	* 0	- 0	- S	# #	
1200	AA		C	* 0	- 0	- 0	* S	#	
1196	AA		C	-10	-10	-10	-1S	#	
1365	AA		С	0	0	0	X	#	
1200	AA		С	* 0	* 0	- 0	- X	#	
1196	AA		С	-10	-10	-10	-1X	#	0.97
1551	AA		С	0	0	S		#	
1436	AA		С	* 0	* 0	* S		#	
1439	AA		С	-10	-10	-1S		#	
1367	AA		С	-10	-10	-2S		#	
1367	AA		C	-10	-20	-1S		#	
1367	AA		C	-10	-40	-4S		#	
1367 1367	AA AA		C C	-40 -40	-40 -40	-1S -4S		#	
1365	AA		C	0	0	 S	S		
1200	AA		C	* 0	* 0	- S	- S	#	
1200	AA		C	* 0	- 0	* S	- S	#	
1200	AA		C	- 0	- 0	* S	* S	#	
1196	AA		C	-10	-10	-1S	-1S	#	
1365	AA		C	0	0	S	X	#	
1200	AA		С	* 0	* 0	- S	- X	#	
1200	AA		C	* 0	- O	* S	- X	#	
1196	AA		C	-10	-10	-1S	-1X	#	
1378	AA		С	0	0	X		#	0.40

Screen Number			J	Fragment Definition	: 1		F	requency Percent
1367	AA	С	-10	-20	-1x		#	9.76
1367	AA	С	-40	-40	-1X		#	9.76
1365	AA	С	0	0	X	X	#	0.59
1200	AA	С	* 0	* 0	- X	- X	#	0.05
1196	AA	С	-10	-10	-1X	-1X	#	0.97
1528	AA	C	0	P				0.20
2106	AA	С	0	S			#	36.37
1529	AA	С	* 0	* S				0.08
1530	AA	С	* 0	- S				0.29
1531	AA	C	- 0	* S				0.37
1532	AA	C	- O	- S				0.55
1551	AA	C	0	S	S		#	0.63
1436	AA	C	* 0	* S	* S		#	0.88
1439	AA	C	-10	-1S	-1S		#	0.04
1367	<u>AA</u>	C	-10	-1S	-2S		#	9.76
1367	AA	C	-10	-4S	-4S		#	9.76
1367	AA	C	-20	-1S	-1S		#	9.76
1367	AA	C	-40	-1S	-4S		#	9.76
1367	AA	C	-40	-4S	-4S	a	#	9.76
1365 1200	AA AA	C C	* 0	* S	S S	S S	#	0.59
1200	AA AA	C	- 0	" S * S	- S * S	- S - S	#	0.05
1196	AA	C	-10	-1S	-1S	- s -1s	#	0.03
1365	AA	C	0	S	S	X	#	0.59
1200	AA	C	* 0	* S	- S	- X	#	0.05
1200	AA	C	- 0	* S	* S	- X	#	0.05
1196	AA	C	-10	-1S	-1S	-1X	#	0.97
1378	AA	C	0	S	X	121	#	0.40
1367	AA	C	-10	-2S	-1X		#	9.76
1367	AA	C	-20	-1S	-1X		#	9.76
1367	AA	С	-40	-4S	-1X		#	9.76
1365	AA	С	0	S	X	X	#	0.59
1200	AA	С	* 0	* S	- X	- X	#	0.05
1196	AA	C	-10	-1S	-1X	-1X	#	0.97
1380	AA	С	0	X				1.00
1383	AA	С	* 0	- X			#	0.37
1384	AA	С	-10	-1X			#	1.03
1385	AA	С	-20	-1X			#	0.34
1366	AA	C	0	X	X		#	0.99
1367	AA	C	-20	-1X	-1X		#	9.76
1365	AA	C	0	X	X	X	#	0.59
1196	AA	C	-10	-1X	-1X	-1X	#	0.97
1552	AA	C	* P				#	1.15
1533	AA	C	- P					2.98
1534	AA	C	-2P				#	0.07
1534	AA	C	-3P				#	0.07
1534	AA AA	C	-4P	T.			#	0.07
1535	AA	C	P	P				0.19
1536 1381	AA AA	C C	P P	S X				0.04 0.08
1537	AA	C	* S	Λ				10.23
1537	AA AA	C	- S					10.23
1536	AA AA	C	- s -1s					14.89
1542	AA	C	-15 -2S				#	2.60
1542	AA	C	-4S				#	2.60
		•	-~				- 11	• •

Screen Number					Fragment Definition			F	requency Percent
2106	AA		С	S	S			#	36.37
1543	AA		C	* S	* S				0.47
1544	AA		C	* S	- S				0.96
1545	AA		C	- S	- S				0.38
1551	AA		С	S	S	S		#	0.63
1436	AA		C	* S	* S	* S		#	0.88
1439	AA		C	-1S	-1S	-1S		#	0.04
1367	AA		С	-1S	-1S	-2S		#	9.76
1367	AA		C	-1S	-4S	-4S		#	9.76
1367	AA		C	-4S	-4S	-4S		#	9.76
1365 1200	AA		C C	S * S	S * S	S - S	S - S	#	0.59 0.05
1196	AA AA		C	-1S	-1S	- S -1S	- S -1S	# #	0.05
1365	AA		C	-15 S	-13 S	-15 S	-13 X	#	0.59
1200	AA		C	* S	* S	- S	- X	#	0.05
1196	AA		C	-1S	-1S	-1S	-1X	#	0.97
1378	AA		C	S	S	X	121	#	0.40
1367	AA		C	-1S	-2S	-1X		#	9.76
1367	AA		C	-4S	-4S	-1X		#	9.76
1365	AA		C	S	S	Х	X	#	0.59
1200	AA		С	* S	* S	- X	- X	#	0.05
1196	AA		C	-1S	-1S	-1X	-1X	#	0.97
1382	AA		C	S	X				0.74
1383	AA		C	* S	- X			#	0.37
1384	AA		С	-1S	-1X			#	1.03
1385	AA		C	-2S	-1X			#	0.34
1366	AA		C	S	X	X		#	0.99
1367	AA		C	-2S	-1X	-1X		#	9.76
1365	AA		C	S	X	X	X	#	0.59
1196	AA		C	-1S * Se	-1X	-1X	-1X	#	0.97
1552	AA	2	С	* Se Si				#	1.15
1546 1547	AA AA	2 3	C C	Si Si					2.69 2.51
1547	AA	4	C	Si					1.43
1552	AA	7	C	* Si				#	1.15
1549	AA AA		C	- Si				π	2.84
1552	AA		C	* Te				#	1.15
1360	AA		C	X				"	26.42
1361	AA		C	X	X				6.02
1362	AA	2	C	X	X				1.63
1364	AA		С	X	Х	X			4.93
1365	AA		C	X	X	X	X	#	0.59
1347	AA		Cl	C					14.11
1553	AA		Cl	P					0.13
1554	AA		Cl	S					0.08
1353	AA		F	С					10.12
1555	AA		F	P					0.27
1556	AA		F	S					0.06
1386	AA		I	C				ш	1.01
1558	AA 77		M	As As				#	3.13
1391 1392	AA AA		M M	* As - As				# #	6.30 6.25
1558	AA		M	- As B				#	3.13
1330	AA		M	* B				#	6.30
1392	AA		M	- B				#	6.25
				_					– –

Screen Number					Fragment Definition	Fred P	quency Percent
1390	AA		M	С			3.55
1391	AA		M	* C		#	6.30
1392	AA		M	- C		#	6.25
1563	AA		M	N			4.05
1391	AA		M	* N		#	6.30
1392	AA		M	- N		#	6.25
1564	AA		M	0		#	4.03
1391	AA		M	* 0		#	6.30
1392	AA		M	- 0		#	6.25
1558	AA		M	P		#	3.13
1391	AA		М	* P		#	6.30
1392	AA		M	- P		#	6.25
1564	AA		M	S		#	4.03
1391	AA		M	* S		#	6.30
1392	AA		M	- S		#	6.25
1558	AA		M	Se		#	3.13
1391	AA		M	* Se		#	6.30
1392	AA		M	- Se		#	6.25
1558	AA		M	Si		#	3.13
1391	AA		M	* Si		#	6.30
1392	AA		M	- Si		#	6.25
1558	AA		M	Te		#	3.13
1391	AA		M	* Te		#	6.30
1392	AA		M	- Te		#	6.25
1558	AA		M	X		#	3.13
1391	AA		M	* X		#	6.30
1392	AA		M	- X		#	6.25
1667	AA		N	-4As		#	2.86
1653	AA		N	- As	* N	#	0.13
1654	AA		N	As	P	#	0.20
954	AA		N	В			0.22
1667	AA		N	-4B		#	2.86
1653	AA		N	- B	* N	#	0.13
1654	AA		N	В	P	#	0.20
1393	AA		N	* C		4	9.27
1565	AA	4	N	* C			8.42
1566	AA	5	N	* C			3.53
1567	AA	6	N	* C			2.31
1394	AA		N	*1C			0.50
1395	AA		N	*2C			4.45
1396	AA		N	*4C			0.41
1397	AA		N	-1C		5	8.10
1402	AA		N	-2C			6.98
1404	AA		N	-3C			4.65
1403	AA		N	-4C			7.74
2103	AA		N	C	C		1.82
1573	AA	_	N	* C	* C		3.08
1574	AA	2	N	* C	* C		3.90
1575	AA	3	N	* C	* C	1	0.35
1576	AA	4	N	* C	* C		5.64
1577	AA		N	* C	- C	2	6.04
1578	AA	2	N	* C	- C		7.82
1579	AA	3	N	* C	- C	~	1.99
1580	AA	2	N	*1C	*1C		0.13
1581	AA	2	N	*1C	*1C	1	0.29

Caraan				•				_	
Screen Number					Fragment Definition			F	requency Percent
1582	AA	3	N	*1C	*1C				2.86
1585	AA		N	*1C	*2C				8.37
1586	AA	2	N	*1C	*2C				1.31
1587	AA		N	*2C	-1C				0.65
1588	AA		N	*4C	*4C				14.32
1589	AA	2	N	*4C	*4C				6.63
1590	AA	3	N	*4C	*4C				2.11
1591	AA		N	*4C	-1C				0.87
1592	AA		N	- C	- C				35.21
1593	AA	2	N	- C	- C				13.94
1594	AA	3	N	- C	- C				5.73
1595	AA		N	-1C	-1C				14.72
1596	AA	2	N	-1C	-1C				2.46
1599	AA		N	-1C	-2C				2.33
1600	AA		N	-1C	-4C				21.05
1601	AA		N	-4C	-4C				1.92
1602	AA		N	С	С	С			31.96
1603	AA	2	N	С	С	С			10.54
1604	AA	3	N	С	С	С			2.71
1605	AA		N	* C	* C	* C			3.71
1606	AA	2	N	* C	* C	* C			0.51
1607	AA		N	* C	* C	- C			22.55
1608	AA		N	*1C	*1C	-1C			21.59
1609	AA		N	- C	- C	- C			8.91
_1610	AA	2	N	- C	- C	- C			1.24
1611	AA		N	С	С	С	С		1.17
1612	AA	2	N	С	С	С	С		0.16
1613	AA		N	* C	* C	* C	* C	#	0.35
1613	AA		N	* C	* C	* C	- C	#	0.35
1613	AA		N	* C	* C	- C	- C	#	0.35
1614	AA		N	- C	- C	- C	- C		0.83
1615	AA		N	С	С	С	N	#	0.08
1615	AA		N	С	С	С	0	#	0.08
1615	AA		N	С	С	С	S	#	0.08
1616	AA		N	С	С	N			5.31
1617	AA		N	* C	* C	* N		#	0.97
1618	AA		N	- C	- C	- N			0.41
1619	AA		N	С	С	0			0.98
1617	AA		N	* C	* C	* 0		#	0.97
1620	AA		N	* C	* C	- O			0.53
1621	AA		N	- C	- C	- O			0.27
1622	AA		N	С	С	P			0.32
1623	AA		N	С	С	S			2.00
1617	AA		N	* C	* C	* S		#	0.97
1624	AA		N	- C	- C	- S			0.90
2108	AA		N	С	N			#	44.41
1625	AA		N	* C	- N				0.76
1626	AA		N	*1C	*1N				5.00
1628	AA		N	*2C	*1N				5.47
1629	AA	2	N	*2C	*1N				1.61
1630	AA		N	- C	* N				3.78
1631	AA	2	N	- C	* N				0.54
1632	AA		N	-1C	-1N				1.19
1634	AA		N	-2C	-1N				2.84
1635	AA		N	-4C	-1N				2.74

Screen Number					Fragment Definition	Frequency Percent	y
				~			
2109	AA		N	C	0	# 33.25	
1636	AA		N	* C	* 0	1.22	
1637	AA		N	* C	- 0	0.71	
1638	AA		N	*4C	-20	0.19	
1639	AA		N	- C	* 0	0.15	
1640	AA		N	- C	- 0	6.80	
1641	AA		N	-1C	-10	0.30	
1642	AA		N	-1C	-20	5.21	
1643	AA		N	-2C	-10	1.03	
1644	AA		N	<u>C</u>	P	0.62	
1645	AA		N	C * C	S	4.46	
1646	AA		N	* C - C	- S * S	0.98 0.19	
1647	AA		N	- C	D		
1648 1649	AA AA		N N	- C	- S -1S	3.03 0.97	
1650	AA AA		N	-1C	-15 -4S	1.46	
1651	AA AA		N	-1C -4C	-45 -4S	0.57	
2105	AA		N	-4C	-45 X	# 31.14	
1563	AA		N	M	Λ	4.05	
1303	AA		N	* M		# 6.30	
1391	AA AA		N	- M		# 6.30	
1655	AA		N	N		13.07	
1656	AA	3	N	N		3.57	
1657	AA	5	N	N		0.66	
1658	AA	7	N	N		0.24	
1659	AA		N	*1N		6.78	
1660	AA		N	*2N		0.99	
1661	AA		N	*4N		0.64	
1662	AA		N	- N		6.18	
1663	AA		N	-1N		4.36	
1665	AA		N	-2N		1.77	
1666	AA	3	N	-2N		0.78	
1668	AA		N	-3N		0.08	
1667	AA		N	-4N		# 2.86	
2106	AA		N	N	N	# 36.37	
1669	AA		N	* N	* N	1.06	_
1653	AA		N	* N	- N	# 0.13	3
1670	AA		N	- N	- N	0.43	3
1671	AA		N	N	0	0.28	
1653	AA		N	* N	- O	# 0.13	
1654	AA		N	N	P	# 0.20)
1653	AA		N	* N	- P	# 0.13	3
1672	AA		N	N	S	0.22	2
1653	AA		N	* N	- S	# 0.13	3
1653	AA		N	* N	- Se	# 0.13	3
1653	AA		N	* N	- Si	# 0.13	
1653	AA		N	* N	- Te	# 0.13	
1653	AA		N	* N	- X	# 0.13	
1673	AA	2	N	0		1.99	
1674	AA	3	N	0		0.63	_
1675	AA	5	N	0		0.07	
1676	AA		N	* 0		1.31	
1677	AA		N	- 0		8.04	
1678	AA		N	-10		2.25	
1679	AA		N	-20		5.78	5

Screen Number				Fr De	ragment efinition		F	requency Percent
1667	AA		N	-40			#	2.86
1680	AA		N	0	0			5.54
1681	AA	2	N	0	0			1.28
1682	AA	3	N	0	0			0.42
1683	AA	5	N	0	0			0.03
1684	AA		N	0	0	0		0.29
1654	AA		N	0	P		#	0.20
1694	AA		N	0	S		#	0.10
1685	AA		N	* P				0.20
1686	AA		N	- P				0.60
1687	AA		N	-1P				0.36
1688	AA		N	-2P				0.09
1667	AA		N	-4P			#	2.86
1689	AA		N	-4P	ъ			0.21
1654	AA		N	P	P S		# #	0.20
1654 1654	AA AA		N N	P P	s Se		#	0.20 0.20
1654	AA		N	P	se Si		#	0.20
1654	AA		N	P	Te		#	0.20
1654	AA		N	P	X		#	0.20
1690	AA	2	N	S	Λ		π	0.62
1691	AA	2	N	* S				0.62
1692	AA		N	*2S			#	2.59
1692	AA		N	*4S			#	2.59
1693	AA		N	- S			"	4.40
1692	AA		N	-2S			#	2.59
1667	AA		N	-4S			#	2.86
1692	AA		N	-4S			#	2.59
1694	AA		N	S	S		#	0.10
1667	AA		N	-4Se			#	2.86
1695	AA		N	Si				0.24
1667	AA		N	-4Si			#	2.86
1667	AA		N	-4Te			#	2.86
1559	AA		N	X				0.06
1718	AA		0	As	As		#	0.63
1718	AA		0	As	В		#	0.63
1718	AA		0	As	N		#	0.63
1718	AA		0	As	0		#	0.63
1718	AA		0	As	P		#	0.63
1718	AA		0	As	S		#	0.63
1718	AA		0	As	Se		#	0.63
1718	AA		0	As	Si		#	0.63
1718	AA		0	As	Te		#	0.63
1718	AA		0	As * B	X		#	0.63
955	AA 77		0				# #	0.30
955 1718	AA AA		0	- В В	В		#	0.30 0.63
1718	AA		0	В	N		#	0.63
1718	AA		0	В	O		#	0.63
1718	AA		0	В	P		#	0.63
1718	AA		0	В	S		#	0.63
1718	AA		0	В	Se		#	0.63
1718	AA		0	В	Si		#	0.63
1718	AA		0	В	Te		#	0.63
1718	AA		0	В	X		#	0.63
							••	

1505	Screen Number					Fragment Definition		F	requency Percent
1698 AA 3 0 * C 2.15 1510 AA 0 -2C 41.18 1511 AA 0 -4C 31.52 2104 AA 0 C C 47.10 1706 AA 0 * C * C 17.14 1818 AA 0 * C * C 17.19 1707 AA 0 * C * C 38.39 1708 AA 2 0 - C - C 38.39 1709 AA 3 0 - C - C 38.39 1709 AA 3 0 - C - C 6.63 1710 AA 0 - C - C 3.26 1819 AA 0 - C C C # 0.46 2105 AA 0 C M # 31.14 1711 AA 0 C N # 31.14 1711 AA 0 C N # 1.20 2105 <td>1505</td> <td>AA</td> <td></td> <td>0</td> <td>* C</td> <td></td> <td></td> <td></td> <td>20.22</td>	1505	AA		0	* C				20.22
1699	1697	AA	2	0	* C				8.15
1510	1698	AA	3	0	* C				3.30
1511	1699	AA	4	0	* C				2.15
2104		AA		0	-2C				
1706		AA							
1818									
1707				_	_				
1708				_	_			#	
1709									
1710									
1819									
2105			4				C	#	
2105							C		
17111 AA O * C * N 1.07 1712 AA O C - N 1.20 2105 AA O C O # 31.14 1713 AA O C P # 31.14 1714 AA 2 O C P # 31.14 1716 AA 3 O C P # 0.73 1716 AA O C S 0.97 1717 AA O C S 0.15 1564 AA O M # 4.03 1392 AA O M # 6.25 1676 AA O N N # 0.63									
1712								"	
2105									
1713								#	
1714 AA 2 O C P 1.72 1715 AA 3 O C P 0.73 1716 AA O C S 0.97 1717 AA 2 O C S 0.15 1564 AA O M # 4.03 1391 AA O * M # 6.30 1392 AA O - M # 6.25 1676 AA O - M # 6.25 1677 AA O - N 1.31 1677 AA O - N 8.04 1678 AA O - IN 2.25 1679 AA O - 2N 5.78 1667 AA O - 4N # 2.86 1718 AA O N N # 0.63 1718 AA O N N # 0.63 1718 AA O N Se # 0.63 1718 AA	1713	AA		0	С				2.32
1715 AA 3 O C P 0.73 1716 AA O C S 0.97 1717 AA 2 O C S 0.15 1564 AA O M # 4.03 1391 AA O * M # 6.30 1392 AA O - M # 6.25 1676 AA O - M # 6.25 1676 AA O - N B.04 1.31 1.31 1.31 1.677 AA O - N 8.04 1.31 1.677 AA O - IN 2.25 1.679 AA O - IN 2.25 1.679 AA O - 2N 5.78 1.667 AA O - 4N # 2.86 1.718 AA O N N # 0.63 1.718 AA O N N # 0.63 1.718 AA O N P # 0.63 1.718	2105	AA		0	С	P		#	31.14
1716	1714	AA		0		P			
1717	1715	AA	3	0	C	P			0.73
1564 AA O M # 4.03 1391 AA O * M # 6.30 1392 AA O - M # 6.25 1676 AA O - N 1.31 1677 AA O - N 8.04 1678 AA O - 1N 2.25 1679 AA O - 2N 5.78 1667 AA O - 4N # 2.86 1718 AA O - 4N # 2.86 1718 AA O N N # 0.63 1718 AA O N N # 0.63 1718 AA O N S # 0.63 1718 AA O N Se # 0.63 1718 AA O N X # 0.63 1718 AA O N X # 0.63 1718 AA O<	1716	AA		0					0.97
1391			2		C	S			
1392 AA O - M # 6.25 1676 AA O * N 1.31 1677 AA O - N 8.04 1678 AA O - 1N 2.25 1679 AA O - 2N 5.78 1667 AA O - 4N # 2.86 1718 AA O N N # 0.63 1718 AA O N N # 0.63 1718 AA O N Se # 0.63 1718 AA O N Se # 0.63 1718 AA O N Se # 0.63 1718 AA O N Te # 0.63 1718 AA O N X # 0.63 1718 AA O O N X # 0.63 1718 AA O O Se # 0.63									
1676 AA O * N 1.31 1677 AA O - N 8.04 1678 AA O -1N 2.25 1679 AA O -2N 5.78 1667 AA O -4N # 2.86 1718 AA O N N # 0.63 1718 AA O N O # 0.63 1718 AA O N P # 0.63 1718 AA O N Se # 0.63 1718 AA O N Se # 0.63 1718 AA O N Te # 0.63 1718 AA O N Te # 0.63 1718 AA O N X # 0.63 1718 AA O N X # 0.63 1718 AA O O P # 0.63 1718 AA O O Se # 0.63 1718				_	1.1				
1677 AA O - N 8.04 1678 AA O -1N 2.25 1679 AA O -2N 5.78 1667 AA O -4N # 2.86 1718 AA O N N # 0.63 1718 AA O N O # 0.63 1718 AA O N P # 0.63 1718 AA O N Se # 0.63 1718 AA O N Se # 0.63 1718 AA O N Se # 0.63 1718 AA O N Te # 0.63 1718 AA O N X # 0.63 1718 AA O N X # 0.63 1718 AA O O P # 0.63 1718 AA O O Se # 0.6								#	
1678 AA O -1N 2.25 1679 AA O -2N 5.78 1667 AA O -4N # 2.86 1718 AA O N N # 0.63 1718 AA O N O # 0.63 1718 AA O N P # 0.63 1718 AA O N Se # 0.63 1718 AA O N Se # 0.63 1718 AA O N Te # 0.63 1718 AA O N X # 0.63 1718 AA O O N X # 0.63 1718 AA O O O # 0.63 1718 AA O O Se # 0.63 1718 AA O O Se # 0.63 1718 AA O <td></td> <td></td> <td></td> <td></td> <td>14</td> <td></td> <td></td> <td></td> <td></td>					14				
1679 AA O -2N \$5.78 1667 AA O -4N # 2.86 1718 AA O N N # 0.63 1718 AA O N O # 0.63 1718 AA O N S # 0.63 1718 AA O N Se # 0.63 1718 AA O N Se # 0.63 1718 AA O N Te # 0.63 1718 AA O N Te # 0.63 1718 AA O N X # 0.63 1718 AA O O P # 0.63 1718 AA O O P # 0.63 1718 AA O O Se # 0.63 1718 AA O O Se # 0.63 1718 AA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1667 AA O -4N # 2.86 1718 AA O N N # 0.63 1718 AA O N O # 0.63 1718 AA O N P # 0.63 1718 AA O N Se # 0.63 1718 AA O N Se # 0.63 1718 AA O N Te # 0.63 1718 AA O N X # 0.63 1718 AA O O N X # 0.63 1718 AA O O O # 0.63 1718 AA O O Se # 0.63 1718 AA O O Se # 0.63 1718 AA O O Se # 0.63 1718 AA O O X # 0.63 </td <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>				_					
1718 AA O N N # 0.63 1718 AA O N O # 0.63 1718 AA O N P # 0.63 1718 AA O N Se # 0.63 1718 AA O N Se # 0.63 1718 AA O N Te # 0.63 1718 AA O N X # 0.63 1718 AA O N X # 0.63 1718 AA O O O # 0.63 1718 AA O O P # 0.63 1718 AA O O Se # 0.63 1718 AA O O Se # 0.63 1718 AA O O Te # 0.63 1718 AA O O Te # 0.63 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>#</td> <td></td>								#	
1718 AA O N O # 0.63 1718 AA O N P # 0.63 1718 AA O N Se # 0.63 1718 AA O N Se # 0.63 1718 AA O N Te # 0.63 1718 AA O N X # 0.63 1718 AA O O O # 0.63 1718 AA O O P # 0.63 1718 AA O O Se # 0.63 1718 AA O O Se # 0.63 1718 AA O O Se # 0.63 1718 AA O O Te # 0.63 1718 AA O O X # 0.63 1718 AA O O X # 0.63 <td></td> <td></td> <td></td> <td></td> <td></td> <td>N</td> <td></td> <td></td> <td></td>						N			
1718 AA O N P # 0.63 1718 AA O N S # 0.63 1718 AA O N Se # 0.63 1718 AA O N Te # 0.63 1718 AA O N X # 0.63 1718 AA O O O 0.23 1718 AA O O O # 0.63 1718 AA O O P # 0.63 1718 AA O O Se # 0.63 1718 AA O O Te # 0.63 1718 AA O O X # 0.63 1718 AA O O X # 0.63 1721 AA O Y <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1718 AA O N S # 0.63 1718 AA O N Se # 0.63 1718 AA O N Te # 0.63 1718 AA O N X # 0.63 1720 AA O O O 0.23 1718 AA O O O # 0.63 1718 AA O O P # 0.63 1718 AA O O Se # 0.63 1718 AA O O Se # 0.63 1718 AA O O Te # 0.63 1718 AA O O X # 0.63 1718 AA O O X # 0.63 1721 AA O * P O 0.36 1722 AA O -1P O 0.36 1723 AA									
1718 AA O N Si # 0.63 1718 AA O N Te # 0.63 1718 AA O N X # 0.63 1720 AA O O 0.23 1718 AA O O O # 0.63 1718 AA O O Se # 0.63 1718 AA O O Se # 0.63 1718 AA O O Si # 0.63 1718 AA O O Te # 0.63 1721 AA O YP 0.36 1722 AA O -1P 2.22 1723 AA O -2P 1.11 1724 AA O -4P 1.35 1725	1718	AA		0	N	S			
1718 AA O N Te # 0.63 1718 AA O N X # 0.63 1720 AA O O 0.23 1718 AA O O O # 0.63 1718 AA O O P # 0.63 1718 AA O O Se # 0.63 1718 AA O O Si # 0.63 1718 AA O O Te # 0.63 1718 AA O O X # 0.63 1718 AA O O X # 0.63 1718 AA O O X # 0.63 1721 AA O Y P 0.36 1721 AA O -1P 2.22 1723 AA O -2P 1.11 1724 AA O -4P 1.35 1725 AA 2 O -4P 1.20	1718	AA		0	N	Se		#	0.63
1718 AA O N X # 0.63 1720 AA O O O 0.23 1718 AA O O O # 0.63 1718 AA O O P # 0.63 1718 AA O O Se # 0.63 1718 AA O O Si # 0.63 1718 AA O O Te # 0.63 1718 AA O O X # 0.63 1721 AA O Y P 0.36 1722 AA O -1P 2.22 1723 AA O -4P 1.35 1725 AA O -4P 1.20 <td>1718</td> <td>AA</td> <td></td> <td>0</td> <td>N</td> <td>Si</td> <td></td> <td>#</td> <td>0.63</td>	1718	AA		0	N	Si		#	0.63
1720 AA O O 0 0 23 1718 AA O O O H 0.63 1718 AA O O P # 0.63 1718 AA O O Se # 0.63 1718 AA O O Si # 0.63 1718 AA O O Te # 0.63 1718 AA O O X # 0.63 1721 AA O * P 0.36 1722 AA O -1P 2.22 1723 AA O -4P 1.35 1725 AA O -4P 1.35 </td <td>1718</td> <td>AA</td> <td></td> <td>0</td> <td>N</td> <td>Te</td> <td></td> <td></td> <td>0.63</td>	1718	AA		0	N	Te			0.63
1718 AA O O O # 0.63 1718 AA O O P # 0.63 1718 AA O O Se # 0.63 1718 AA O O Se # 0.63 1718 AA O O Te # 0.63 1718 AA O O X # 0.63 1718 AA O O X # 0.63 1721 AA O * P O 0.36 1722 AA O -1P 2.22 1723 AA O -2P 1.11 1724 AA O -4P 1.35 1725 AA 2 O -4P 1.20						X		#	
1718 AA O O P # 0.63 1718 AA O O Se # 0.63 1718 AA O O Se # 0.63 1718 AA O O Si # 0.63 1718 AA O O Te # 0.63 1718 AA O O X # 0.63 1721 AA O * P 0.36 1722 AA O -1P 2.22 1723 AA O -2P 1.11 1724 AA O -4P 1.35 1725 AA 2 O -4P 1.20									
1718 AA O O S # 0.63 1718 AA O O Se # 0.63 1718 AA O O Si # 0.63 1718 AA O O Te # 0.63 1718 AA O O X # 0.63 1721 AA O * P 0.36 1722 AA O -1P 2.22 1723 AA O -2P 1.11 1724 AA O -4P 1.35 1725 AA 2 O -4P 1.20									
1718 AA O O Se # 0.63 1718 AA O O Si # 0.63 1718 AA O O Te # 0.63 1718 AA O O X # 0.63 1721 AA O * P 0.36 1722 AA O -1P 2.22 1723 AA O -2P 1.11 1724 AA O -4P 1.35 1725 AA 2 O -4P 1.20									
1718 AA O O Si # 0.63 1718 AA O O Te # 0.63 1718 AA O O X # 0.63 1721 AA O * P 0.36 1722 AA O -1P 2.22 1723 AA O -2P 1.11 1724 AA O -4P 1.35 1725 AA 2 O -4P 1.20									
1718 AA O O Te # 0.63 1718 AA O O X # 0.63 1721 AA O * P 0.36 1722 AA O -1P 2.22 1723 AA O -2P 1.11 1724 AA O -4P 1.35 1725 AA 2 O -4P 1.20									
1718 AA O O X # 0.63 1721 AA O * P 0.36 1722 AA O -1P 2.22 1723 AA O -2P 1.11 1724 AA O -4P 1.35 1725 AA 2 O -4P 1.20									
1721 AA O * P 0.36 1722 AA O -1P 2.22 1723 AA O -2P 1.11 1724 AA O -4P 1.35 1725 AA 2 O -4P 1.20									
1722 AA O -1P 2.22 1723 AA O -2P 1.11 1724 AA O -4P 1.35 1725 AA 2 O -4P 1.20						27		π	
1723 AA O -2P 1.11 1724 AA O -4P 1.35 1725 AA 2 O -4P 1.20									
1724 AA O -4P 1.35 1725 AA 2 O -4P 1.20									
1725 AA 2 O -4P 1.20									
1726 AA 3 O -4P 0.83			2	0	-4P				
	1726	AA	3	0	-4P				0.83

Screen Number				Fi De	ragment efinition			F	requency Percent
1729	AA		0	-2S					4.78
1718	AA		0	P	P			#	0.63
1718	AA		0	P	S			#	0.63
1718	AA		0	P	Se			#	0.63
1718	AA		0	P	Si			#	0.63
1718	AA		0	P	Te			#	0.63
1718	AA		0	P	X			#	0.63
1727	AA		Ο	* S					0.09
1728	AA		Ο	-1S					1.03
1730	AA		0	-4S					4.43
1731	AA	2	0	-4S					4.41
1732	AA	3	0	-4S					2.17
1718	AA		0	S	S			#	0.63
1718	AA		0	S	Se			#	0.63
1718	AA		0	S	Si			#	0.63
1718	AA		0	S	Te			#	0.63
1718	AA		0	S	X			#	0.63
1718	AA		0	Se	Se			#	0.63
1718 1718	AA AA		0	Se Se	Si			#	0.63
1718	AA AA		0	se se	Te X			#	0.63
1733	AA	2	0	Si	Λ			#	0.86
1734	AA	۷	0	* Si					0.15
1735	AA		0	- Si					1.82
1718	AA		0	Si	Si			#	0.63
1718	AA		0	Si	Te			#	0.63
1718	AA		0	Si	X			#	0.63
1718	AA		0	Te	Te			#	0.63
1718	AA		0	Te	X			#	0.63
1560	AA		0	X					0.51
1718	AA		0	Х	Х			#	0.63
1820	AA		P	As				#	0.35
1820	AA		P	В				#	0.35
1738	AA	2	P	C					1.26
1552	AA		Р	* C				#	1.15
1533	AA		Р	- C					2.98
1534	AA		Р	-2C				#	0.07
1534	AA		Р	-3C				#	0.07
1534	AA		P	-4C	_			#	0.07
1739	AA		P	C	C				2.11
2105	AA		P	С	С			#	31.14
1740	AA		P	- C	- C	a			1.95
1741	AA		P	C	C	C			1.75
1742	AA		P	C C	C	0			0.37 0.29
1743	AA		P	C	N				1.25
1744 1745	AA AA		P P	C	0	0			0.94
1745	AA		P	C	0	0	0		0.69
1748	AA		P	C	0	0	0	#	0.75
1748	AA		P	C	0	0	S	#	0.75
1748	AA		P	C	0	S	S	#	0.75
1747	AA		P	C	S				0.17
1748	AA		P	C	S	S	S	#	0.75
1553	AA		P	Cl					0.13
1555	AA		P	F					0.27

Screen Number				F	Fragment Definition			I	Frequency Percent
1558	AA		P	M				#	3.13
1391	AA		P	* M				#	6.30
1392	AA		P	- M				#	6.25
1750	AA	2	P	N					0.18
1685	AA		P	* N					0.20
1686	AA		P	- N					0.60
1687	AA		Ρ	-1N					0.36
1688	AA		Р	-2N					0.09
1667	AA		P	-4N				#	2.86
1689	AA		<u>P</u>	-4N					0.21
1751 1752	AA AA		P P	N N	N O				0.27
1753	AA AA		P	N	0	0			0.49
1755	AA		P	N	0	0	0	#	0.33
1755	AA		P	N	0	0	S	#	0.19
1755	AA		P	N	0	S	S	#	0.19
1754	AA		P	N	S	~	2	"	0.13
1755	AA		P	N	S	S	S	#	0.19
1756	AA	2	P	0					0.77
1721	AA		P	* 0					0.36
1722	AA		P	-10					2.22
1723	AA		P	-20					1.11
1724	AA		P	-40					1.35
1767	AA	2	P	-40				#	0.41
1768	AA	3	P	-40				#	0.23
1757	AA		Ρ	0	0				2.69
1758	AA		Р	0	0	0			2.16
1759	AA		P	0	0	Ο	0		1.06
1762	AA		P	* S	0	0	0		0.06
1769 1769	AA AA		P P	0	0	0	O S	#	1.29
1769	AA AA		P	0	0	S	S S	#	1.29
1760	AA AA		P	0	S	۵	۵	#	0.41
1769	AA		P	0	S	S	S	#	1.29
1820	AA		P	P	D	D	D	#	0.35
1761	AA		 P	S					0.53
1763	AA		P	-1S					0.22
1764	AA		P	-2S					0.25
1765	AA		P	-4S					0.11
1767	AA	2	P	-4S				#	0.41
1768	AA	3	P	-4S				#	0.23
1766	AA		P	S	S				0.18
1769	AA		P	S	S	S	S	#	1.29
1820	AA		Ρ	Se				#	0.35
1820	AA		P	Si				#	0.35
1820	AA		P	Te				#	0.35
1561	AA		P	X	37				0.42
1749 1527	AA		P	* C	X				0.32
1537 1538	AA 77		S S	- C					10.23 17.07
1770	AA AA	2	S	- C					3.55
1539	AA AA	۷	S	- C -1C					14.89
1542	AA		S	-1C -2C				#	2.60
1542	AA		S	-4C				#	2.60
2106	AA		S	C	С			#	36.37
				-					*

Screen Number					Fragment Definition			F	requency Percent
1772	AA		S	* C	* C				9.14
1773	AA	2	S	* C	* C				1.52
1818	AA		S	* C	- C			#	0.15
1774	AA		S	- C	- C				7.80
1775	AA	2	S	- C	- C				0.91
1819	AA		S	С	С	С		#	0.46
1776	AA		S	С	С	N			0.05
1777	AA		S	С	С	Ο			1.96
1778	AA	2	S	C	C	0			0.18
1779	AA		S	* C	* C	- 0			0.35
1780 1781	AA AA		S S	- C * C	- C * C	- O - O	0		1.61 0.25
1781	AA AA		S	- C	- C	- 0	- O - O		1.23
2109	AA		S	C	– C	- 0	- 0	#	33.25
1783	AA		S	* C	* N			π	0.48
1784	AA		S	- C	- N				4.15
1785	AA	2	S	- C	- N				0.34
1786	AA	_	S	C	N	0	0		4.19
1787	AA		S	* C	* N	- O	- 0		0.19
1788	AA		S	- C	- N	- O	- O		4.02
1789	AA		S	* C	* 0				0.04
1790	AA		S	* C	- O				0.59
1791	AA		S	- C	- O				7.61
1792	AA	2	S	- C	- O				1.22
1793	AA	3	S	- C	- 0				0.38
1794	AA		S	* C	- O	- O			0.47
1795	AA		S	- C	- 0	- 0			7.20
1796	AA	•	S	C	0	0	0		2.09
1797	AA	2	S	C	0	0	0		0.65
1798 1799	AA AA	2	S S	C C	P P				0.21
2105	AA AA	4	S	C	S			#	31.14
1554	AA		S	Cl	۵			#	0.08
1556	AA		S	F					0.06
1564	AA		S	M				#	4.03
1391	AA		S	* M				#	6.30
1392	AA		S	- M				#	6.25
1801	AA	2	S	N					0.47
1691	AA		S	* N					0.62
1692	AA		S	*2N				#	2.59
1692	AA		S	*4N				#	2.59
1693	AA		S	- N					4.40
1692	AA		S	-2N				#	2.59
1667	AA		S	-4N				#	2.86
1692	AA		S	-4N				#	2.59
1802	AA		S	N	N				0.25
1803	AA	2	S	N	0				4.51
1804	AA	2 3	S	N	0				0.39
1805 1806	AA AA	3	S S	* N	0 - 0				0.04 0.26
1807	AA		S	N N	0	0	0		0.28
1807	AA		S	N	P	U	O		0.09
1809	AA	2	S	0	r				1.44
1810	AA	3	S	0					0.45
1727	AA		S	* 0					0.09

Screen Number			Fi D	ragment efinition			Fr	equency Percent
1728	AA	S	-10					1.03
1729	AA	S	-20					4.78
1730	AA	S	-40					4.43
1811	AA	S	0	0				8.41
1812	AA	S	0	0	0			2.72
1813	AA	S	0	0	0	0		0.47
1814	AA	S	0	P		-		0.00
1761	AA	S	P					0.53
1762	AA	S	* P					0.06
1763	AA	S	-1P					0.22
1764	AA	S	-2P					0.25
1765	AA	S	-4P					0.11
1815	AA	S	* S					0.21
1816	AA	S	- S					0.24
1562	AA	S	X					0.14
1800	AA	S	X	X				0.02
1820	AA	Se	As				#	0.35
1820	AA	Se	В				#	0.35
1552	AA	Se	* C				#	1.15
1558	AA	Se	M				#	3.13
1391	AA	Se	* M				#	6.30
1392	AA	Se	- M				#	6.25
1667	AA	Se	-4N				#	2.86
1820	AA	Se	P				#	0.35
1820	AA	Se	Se				#	0.35
1820	AA	Se	Si				#	0.35
1820	AA	Se	Te				#	0.35
952	AA	Se	X				#	0.53
1820	AA	Si	As				#	0.35
1820	AA	Si	В				#	0.35
1552	AA	Si	* C				#	1.15
1549	AA	Si	- C					2.84
1558	AA	Si	M				#	3.13
1391	AA	Si	* M				#	6.30
1392	AA	Si	- M				#	6.25
1695	AA	Si	N					0.24
1667	AA	Si	-4N				#	2.86
1734	AA	Si	* 0					0.15
1735	AA	Si	- O					1.82
1820	AA	Si	P				#	0.35
1820	AA	Si	Se				#	0.35
1820	AA	Si	Si				#	0.35
1820	AA	Si	Te				#	0.35
952	AA	Si	X				#	0.53
1817	AA	Si	X					0.15
1820	AA	Te	As				#	0.35
1820	AA 77	Te	B * C				#	0.35
1552 1558	AA 77	Tе	•				#	1.15
1391	AA AA	Te Te	M * M				#	3.13 6.30
1391	AA AA	Te_	- M				#_ #	6.25
1667	AA AA	Te	- M -4N				#	2.86
1820	AA	Te	-4N P				#	0.35
1820	AA	Te	Se				#	0.35
1820	AA	Te	Si				#	0.35
_010		10	Σ ±				П	

Screen Number			Fragment Definition		Frequency Percent
1820	AA	Te	Te	#	0.35
952	AA	Te	X	#	0.53
952	AA	X	As	#	0.53
952	AA	X	В	#	0.53
1360	AA	X	C		26.42
1558	AA	X	M	#	3.13
1391	AA	X *	M	#	6.30
1392	AA	Х –	M	#	6.25
1559	AA	X	N		0.06
1560	AA	X	0		0.51
1561	AA	X	P		0.42
1562	AA	X	S		0.14
952	AA	X	Se	#	0.53
952	AA	X	Si	#	0.53
1817	AA	X	Si		0.15
952	AA	X	Te	#	0.53
1557	AA	X	X		0.06

HA Screens

Hydrogen augmented atom (HA) add hydrogen count specifications to the basic AA description. HA screens give the hydrogen count for the central atom.

HA Screen Definitions

These screens are augmented atoms whose definitions include a specification of the hydrogen attached to the central atom. The HA fragments used as screens are only those that occur relatively frequently, most having carbon, nitrogen or oxygen central atoms.

Screen				Fragment		 Fr	equency
Number				Definition	l		Percent
951	HA		AlH2-1C	.		#	0.07
951	HA		AlH -1C	-1C		#	0.07
951	HA		AsH2-1C			#	0.07
951	HA		AsH -1C	-1C		#	0.07
951	HA		В Н2-1С			#_	0.07
951	HA		B H -1C	-1C		#	0.07
963	HA	^	C H3-1C				57.28
964	HA	2	C H3-1C				37.58
965	HA	3	C H3-1C				22.43
966 967	HA HA	6	C H3-1C C H3-1C				14.08
970	нА НА	O	C H2-2C				5.09
973	HA		C H -3C				0.52
989	HA		C H2*1C	*1C			27.77
990	HA	2	C H2*1C	*1C			22.12
991	HA	3	C H2*1C	*1C			14.50
996	HA		С н *1С	*2C			12.78
997	HA	2	С н *1С	*2C			6.93
1006	HA		C H2-1C	-1C			35.14
1007	HA	2	C H2-1C	-1C			22.54
1008	HA	3	С Н2-1С	-1C			15.40
1009	HA	5	C H2-1C	-1C			9.31
1010	HA	8	C H2-1C	-1C			6.05
1015	HA		C H -1C	-2C			12.02
_1016	HA	2	C H -1C	-2C			5.64
1017	HA	3	C H -1C	-2C			1.54
1018	HA	4	C H -1C	-2C			0.99
1028	HA		С н *1С	*1C	*1C		6.09
1034	HA		C H *1C	*1C	-1C		10.75
1051	HA		C H -1C	-1C	-1C		10.06
1052	HA	2 3	C H -1C	-1C	-1C		3.43
1053 1102	HA HA	3	C H -1C C H *1C	-1C *1C	-1C *1N	#	1.59 3.90
1102	нА НА		C H *1C	*1C	-1N	#	5.12
1111	HA		C H *1C	-1C	*1N		6.44
1126	HA		C H -1C	-1C	-1N		10.60
1127	HA	2	C H -1C	-1C	-1N		4.59
1102	HA	-	C H *1C	*1C	*10	#	3.90
1166	HA		С н *1С	*1C	-10	#	7.88
1167	HA		С Н *1С	-1C	*10	#	6.41
1149	HA		С Н -1С	-1C	-10		8.63
1150	HA	2	C H -1C	-1C	-10		2.01
1102	HA		С Н *1С	*1C	*1S	#	3.90
1166	HA		С Н *1С	*1C	-1S	#	7.88
1167	HA		С Н *1С	-1C	*1S	#	6.41
1164	HA		C H -1C	-1C	-1S		0.62
1078	HA		С Н *1С	*1C	-1X		0.47
1083	HA		С Н -1С	-1C	-1X		0.44
1210	HA	_	C H2*1C	*1N			16.15
1211	HA	2	C H2*1C	*1N			11.14
1214	HA		C H *1C	*2N			14.42
1214	HA		C H *2C	*1N *4N		#	14.42
1214	HA		C H *4C	*4N _1N		Ŧ	14.42 26.67
1235 1236	HA HA	2	C H2-1C C H2-1C	-1N -1N			11.86
1430	пА	4	C HZ-IC	- TIN			TT.00

Caraan			, ,	Frammani		F	
Screen Number				Fragment Definition	1	Fre	equency Percent
1237	HA	3	С Н2-1С	-1N			4.79
1238	HA	4	C H2-1C	-1N			2.51
1239	HA	5	C H2-1C	-1N			1.08
1192	HA	J	C H -1C	-2N		#	5.19
1241	HA		C H -1C	-2N			2.80
1246	HA		C H -2C	-1N			0.53
1251	HA		С н *1С	*1N	*1N	#	1.12
1254	HA		С Н *1С	*1N	-1N	#	1.20
1259	HA		C H -1C	*1N	*1N	#	0.85
1192	HA		C H -1C	-1N	-1N	#	5.19
1260	HA		С Н -1С	-1N	-1N	#	0.96
1251	HA		C H *1C	*1N	*10	#	1.12
1274	HA		С Н *1С	*1N	-10	#	2.43
1254	HA		С Н *1С	-1N	*10	#	1.20
1259	HA		С Н -1С	*1N	*10	#	0.85
1192	HA		С Н -1С	-1N	-10	#	5.19
1260	HA		С Н -1С	-1N	-10	#	0.96
1251	HA		C H *1C	*1N	*1S	#	1.12
1274	HA		C H *1C	*1N	-1S	#	2.43
1254	HA		C H *1C	-1N	*1S	#	1.20
1259 1192	HA		C H -1C C H -1C	*1N -1N	*1S -1S	# #	0.85 5.19
1260	HA HA		C H -1C	-1N -1N	-1S -1S	#	0.96
1198	HA		C H *1C	*1N	-1X	#	0.05
1192	HA		C H -1C	-1N	-1X	#	5.19
1338	HA		C H2*1C	*10	121	#	8.20
1339	HA	2	C H2*1C	*10		#	3.90
1340	HA	_	С н *2С	*10		#	4.19
1341	HA	2	С н *2С	*10		#	0.63
1297	HA		C H2-1C	-10			28.13
1298	HA	2	С Н2-1С	-10			10.61
1299	HA	3	C H2-1C	-10			4.00
1300	HA	4	C H2-1C	-10			2.34
1301	HA	5	C H2-1C	-10			1.26
1192	HA		C H -1C	-20		#	5.19
1304	HA		C H -1C	-20			1.12
1305	HA	2	C H -1C	-20			0.08
1342	HA		С Н -2С	-10		#	0.59
1251	HA		C H *1C	*10	*10	#	1.12
1343	HA		C H *1C	*10	*10	#	0.36
1274	HA		C H *1C	*10	-10	#	2.43
1259 1192	HA		C H -1C C H -1C	*10	*10	#	0.85 5.19
1260	HA HA		C H -1C	-10 -10	-10 -10	# #	0.96
1251	HA		C H *1C	*10	*1S	#	1.12
1343	HA		C H *1C	*10	*1S	#	0.36
1274	HA		C H *1C	*10	-1S	#	2.43
1274	HA		C H *1C	-10	*1S	#	2.43
1259	HA		C H -1C	*10	*1S	#	0.85
1192	HA		C H -1C	-10	-1S	#	5.19
1260	HA		С Н -1С	-10	-1S	#	0.96
1198	HA		С Н *1С	*10	-1X	#	0.05
1192	HA		C H -1C	-10	-1X	#	5.19
1338	HA		C H2*1C	*1S		#	8.20
1339	HA	2	C H2*1C	*1S		#	3.90

Screen			, 9	Fragment			Freque	nev
Number				Definition				cent
1340	HA		С Н *2С	*1S		‡	‡ 4.	.19
1341	HA	2	C H *2C	*1S		‡	‡ 0.	. 63
1332	HA		C H2-1C	-1S				. 20
1192	HA		C H -1C	-2S		‡	‡ 5.	.19
_1334	HA		C H -1C	-2S				.00
1342	HA		C H -2C	-1S				. 59
1251	HA		C H *1C	*1S	*1S			.12
1343	HA		С Н *1С	*1S	*1S			. 36
1274	HA		C H *1C	*1S	-1S			. 43
1259	HA		С Н -1С	*1S	*1S			. 85
1192	HA		С Н -1С	-1S	-1S			.19
1260	HA		C H -1C	-1S	-1S			.96
1198	HA		C H *1C	*1S	-1X			.05
1192	HA		C H -1C	-1S	-1X	1		.19
1186 1187	HA HA	2	C H2-1C C H2-1C	-1X -1X				. 70 . 26
1189	нА НА	4	C H2-1C C H -2C	-1X -1X				. 20 . 15
1192	HA		C H -1C	-1X -1X	-1X			.19
1398	HA		C H3-1N	± 21	111	'	10.	
1399	HA	2	C H3-1N					. 78
1400	HA	3	C H3-1N					.35
1401	HA	4	C H3-1N					.74
1363	HA		C H2-2N			‡		.18
1413	HA		C H2*1N	*1N			ŧ 0.	. 31
1415	HA		C H *1N	*2N		=	‡ 3.	. 87
1415	HA		C H *4N	*4N		‡	‡ 3.	. 87
1363	HA		C H2-1N	-1N		‡	‡ 1.	.18
1377	HA		C H -1N	-2N				. 47
1377	HA		CH-4N	-4N				. 47
1251	HA		C H *1N	*1N	*1N			.12
1254	HA		C H *1N	*1N	-1N			. 20
1196	HA		C H -1N	-1N	-1N			.97
1251	HA		C H *1N	*1N	*10			.12
1274 1254	HA		C H *1N C H *1N	*1N -1N	-10 *10			. 43 . 20
$\frac{1254}{1196}$	HA HA		C H *1N C H -1N	-1N -1N	-10			. 20
1251	HA		C H *1N	*1N	*1S			.12
1274	HA		C H *1N	*1N	-1S			. 43
1254	HA		C H *1N	-1N	*1S			. 20
1196	HA		C H -1N	-1N	-1S			.97
1198	HA		C H *1N	*1N	-1X			.05
1196	HA		C H -1N	-1N	-1X			.97
1413	HA		C H2*1N	*10				. 31
1415	HA		C H *2N	*10		=	‡ 3.	. 87
1363	HA		C H2-1N	-10		‡	‡ 1.	.18
1377	HA		C H -1N	-20				. 47
1377	HA		C H -2N	-10				. 47
1377	HA		C H -4N	-40				. 47
1251	HA		C H *1N	*10	*10			.12
1274	HA		C H *1N	*10	-10			. 43
1254	HA		C H -1N	*10	*10			. 20
1196 1251	HA		C H -1N C H *1N	-10 *10	-10 *1S			.97 .12
$\frac{1251}{1274}$	HA HA		C H *IN C H *1N	*10	-1S			. 12 . 43
1274	нА НА		C H *1N	-10	-15 *1S			.43
14/I	1117		C 11 TIM	10	10	1	. 4.	

Screen			, ,	Fragment	+	Fr	equency
Number				Definition		• • • •	Percent
1254	HA		C H -1N	*10	*1S	#	1.20
1196	HA		C H -1N	-10	-1S	#	0.97
1198	HA		C H *1N	*10	-1X	#	0.05
1196	HA		C H -1N	-10	-1X	#	0.97
1413	HA		C H2*1N	*1S		#	0.31
1415	HA		C H *2N	*1S		#	3.87
1363	HA		C H2-1N	-1S		#	1.18
1377	HA		C H -1N	-2S		#	0.47
1377	HA		C H -2N	-1S		#	0.47
1377	HA		C H -4N	-4S		#	0.47
1251	HA		C H *1N	*1S	*1S	#	1.12
1274	HA		C H *1N	*1S	-1S	#	2.43
1254	HA		C H -1N	*1S	*1S	#	1.20
1196	HA		C H -1N	-1S	-1S	#	0.97
1198	HA		C H *1N C H -1N	*1S	-1X	#	0.05
1196 1363	HA		C H -1N C H2-1N	-1S -1X	-1X	#	0.97
1377	HA HA		C HZ-IN C H -2N	-1X -1X		#	1.18 0.47
1196	HА		C H - 2N C H - 1N	-1X -1X	-1X	#	0.47
1506	HА		C H -1N C H3-10	-17	-17		17.33
1507	HA	2	C H3-10				5.70
1508	HA	3	C H3-10				1.69
1509	HA	4	C H3-10				0.67
1363	HA	-	C H2-20			#	1.18
1550	HA		C H2*10	*10		#	0.80
1363	HA		C H2-10	-10		#	1.18
1377	HA		C H -10	-20		#	0.47
1377	HA		С Н -40	-40		#	0.47
1251	HA		С н *10	*10	*10	#	1.12
1274	HA		С н *10	*10	-10	#	2.43
1196	HA		С Н -10	-10	-10	#	0.97
1251	HA		С Н *10	*10	*1S	#	1.12
1274	HA		С Н *10	*10	-1S	#	2.43
1274	HA		С Н *10	-10	*1S	#	2.43
1196	HA		С Н -10	-10	-1S	#	0.97
1198	HA		С Н *10	*10	-1X	#	0.05
1196	HA		C H -10	-10	-1X	#	0.97
1550	HA		С Н2*10	*1S		#	0.80
1363	HA		C H2-10	-1S		#	1.18
1377	HA		С Н -10	-2S		#	0.47
1377	HA		С Н -20	-1S		#	0.47
1377	HA		С Н -40	-4S		#	0.47
1251	HA		С Н *10	*1S	*1S	#	1.12
1274	HA		C H *10	*1S	-1S	#	2.43
1274	HA		C H -10	*1S	*1S	#	2.43
1196	HA		C H -10	-1S	-1S	#	0.97
1198	HA		C H *10	*1S	-1X	#	0.05
1196	HA		C H -10	-1S	-1X	#	0.97
1363	HA		C H2-10	-1X		#	1.18
1377	HA		C H -20	-1X	1 v	#	0.47
1196 1540	HA		C H -10	-1X	-1X	#	0.97
1540 1541	HA un	2	C H3-1S C H3-1S				2.72 0.39
1363	HA HA	۷	C H3-1S C H2-2S			#	1.18
1550	HА		C H2*1S	*1S		#	0.80
T 2 2 0	пA		C HZT2	TO		#	0.00

Screen			, 9	Eragmani		 Ere	allonev
Number				Fragment Definition		FIG	equency Percent
1363	HA		C H2-1S	-1S		#	1.18
1377	HA		C H -1S	-2S		#	0.47
1377	HA		C H -4S	-4S		#	0.47
1251	HA		C H *1S	*1S	*1S	#	1.12
1274	HA		C H *1S	*1S	-1S	#	2.43
1196	HA		C H -1S	-1S	-1S	#	0.97
1198	HA		C H *1S	*1S	-1X	#	0.05
1196	HA		C H -1S	-1S	-1X	#	0.97
1363	HA		C H2-1S	-1X		#	1.18
1377	HA		C H -2S	-1X		#	0.47
1196	HA		C H -1S	-1X	-1X	#	0.97
1363	HA		C H2-1X	-1X		#	1.18
951	HA		GeH3-1C	1.0		#	0.07
951	HA		GeH2-1C	-1C	1.0	#	0.07
951	HA		GeH -1C N H2-1As	-1C	-1C	#	0.07
1696 1572	HA HA		N HZ-IAS N H -2As			# #	0.03 0.36
1696	нA		N н -2AS N H2-1B			#	0.03
1572	HA		N H -2B			#	0.36
1568	HA		N H2-1C			#	7.57
1569	HA	2	N H2-1C				2.12
1570	HA	3	N H2-1C				0.62
1571	HA	3	N H -2C				0.34
1572	HA		N H -2C			#	0.36
1583	HA		N H *1C	*1C			4.55
1584	HA	2	N H *1C	*1C			0.72
1597	HA		N H -1C	-1C			4.20
1598	HA	2	N H -1C	-1C			0.48
1627	HA		N H *1C	*1N		#	0.67
1633	HA		N H -1C	-1N			0.77
1627	HA		N H *1C	*10		#	0.67
1652	HA		N H -1C	-10		#	0.08
1627	HA		N H *1C	*1S		#	0.67
1652	HA		N H -1C	-1S		#	0.08
1664	HA		N H2-1N				0.41
1572	HA		N H -2N			#	0.36
1696	HA		N H2-10			#	0.03
1572	HA		N H -20			#	0.36
1696	HA		N H2-1P			#	0.03
1572	HA		N H -2P			#	0.36
1696	HA		N H2-1S			#	0.03
1572	HA		N H -2S			#	0.36
1696	HA		N H2-1Se			#	0.03
1572	HA		N H -2Se			#	0.36
1696	HA		N H2-1Si			#	0.03
1572 1606	HA		N H -2Si			#	0.36
1696 1572	HA HA		N H2-1Te N H -2Te			#	0.03 0.36
1737	на НА		N H -21e O H -1As			#	0.36
1737	HA		O H -1AS			#	0.16
1700	HA		O H -1B				20.14
1701	HA	2	O H -1C				7.80
1702	HA	3	O H -1C				3.33
1703	HA	4	O H -1C				1.93
1704	HA	5	O H -1C				1.15

Screen Number		Fragment Definition		equency Percent
1705	HA	6 O H -1C		0.81
1719	HA	O H -1N		0.80
1736	HA	O H -10	#	0.06
1737	HA	O H -1P	#	0.16
1736	HA	O H -1S	#	0.06
1737	HA	O H -1Se	#	0.16
1737	HA	O H -1Si	#	0.16
1737	HA	O H -1Te	#	0.16
951	HA	P H2-1C	#	0.07
951	HA	P H -1C -1C	#	0.07
1771	HA	S H -1C		0.85
951	HA	SbH2-1C	#	0.07
951	HA	SbH -1C -1C	#	0.07
951	HA	SeH -1C	#	0.07
951	HA	SiH3-1C	#	0.07
951	HA	SiH2-1C -1C	#	0.07
951	HA	SiH -1C -1C -1C	#	0.07
951	HA	SnH3-1C	#	0.07
951	HA	SnH2-1C -1C	#	0.07
951	HA	SnH -1C -1C -1C	#	0.07
951	HA	TeH -1C	#	0.07

Twin Augmented Atoms

TW Screens

Twin augmented atom (TW) are for the central atom and one attached atom.

TW Screen Definitions

These screens are augmented atoms whose definitions include the specification of the hydrogen attached to the central atom and to one of its attached atoms. Only a few TW screens are present in the screen dictionary, to describe common occurrences of $-CH_3$, $-NH_2$, -OH, and -SH groups.

Twin	Auam	ented	Atoms

Screen Number					Fragme Definiti	ent ion				Fre	equency Percent
1821	TW		С	*1C	*1C	-1C	Н3				5.04
1822	TW		СН	*1C	*1C	-1C	Н3				2.13
1823	TW		C	*1C	*2C	-1C	Н3				2.48
1824	TW		C	*4C	*4C	-1C	Н3				9.55
1825	TW	2	C	*4C	*4C	-1C	Н3				3.33
1826	TW		С	-1C	-1C	-1C	-	10	Н	#	0.83
1826	TW		C	-1C	-1C	-1C	-	1s	H	#	0.83
1827	TW		C	*1C	*1C	-1N	Н2			#	0.63
1827	TW		C H	*1C	*1C	-1N	Н2			#	0.63
1827	TW		С	*1C	*2C	-1N	Н2			#	0.63
1828	TW		C	*4C	*4C	-1N	Н2				1.65
1829	TW	2	C	*4C	*4C	-1N	Н2				0.46
1830	TW		C H	-1C	-1C	-1N	Н2				3.13
1831	TW		C	*1C	*1C	-10	Н			#	5.45
1831	TW		C H	*1C	*1C	-10	Н			#	5.45
1831	TW		C	*1C	*2C	-10	Η			#	5.45
1832	TW		C	*4C	*4C	-10	Η			#	6.53
1833	TW	2	C	*4C	*4C	-10	Η			#	1.82
1834	TW		C H	_	-1C	-10	Η			#	5.02
1831	TW		C	*1C	*1C	-1S	Н			#	5.45
1831	TW		C H		*1C	-1S	Η			#	5.45
1831	TW		C	*1C	*2C	-1S	Η			#	5.45
1832	TW		C	*4C	*4C	-1S	Η			#	6.53
1833	TW	2	C	*4C	*4C		Η			#	1.82
1834	TW			-1C	-1C	-1S	H			#	5.02
1835	TW			[2-1C	-1N I						2.72
1836	TW		-	[2-1C	-10 I	H				#	6.73
1837	TW	2	-	[2-1C		H				#	2.13
1836	TW			[2-1C		H				#	6.73
1837	TW	2	C H	2-1C	-1S I	H				#	2.13

AS Screens

AS screens describe linear 4- to 6-atom strings. The example screen shown below describes the 5-atom string (NCNCO) indicated in the structure given here. The strings are linear, so that an atom cannot appear twice in any given sequence.

An atom sequence (AS) screen specifies the element values of the atoms in the string and the types of bonds between them (i.e., whether these bonds are ring or chain), as in:

AS screens are the largest type of screen in the dictionary.

AS Screen Definitions

These screens are descriptions of linear sequences of 4, 5, or 6 atoms. Bond types may be specified for the more common AS fragments, but bond values are not used.

As an aid to the searcher, screen dictionary entries for AS screens, are "double posted" -- if the screen definition is not symmetrical, both the "forward" and "reverse" definitions are entries; both definitions for the AS example given here would appear in the dictionary.

Screen Number				Fra Def	gment	t 1			Fre	equency Percent
331	AS	As	С	С	As			:	#	1.39
331	AS	As	С	С	В				#	1.39
331	AS	As	С	С	Br			:	#	1.39
134	AS	As	С	С	С			:	#	4.57
311	AS	As	С	С	С	As			#	1.14
311	AS	As	С	С	С	В		:	#	1.14
311	AS	As	С	С	C	Br			#	1.14
291	AS	As	С	C	C	С	As		#	0.79
291	AS	As	С	C	С	С	В		#	0.79
291	AS	As	C	C	C	C	Br		#	0.79
47	AS	As	C	C	C	C	C		#	3.83
291	AS	As	C	C	C	C	Cl		#	0.79
291 291	AS AS	As	C C	C C	C C	C C	F I		#	0.79 0.79
291	AS AS	As As	C	C	C	C	N		# #	0.79
291	AS AS	As	C	C	C	C	0		<u>"</u> #	0.79
291	AS	As	C	C	C	C	P		#	0.79
291	AS	As	C	C	C	C	S		#	0.79
291	AS	As	C	C	C	C	Se		#	0.79
291	AS	As	C	C	C	C	Si		#	0.79
291	AS	As	С	С	С	С	Te		#	0.79
311	AS	As	С	С	С	Cl		:	#	1.14
311	AS	As	С	С	С	F		:	#	1.14
311	AS	As	С	С	C	I		:	#	1.14
311	AS	As	С	С	С	N			#	1.14
302	AS	As	С	С	C	N	As		#	0.44
302	AS	As	С	C	C	N	В		#	0.44
302	AS	As	С	C	C	N	Р		#	0.44
302	AS	As	C	C	C	N	Se		#	0.44
302	AS	As_	C	C C	C	N	Si		#	0.44
302	AS AS	As	C	C	C	N	Te		#	0.44 1.14
311	AS AS	As As	C	C	C	0	As		# #	2.38
310	AS AS	As	C	C	C	0	AS B		# #	2.38
310	AS	As	C	C	C	0	P		#	2.38
310	AS	As			C	0	Se		<u>''</u> #	2.38
310	AS	As	C	C	C	0	Si		#	2.38
310	AS	As	С	C	C	0	Te		#	2.38
311	AS	As	С	С	C	P			#	1.14
311	AS	As	С	С	C	S		:	#	1.14
310	AS	As	С	С	С	S	As	:	#	2.38
310	AS	As	С	С	C	S	В		#	2.38
310	AS	As	С	С	C	S	P		#	2.38
310	AS	As	С	C	С	S	Se		#	2.38
310	AS	As	C	C	C	S	Si		#	2.38
310	AS	As	C	C	C	S	Te		#	2.38
311	AS	As	C	C	C	Se			#	1.14
311	AS	As	С	C	C	Si			#	1.14
311 331	AS	As	C C	C C	C Cl	Te			# #	1.14 1.39
331	AS AS	As As	C	C	F				# #	1.39
331	AS AS	As As	C	C	I				# #	1.39
331	AS	As	C	C	N				# #	1.39
302	AS	As	C	C	N	As			#	0.44
302	AS	As	C	C	N	В			#	0.44
									-	

Screen Number				Fra Def	igment finition			Fr	equency Percent
302	AS	As	С	С	N	P		#	0.44
302	AS	As	С	С	N	Se		#	0.44
302	AS	As	С	С	N	Si		#	0.44
302	AS	As	С	С	N	Te		#	0.44
331	AS	As	С	С	0			#	1.39
310	AS	As	С	C	0	As		#	2.38
310	AS	As	С	С	0	В		#	2.38
310	AS	As	С	C	0	P		#	2.38
310	AS	As	С	C	0	Se		#	2.38
310	AS	As	C	C	0	Si		#	2.38
310	AS	As	C	C	0	Te		#	2.38
331	AS	As	C	C	P			#	1.39
331 310	AS AS	As	C C	C C	S S	7\ ~		#	1.39 2.38
310	AS AS	As As	C	C	s S	As B		# #	2.38
310	AS AS	As	C	C	S	P		#	2.38
310	AS	As	C	C	S	Se		#	2.38
310	AS	As	C	C	S	Si		#	2.38
310	AS	As	C	C	S	Te		#	2.38
331	AS	As	C	C	Se			#	1.39
331	AS	As	С	С	Si			#	1.39
331	AS	As	С	C	Te			#	1.39
302	AS	As	N	С	С	As		#	0.44
302	AS	As	N	С	C	В		#	0.44
302	AS	As	N	С	С	Br		#	0.44
302	AS	As	N	C	С	C	As	#	0.44
302	AS	As	N	C	С	C	В	#	0.44
302	AS	As	N	С	С	C	Br	#	0.44
302	AS	As	N	C	C	C	Cl	#	0.44
302	AS	As_	N	C	C	C	F	#	0.44
302	AS AS	As	N	C	C	C	I N	#	0.44
302	AS AS	As As	N N	C	C	C	O	# #	0.44
302	AS AS	As	N	C	C	C	P	#	0.44
302	AS	As	N	C	C	C	S	#	0.44
302	AS	As	N	C		C	Se	#	0.44
302	AS	As	N	C	C	C	Si	#	0.44
302	AS	As	N	C	C	C	Te	#	0.44
302	AS	As	N	С	С	Cl		#	0.44
302	AS	As	N	С	С	F		#	0.44
302	AS	As	N	С	С	I		#	0.44
302	AS	As	N	C	C	N		#	0.44
302	AS	As	N	С	C	0		#	0.44
302	AS	As	N	C	C	Р		#	0.44
302	AS	As	N	C	C	S		#	0.44
302	AS	As	N	C	C	Se		#	0.44
302	AS	As	N	C	С	Si T-		#	0.44
302	AS	As	N	C	С	Te		#	0.44
310	AS	As	0	C C	C C	As		#	2.38 2.38
310 310	AS AS	As	0	C	C	B Br		# #	2.38
310	AS AS	As As	0	C	C	C	As	#	2.38
310	AS	As	0	C	C	C	B	#	2.38
310	AS	As	0	C	C	C	Br	#	2.38
310	AS	As	0	C	C	C	Cl	#	2.38

Screen Number				Fra De	gment finition	: 		Fr	equency Percent
310	AS	As	0	С	С	С	F	#	2.38
310	AS	As	0	C	C	C	I	#	2.38
310	AS	As	0	C	C	C	N	#	2.38
310	AS	As	0	C	C	C	0	#	2.38
310	AS	As	0	С	С	С	P	#	2.38
310	AS	As	0	С	С	С	S	#	2.38
310	AS	As	0	C	C	C	Se	#	2.38
310	AS	As	0	C	C	C	Si	#	2.38
310	AS	As	0	C	C	C	Te	#	2.38
310	AS	As	0	С	С	Cl		#	2.38
310	AS	As	0	C	C	F		#	2.38
310	AS	As	0	C	C	I		#	2.38
310	AS	As	0	C	C	N		#	2.38
310	AS	As	0	C	С	0		#	2.38
310	AS	As	0	С	С	P		#	2.38
310	AS	As	0	C	C	S		#	2.38
310	AS	As	0	C	C	Se		#	2.38
310	AS	As	0	C	C	Si		#	2.38
310	AS	As	0	C	C	Te		#	2.38
310	AS	As	S	C	C	As		#	2.38
310	AS	As	S	C	C	В		#	2.38
310	AS	As	S	C	C	Br	_	#	2.38
310	AS	As	S	C	C	C	As	#	2.38
310	AS	As	S	C	C	C	В	#	2.38
310	AS AS	As	S		C	<u>C</u>	Br	#	2.38
310	AS	As	S	С	C	C	Cl	#	2.38
310	AS	As	S	С	C	C C	F	#	2.38
310 310	AS AS	As	S S	C C	C C	C	I	# #	2.38
310	AS AS	As As	S	C	C	C	N O	#	2.38
310	AS AS	As	S		C	C	 	# #	2.38
310	AS	As	S	C	C	C	S	#	2.38
310	AS	As	S	C	C	C	Se	#	2.38
310	AS	As	S	C	C	C	Si	#	2.38
310	AS	As	S	C	C	C	Te	#	2.38
310	AS	As As	S	C	C	Cl	10	#	2.38
310	AS	As	S	C	C	F		#	2.38
310	AS	As	S	C	C	I		#	2.38
310	AS	As	S	C	C	N		#	2.38
310	AS	As	S	C	C	0		#	2.38
310	AS	As	S	C	C	 P		#	2.38
310	AS	As	S	C	С	S		#	2.38
310	AS	As	S	C	C	Se		#	2.38
310	AS	As	S	C	C	Si		#	2.38
310	AS	As	S	C	C	Te		#	2.38
331	AS	В	С	С	As			#	1.39
331	AS	В	С	C	В			#	1.39
331	AS	В	С	C	Br			#	1.39
134	AS	В	С	C	C			#	4.57
311	AS	В	С	C	C	As		#	1.14
311	AS	В	С	С	С	В		#	1.14
311	AS	В	С	C	C	Br		#	1.14
291	AS	В	C	C	C	C	As	#	0.79
291	AS	В	C	C	C	C	В	#	0.79
291	AS	В	С	C	C	C	Br	#	0.79

Screen Number				Fi De	ragmer efinitio	nt n			Frequency Percent
47	AS	В	С	С	С	С	С	#	3.83
291	AS	В		C	С	C	Cl	#	0.79
291	AS	В	С	С	С	С	F	#	0.79
291	AS	В	С	C	C	С	I	#	0.79
291	AS	В	С	C	C	C	N	#	0.79
291	AS	В	С	С	С	С	0	#	0.79
291	AS	В	С	C	C	С	P	#	0.79
291	AS	В	С	C	C	С	S	#	0.79
291	AS	В		С	C	С	Se	#	0.79
291	AS	В		С	С	С	Si	#	0.79
291	AS	В		C	C	C	Te	#	0.79
311	AS	В		C	C	Cl		#	1.14
311	AS	В		C	C	F		#	1.14
311 311	AS	B B		C C	C	I		#	$1.14 \\ 1.14$
302	AS AS	<u>в</u> В			C	N N	As	# #	
302	AS	В		C	C	N	B	#	0.44
302	AS	В		C	C	N	P	#	0.44
302	AS	В		C	C	N	Se	#	0.44
302	AS	В		C	C	N	Si	#	0.44
302	AS	В		C	C	N	Te	#	0.44
311	AS	В		С	С	0		#	1.14
310	AS	В	С	С	С	0	As	#	2.38
310	AS	В	С	C	C	0	В	#	2.38
310	AS	В	С	С	С	0	P	#	2.38
310	AS	В		С	С	0	Se	#	2.38
310	AS	В		C	C	0	Si	#	2.38
310	AS	В		С	С	0	Te	#	2.38
311	AS	В		C	С	Р		#	1.14
311	AS	В		C	C	S		#	1.14
310	AS	В		C	C	S	As	#	2.38
310	AS	В		C C	C	S	В	#	2.38 2.38
310 310	AS AS	B B		C	C C	S S	P Se	#	2.38
310	AS AS	В		C	C	S	Si	#	2.38
310	AS	B		C	C	S	Te	#	2.38
311	AS	В		C	C	Se	10	#	1.14
311	AS	В		C	C	Si		#	1.14
311	AS	В		C	C	Te		#	1.14
331	AS	В		C	Cl			#	1.39
331	AS	В	С	С	F			#	1.39
331	AS	В	С	C	I			#	1.39
331	AS	В	С	C	N			#	1.39
302	AS	В		C	N	As		#	0.44
302	AS	В		С	N	В		#	0.44
302	AS	В		C	N	Р		#	0.44
302	AS	В		C	N	Se		#	0.44
302	AS	В		C	N	Si		#	0.44
302	AS	В		C	N	Te		#	0.44
331	AS	В		C	0	7. ~		#	1.39
310 310	AS AS	B B		C C	0	As B		#	2.38
310	AS AS	В		C	0	В Р		#	2.38
310	AS	В		C	0	Se		#	2.38
310	AS	В		C	0	Si		#	2.38
			•	_	-			"	

310	Screen Number				F	ragmer efinitio	nt n		Fr	equency Percent
331	310	AS	В	C	С	0	Te		#	2.38
310	331				С					
310	331	AS	В	C	С	S			#	1.39
310	310	AS	В	C	С	S	As		#	2.38
310	310	AS	В	C	С	S	В			2.38
310	310	AS	В	C	С	S	P		#	
331		AS	В	C	С	S				
331		AS	P		_	S	Si			
331			В							
331										
302 AS B N C C B B # 0.44 302 AS B N C C B B # 0.44 302 AS B N C C B B # 0.44 302 AS B N C C B B # 0.44 302 AS B N C C B B # 0.44 302 AS B N C C C B # 0.44 302 AS B N C C C B B # 0.44 302 AS B N C C C B B # 0.44 302 AS B N C C C B B # 0.44 302 AS B N C C C B B # 0.44 302 AS B N C C C B B # 0.44 302 AS B N C C C B B # 0.44 302 AS B N C C C B F # 0.44 302 AS B N C C C C I # 0.44 302 AS B N C C C C I # 0.44 302 AS B N C C C C I # 0.44 302 AS B N C C C C N # 0.44 302 AS B N C C C C N # 0.44 302 AS B N C C C C N # 0.44 302 AS B N C C C C D # 0.44 302 AS B N C C C C B # 0.44 302 AS B N C C C C B # 0.44 302 AS B N C C C C B # 0.44 302 AS B N C C C C B # 0.44 302 AS B N C C C C B # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C B B # 0.44 302 AS B N C C C B B # 0.44 302 AS B N C C C B B # 0.44 302 AS B N C C C B B # 0.44 302 AS B N C C C B B # 0.44 302 AS B N C C C B B # 0.44 302 AS B N C C C B B # 0.44 302 AS B N C C C C B # 0.44 302 AS B N C C C C B # 0.44 302 AS B N C C C C B # 0.44 302 AS B N C C C C B # 0.44 302 AS B N C C C C B # 0.44 302 AS B N C C C C B # 0.44 302 AS B N C C C C B # 0.44 302 AS B N C C C C S # 0.44 302 AS B N C C C C S # 0.44 302 AS B N C C C C C B # 0										
302										
302 AS										
302										
302 AS B N C C C B # 0.44 302 AS B N C C C Br # 0.44 302 AS B N C C C F # 0.44 302 AS B N C C C I # 0.44 302 AS B N C C C N # 0.44 302 AS B N C C C N # 0.44 302 AS B N C C C P # 0.44 302 AS B N C C C Se # 0.44 302 AS B N C C C Se # 0.44 302 AS B N C								7\ ~		
302 AS B N C C C Br # 0.444 302 AS B N C C C T # 0.444 302 AS B N C C C I # 0.444 302 AS B N C C C N # 0.444 302 AS B N C C C N # 0.444 302 AS B N C C C P # 0.444 302 AS B N C C C S # 0.444 302 AS B N C C C Se # 0.444 302 AS B N C C Te # 0.444 302 AS B N C <										
302 AS B N C C C C F # 0.44 302 AS B N C C C F # 0.44 302 AS B N C C C N # 0.44 302 AS B N C C C N # 0.44 302 AS B N C C C P # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C T # 0.44 302 AS B N C										
302										
302										
302 AS B N C C C N # 0.44 302 AS B N C C C P # 0.44 302 AS B N C C C P # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C Se # 0.44 302 AS B N C C C Te # 0.44 302 AS B N C C C Te # 0.44 302 AS B N C C I # 0.44 302 AS B N C C N # 0.44 302 AS B N C C S										
302 AS B N C C C O # 0.44 302 AS B N C C C P # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C Si # 0.44 302 AS B N C C C Te # 0.44 302 AS B N C C C Te # 0.44 302 AS B N C C F # 0.44 302 AS B N C C N # 0.44 302 AS B N C C N # 0.44 302 AS B N C C S #										
302 AS B N C C C P # 0.44 302 AS B N C C C S # 0.44 302 AS B N C C C Se # 0.44 302 AS B N C C C Te # 0.44 302 AS B N C C Te # 0.44 302 AS B N C C Te # 0.44 302 AS B N C C I # 0.44 302 AS B N C C N # 0.44 302 AS B N C C P # 0.44 302 AS B N C C Se # 0.44										
302 AS B N C C C S # 0.44 302 AS B N C C C Se # 0.44 302 AS B N C C C Te # 0.44 302 AS B N C C C Te # 0.44 302 AS B N C C C Te # 0.44 302 AS B N C C I # 0.44 302 AS B N C C N # 0.44 302 AS B N C C N # 0.44 302 AS B N C C S # 0.44 302 AS B N C C Se # 0.44										
302 AS B N C C C Se # 0.44 302 AS B N C C C Si # 0.44 302 AS B N C C C Te # 0.44 302 AS B N C C F # 0.44 302 AS B N C C T # 0.44 302 AS B N C C I # 0.44 302 AS B N C C N # 0.44 302 AS B N C C P # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Se # 0.44 3										
302 AS B N C C C Te # 0.44 302 AS B N C C C Te # 0.44 302 AS B N C C Cl H 0.44 302 AS B N C C F # 0.44 302 AS B N C C N # 0.44 302 AS B N C C N # 0.44 302 AS B N C C O # 0.44 302 AS B N C C P # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Te # 0.44 310 <t< td=""><td></td><td></td><td>В</td><td>N</td><td></td><td></td><td>С</td><td></td><td></td><td></td></t<>			В	N			С			
302 AS B N C C C Te # 0.44 302 AS B N C C C1 # 0.44 302 AS B N C C F # 0.44 302 AS B N C C N # 0.44 302 AS B N C C N # 0.44 302 AS B N C C O # 0.44 302 AS B N C C P # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Te # 0.44 310 AS <	302	AS	В	N	С	С	С	Si		0.44
302 AS B N C C F # 0.44 302 AS B N C C I # 0.44 302 AS B N C C N # 0.44 302 AS B N C C P # 0.44 302 AS B N C C P # 0.44 302 AS B N C C S # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Si # 0.44 302 AS B N C C Si # 0.44 302 AS B N C C Te # 0.44 302 AS B N C C AS # 2.38 310 AS B	302		В	N	С	С	C	Te		0.44
302 AS B N C C I # 0.44 302 AS B N C C N # 0.44 302 AS B N C C O # 0.44 302 AS B N C C P # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Si # 0.44 302 AS B N C C Te # 0.44 310 AS B O C C AS # 2.38 310 AS B <	302	AS	В	N	С	C	Cl		#	0.44
302 AS B N C C N # 0.44 302 AS B N C C O # 0.44 302 AS B N C C P # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Si # 0.44 302 AS B N C C Te # 0.44 302 AS B N C C Te # 0.44 310 AS B O C C As # 2.38 310 AS B O C C Br # 2.38 310 AS B		AS	В	N			F			
302 AS B N C C O # 0.44 302 AS B N C C P # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Si # 0.44 302 AS B N C C Te # 0.44 302 AS B N C C Te # 0.44 302 AS B N C C Te # 0.44 310 AS B O C C As # 2.38 310 AS B O C C Br # 2.38 310 AS B O C C C Br # 2.38 310 AS		AS	В	N	С	С	I		#	
302 AS B N C C P # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Te # 0.44 302 AS B N C C Te # 0.44 302 AS B N C C Te # 0.44 302 AS B N C C Te # 0.44 302 AS B N C C Te # 0.44 310 AS B O C C AS # 2.38 310 AS B O C C C AS # 2.38 310 AS B O C C C F # 2.38 310		AS	В	N			N			
302 AS B N C C S # 0.44 302 AS B N C C Se # 0.44 302 AS B N C C Si # 0.44 302 AS B N C C Te # 0.44 310 AS B O C C As # 2.38 310 AS B O C C B # 2.38 310 AS B O C C B # 2.38 310 AS B O C C C As # 2.38 310 AS B O C C C B # 2.38 310 AS B O C C C T # 2.38 3			В							
302 AS B N C C Se # 0.44 302 AS B N C C Si # 0.44 302 AS B N C C Te # 0.44 310 AS B O C C AS # 2.38 310 AS B O C C B # 2.38 310 AS B O C C C AS # 2.38 310 AS B O C C C AS # 2.38 310 AS B O C C C B # 2.38 310 AS B O C C C B # 2.38 310 AS B O C C C T # 2.38 310 AS B O C C C N # <td></td>										
302 AS B N C C Si # 0.44 302 AS B N C C Te # 0.44 310 AS B O C C As # 2.38 310 AS B O C C Br # 2.38 310 AS B O C C C As # 2.38 310 AS B O C C C B # 2.38 310 AS B O C C C Br # 2.38 310 AS B O C C C Br # 2.38 310 AS B O C C C T # 2.38 310 AS B O C C C N # 2.38 310 AS B O C C C D <td></td>										
302 AS B N C C Te # 0.44 310 AS B O C C AS # 2.38 310 AS B O C C B # 2.38 310 AS B O C C C AS # 2.38 310 AS B O C C C B # 2.38 310 AS B O C C C B # 2.38 310 AS B O C C C B # 2.38 310 AS B O C C C C I # 2.38 310 AS B O C C C T # 2.38 310 AS B O C C C N # 2.38 310 AS B O C C										
310 AS B O C C AS # 2.38 310 AS B O C C B # 2.38 310 AS B O C C C AS # 2.38 310 AS B O C C C B # 2.38 310 AS B O C C C B # 2.38 310 AS B O C C C C C II # 2.38 310 AS B O C C C T # 2.38 310 AS B O C C C I # 2.38 310 AS B O C C C N # 2.38 310 AS B O C C C P # 2.38 310 AS B O										
310 AS B O C C B # 2.38 310 AS B O C C Br # 2.38 310 AS B O C C C B # 2.38 310 AS B O C C C Br # 2.38 310 AS B O C C C C C I # 2.38 310 AS B O C C C T # 2.38 310 AS B O C C C I # 2.38 310 AS B O C C C N # 2.38 310 AS B O C C C P # 2.38 310 AS B O C										
310 AS B O C C Br # 2.38 310 AS B O C C C AS # 2.38 310 AS B O C C C Br # 2.38 310 AS B O C C C C C T # 2.38 310 AS B O C C C T # 2.38 310 AS B O C C C I # 2.38 310 AS B O C C C N # 2.38 310 AS B O C C C N # 2.38 310 AS B O C C C P # 2.38 310 AS B O C C C S # 2.38 310 AS B										
310 AS B O C C C AS # 2.38 310 AS B O C C C B # 2.38 310 AS B O C C C C C C C C C C C C C C C C T # 2.38 310 AS B O C C C T # 2.38 310 AS B O C C C N # 2.38 310 AS B O C C C D # 2.38 310 AS B O C C C D # 2.38 310 AS B O C C C S # 2.38 310 AS B O C C C S # 2.38 310 AS B										
310 AS B O C C C B # 2.38 310 AS B O C C C Br # 2.38 310 AS B O C C C C T # 2.38 310 AS B O C C C I # 2.38 310 AS B O C C C N # 2.38 310 AS B O C C C D # 2.38 310 AS B O C C C P # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C C Se # 2.38 310 AS B								7\ <		
310 AS B O C C C Br # 2.38 310 AS B O C C C C H 2.38 310 AS B O C C C F # 2.38 310 AS B O C C C N # 2.38 310 AS B O C C C O # 2.38 310 AS B O C C C P # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C C Se # 2.38 310 AS B O										
310 AS B O C C C C C C C C C C C C C C C F # 2.38 310 AS B O C C C I # 2.38 310 AS B O C C C O # 2.38 310 AS B O C C C P # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C C Si # 2.38 310 AS B O										
310 AS B O C C C F # 2.38 310 AS B O C C C I # 2.38 310 AS B O C C C N # 2.38 310 AS B O C C C P # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C C Si # 2.38 310 AS B O C C C Te # 2.38 310 AS B O C C C Te # 2.38										
310 AS B O C C C I # 2.38 310 AS B O C C C N # 2.38 310 AS B O C C C P # 2.38 310 AS B O C C C S # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C C Si # 2.38 310 AS B O C C C Te # 2.38										
310 AS B O C C C N # 2.38 310 AS B O C C C O # 2.38 310 AS B O C C C P # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C C Si # 2.38 310 AS B O C C Te # 2.38										
310 AS B O C C C O # 2.38 310 AS B O C C C P # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C Si # 2.38 310 AS B O C C Te # 2.38 310 AS B O C C Te # 2.38										
310 AS B O C C C P # 2.38 310 AS B O C C C S # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C C Si # 2.38 310 AS B O C C Te # 2.38										
310 AS B O C C C S # 2.38 310 AS B O C C C Se # 2.38 310 AS B O C C Si # 2.38 310 AS B O C C Te # 2.38										
310 AS B O C C C Se # 2.38 310 AS B O C C C Si # 2.38 310 AS B O C C Te # 2.38	310	AS	В	0	С	С	С	S		
310 AS B O C C C Te # 2.38		AS	B	0				Se	#	2.38
		AS	В	0				Si		
310 AS B O C C Cl # 2.38								Te		
	310	AS	Е	0	С	С	Cl		#	2.38

Screen Number		Fragment Definition	Fr	equency Percent
310	AS	B O C C F	#	2.38
310	AS	B O C C I	#	2.38
310	AS	B O C C N	#	2.38
310	AS	B O C C O	#	2.38
310	AS	B O C C P	#	2.38
310	AS	B O C C S	#	2.38
310	AS	B O C C Se	#	2.38
310	AS	B O C C Si	#	2.38
310	AS	B O C C Te	#	2.38
310	AS	B S C C As	#	2.38
310	AS	B S C C B	#	2.38
310	AS	B S C C Br	#	2.38
310	AS	B S C C C As	#	2.38
310	AS	B S C C C B	#	2.38
310	AS	B S C C Br	#	2.38
310	AS	B S C C C Cl	#	2.38
310	AS	B S C C C F	#	2.38
310	AS	B S C C C I	#	2.38
310	AS	B S C C C N	#	2.38
310 310	AS AS	B S C C C O B S C C C P	# #	2.38
310	AS AS	B S C C C S	#	2.38
310	AS	B S C C C Se	#	2.38
310	AS	B S C C C Si	#	2.38
310	AS	B S C C C Te	#	2.38
310	AS	B S C C Cl	#	2.38
310	AS	B S C C F	#	2.38
310	AS	B S C C I	#	2.38
310	AS	B S C C N	#	2.38
310	AS	B S C C O	#	2.38
310	AS	B S C C P	#	2.38
310	AS	B S C C S	#	2.38
310	AS	B S C C Se	#	2.38
310	AS	B S C C Si	#	2.38
310	AS	B S C C Te	#	2.38
331	AS	Br C C As	#	1.39
331	AS	Br C C B	#	1.39
312	AS	Br- C * C - Br	#	2.00
313	AS	Br- C - C - Br	#	0.90
88	AS	Br- C * C - C	#	4.80
87	AS	Br- C - C * C	#	3.30
89	AS	Br- C - C - C	#	2.86
311	AS	Br C C C As	#	1.14
311	AS	Br C C C B	#	1.14
292	AS	Br- C * C * C - Br	#	3.37
293	AS	Br- C * C - C - Br	#	0.20
293 294	AS	Br- C - C * C - Br Br- C - C - C - Br	#	0.20
294 49	AS AS	Br- C - C - C - Br Br- C * C * C - C	# #	0.74
49 6	AS AS	Br- C * C - C * C	#	4.52 7.08
21	AS AS	Br- C * C - C * C	#	1.70
50	AS AS	Br- C * C - C - C	#	1.14
48	AS AS	Br- C - C - C * C	#	0.77
51	AS	Br - C - C - C	#	1.49
291	AS	Br C C C C As	#	0.79
	~		- 11	

Screen Number		Fragment Definition	Fr	equency Percent
291	AS	Br C C C B	#	0.79
283	AS	Br- C * C * C * C - Br	#	1.11
284	AS	Br- C - C - C - Br	#	0.36
22	AS	Br- C * C * C * C - C	#	5.91
14	AS	Br- C * C - C - C * C	#	3.46
21	AS	Br- C * C - C - C * C	#	1.70
23	AS	Br- C - C - C - C - C	#	0.96
283	AS	Br- C * C * C * C - Cl	#	1.11
284	AS	Br-C-C-C-C-Cl	#	0.36
283	AS	Br- C * C * C * C - F	#	1.11
284	AS	Br- C - C - C - F	#	0.36
283	AS	Br- C * C * C * C - I	#	1.11
284	AS	Br- C - C - C - I	#	0.36
285	AS	Br C C C N	#	7.02
286	AS	Br- C * C * C * C - N	#	2.55
287	AS	Br- C * C * C - C - N	#	1.22
288	AS	Br C C C C O	#	6.39
289	AS	Br- C * C * C * C - O	#	3.00
290	AS	Br- C * C * C - C - O	#	1.30
291	AS	Br C C C P	#	0.79
288	AS	Br C C C C S	#	6.39
289	AS	Br- C * C * C * C - S	#	3.00
290	AS	Br- C * C * C - C - S	#	1.30
291	AS	Br C C C Se	#	0.79
291	AS	Br C C C Si	#	0.79
291	AS	Br C C C Te	#	0.79
292	AS	Br- C * C * C - Cl	#	3.37
293	AS	Br- C * C - C - Cl	#	0.20
293	AS	Br- C - C * C - Cl	#	0.20
294	AS	Br- C - C - Cl	#	0.74
292	AS	Br- C * C * C - F	#	3.37
293	AS	Br- C * C - C - F	#	0.20
293	AS	Br-C-C*C-F	#	0.20
294	AS	Br-C-C-F	#	0.74
292	AS	Br- C * C * C - I	#	3.37
293	AS	Br- C * C - C - I	#	0.20
293	AS	Br- C - C * C - I	#	0.20
294	AS	Br-C-C-C-I	#	0.74
295	AS	Br C C C N	#	5.58
296	AS	Br- C * C * C * N	#	1.36
297	AS	Br- C * C * C - N	#	1.96
298	AS	Br- C * C - C - N	#	1.26
299	AS	Br- C - C - C - N	#	0.37
302	AS	Br C C C N As	#	0.44
302	AS	Br C C C N B	#	0.44
300	AS	Br C C C N N	#	0.84
301	AS	Br C C C N O	#	0.55
302	AS	Br C C C N P	#	0.44
301	AS	Br C C C N S	#	0.55
302	AS	Br C C C N Se	#	0.44
302	AS	Br C C C N Si	#	0.44
302	AS	Br C C C N Te	#	0.44
303	AS	Br C C C O	#	5.10
304	AS	Br- C * C * C * O	#	0.64
305	AS	Br- C * C * C - O	#	1.72

Screen Number		Fragment Definition	Fr	equency Percent
306	AS	Br- C * C - C - O	#	1.61
307	AS	Br- C - C - C - O	#	0.86
310	AS	Br C C C O As	#	2.38
310	AS	Br C C C O B	#	2.38
256	AS	Br C C C O C	#	3.02
308	AS	Br C C C O N	#	0.26
309	AS	Br C C C O O	#	0.37
310	AS	Br C C C O P	#	2.38
309	AS	Br C C C O S	#	0.37
310	AS	Br C C C O Se	#	2.38
310	AS	Br C C C O Si	#	2.38
310	AS	Br C C C O Te	#	2.38
311	AS	Br C C C P	#	1.14
303	AS	Br C C C S	#	5.10
304	AS	Br- C * C * C * S	#	0.64
305	AS	Br- C * C * C - S	#	1.72
306	AS	Br- C * C - C - S	#	1.61
307	AS	Br- C - C - C - S	#	0.86
310	AS	Br C C C S As	#	2.38
310	AS	Br C C C S B Br C C C S C	#	2.38
256	AS		#	3.02
308	AS	Br C C C S N	#	0.26
309 310	AS AS	Br C C C S O Br C C C S P	# #	2.38
309	AS AS		#	0.37
310	AS AS	Br C C C S S Br C C C S Se	<u>#</u>	2.38
310	AS	Br C C C S Si	#	2.38
310	AS	Br C C C S Te	#	2.38
311	AS	Br C C C Se	#	1.14
311	AS	Br C C C Si	#	1.14
311	AS	Br C C C Te	#	$\frac{1.11}{1.14}$
312	AS	Br- C * C - Cl	#	2.00
313	AS	Br- C - C - Cl	#	0.90
312	AS	Br- C * C - F	#	2.00
313	AS	Br- C - C - F	#	0.90
312	AS	Br- C * C - I	#	2.00
313	AS	Br- C - C - I	#	0.90
314	AS	Br-C * C * N	#	1.48
315	AS	Br- C * C - N	#	2.34
316	AS	Br- C - C * N	#	0.64
317	AS	Br- C - C - N	#	1.12
302	AS	Br C C N As	#	0.44
302	AS	Br C C N B	#	0.44
212	AS	Br C C N C	#	4.26
21	AS	Br- C * C - N - C * C	#	1.70
102	AS	Br- C * C - N - C * C	#	0.92
318	AS	Br C C N C N	#	1.48
319	AS	Br C C N C O	#	1.84
320	AS	Br- C * C - N - C - O	#	0.72
319	AS	Br C C N C S	#	1.84
320	AS	Br- C * C - N - C - S	#	0.72
321	AS	Br C C N N	#	0.82
322	AS	Br C C N O	#	0.39
302	AS	Br C C N P	#	0.44
322	AS	Br C C N S	#	0.39

Screen Number		Fragment Definition	Fr	equency Percent
302	AS	Br C C N Se	#	0.44
302	AS	Br C C N Si	#	0.44
302	AS	Br C C N Te	#	0.44
323	AS	Br- C * C * O	#	0.61
324	AS	Br- C * C - O	#	2.95
325	AS	Br- C - C * O	#	0.45
326	AS	Br- C - C - O	#	2.53
310	AS	Br C C O As	#	2.38
310	AS	Br C C O B	#	2.38
265	AS	Br- C * C - O - C	#	1.77
186	AS	Br C C O C C Br- C * C - O - C * C	#	2.66
21 126	AS AS	Br- C * C - O - C * C Br- C * C - O - C * C	# #	1.70 2.20
327	AS AS	Br C C O C N	#	0.27
327	AS AS	Br C C O C O	#	0.27
328	AS	Br C C O C S	#	0.64
329	AS	Br C C O N	#	0.30
330	AS	Br C C O O	#	0.43
310	AS	Br C C O P	#	2.38
330	AS	Br C C O S	#	0.43
310	AS	Br C C O Se	#	2.38
310	AS	Br C C O Si	#	2.38
310	AS	Br C C O Te	#	2.38
331	AS	Br C C P	#	1.39
323	AS	Br- C * C * S	#	0.61
324	AS	Br- C * C - S	#	2.95
325	AS	Br- C - C * S	#	0.45
326	AS	Br- C - C - S	#	2.53
310	AS	Br C C S As	#	2.38
310 265	AS	Br C C S B Br- C * C - S - C	# #	2.38
⊿65 186	AS AS			1.77 2.66
21	AS AS	Br C C S C C Br- C * C - S - C * C	# #	1.70
126	AS AS	Br- C * C - S - C * C	#	2.20
327	AS	Br C C S C N	#	0.27
328	AS	Br C C S C O	#	0.64
328	AS	Br C C S C S	#	0.64
329	AS	Br C C S N	#	0.30
330	AS	Br C C S O	#	0.43
310	AS	Br C C S P	#	2.38
330	AS	Br C C S S	#	0.43
310	AS	Br C C S Se	#	2.38
310	AS	Br C C S Si	#	2.38
310	AS	Br C C S Te	#	2.38
331	AS	Br C C Se	#	1.39
331	AS	Br C C Si	#	1.39
331	AS	Br C C Te	#	1.39
332	AS	Br C N C Br	#	0.12
332 332	AS AS	Br C N C Cl Br C N C F	# #	0.12 0.12
332	AS AS	Br C N C F	#	0.12
333	AS AS	Br C N C N	#	0.12
334	AS	Br C N C O	#	0.18
334	AS	Br C N C S	#	0.18
335	AS	Br C N O	#	0.09

Screen Number		Fragment Definition	F	requency Percent
335	AS	Br C N S	#	0.09
336	AS	Br C O O	#	0.37
336	AS	Br C O S	#	0.37
336	AS	Br C S O	#	0.37
336	AS	Br C S S	#	0.37
196	AS	Br O C C	#	0.10
196	AS	Br S C C	#	0.10
134	AS	C C C As	#	4.57
134	AS	СССВ	#	4.57
87	AS	C * C - C - Br	#	3.30
88	AS	C - C * C - Br	#	4.80
89	AS	C - C - C - Br	#	2.86
1	AS	C * C - C * C		13.51
2	AS	C * C - C - C		34.96
3	AS	C - C * C - C		14.19
2	AS	C - C - C * C		34.96
$\overline{4}$	AS	C - C - C - C		32.65
6	AS	C * C - C * C - Br	#	7.08
21	AS	C * C - C * C - Br	#	1.70
48	AS	C * C - C - Br	#	0.77
49	AS	C - C * C * C - Br	#	4.52
50	AS	C - C - C * C - Br	#	1.14
51	AS	C - C - C - Br	#	1.49
5	AS	C * C * C * C * C	11	78.62
6	AS	C * C - C * C - C	#	7.08
7	AS AS	C * C - C * C - C	#	6.85
8	AS	C * C - C - C * C	π	6.91
9	AS	C * C - C - C		17.57
10	AS	C - C * C * C - C		12.64
6	AS	C - C * C - C * C	#	7.08
7	AS	C - C * C - C * C	#	6.85
11	AS	C - C * C - C - C	π	6.14
11	AS	C - C - C * C - C		6.14
9	AS	C - C - C - C * C		17.57
12	AS	C - C - C - C		19.16
47	AS AS	C C C C As	#	3.83
47	AS	C C C C B	#	3.83
14	AS	C * C - C - C * C - Br		3.46
21	AS	C * C - C - C * C - Br	#	1.70
22	AS	C - C * C * C * C - Br	#	5.91
23	AS	C - C - C - C - Br	#	0.96
13	AS AS	C * C * C * C * C * C	#	74.51
13 7	AS AS	C * C - C - C * C - C	#	6.85
14	AS AS	C * C - C - C * C - C	#	3.46
15	AS AS	C * C - C - C * C - C	#	1.98
16		C * C - C - C - C		
16 17	AS AS	C - C * C * C * C - C		6.81 11.88
18	AS AS	C - C * C * C - C - C		4.49
7		C - C * C - C - C * C	#	6.85
14	AS AS	C - C * C - C - C * C	#	3.46
		C - C - C * C + C - C	#	
18 19	AS	C - C - C * C - C - C		4.49
19 16	AS	C - C - C - C - C * C		1.06
20	AS	C-C-C-C-C		6.81 12.15
20 14	AS	C * C - C - C * C - Cl	щ	3.46
1 4	AS	0 " 0 - 0 - 0 " 0 - 01	#	3.40

Screen Number		Fragment Definition	F	requency Percent
21	AS	C * C - C - C * C - Cl	#	1.70
22	AS	C - C * C * C * C - Cl	#	5.91
23	AS	C - C - C - C - C - Cl	#	0.96
14	AS	C * C - C - C * C - F	#	3.46
21	AS	C * C - C - C * C - F	#	1.70
22	AS	C - C * C * C * C - F	#	5.91
23	AS	C - C - C - C - F	#	0.96
14	AS	C * C - C - C * C - I	#	3.46
21	AS	C * C - C - C * C - I	#	1.70
22	AS	C - C * C * C * C - I	#	5.91
23	AS	C - C - C - C - I C * C * C * C * C * N	#	0.96
24 25	AS AS	C * C * C * C * N C * C - C * C * C * N		27.22 4.17
25 14	AS AS		ш	3.46
26	AS AS	C * C - C - C * C - N C * C - C - C * C - N	#	1.63
27	AS AS	C * C - C - C - N		5.29
28	AS	C - C * C * C * N		11.69
29	AS	C - C * C * C - N		8.40
30	AS	C - C * C * C - C - N		2.36
31	AS	C - C * C - C - N		0.41
32	AS	C - C - C * C * C - N		0.92
33	AS	C - C - C * C - C - N		0.34
34	AS	C - C - C - C - N		7.98
35	AS	C * C * C * C * C * O	#	14.10
36	AS	C * C - C * C * C * O	#	1.56
37	AS	C * C - C * C * C - O	#	2.60
14	AS	C * C - C - C * C - O	#	3.46
38	AS	C * C - C - C * C - O	#	5.99
39	AS	C * C - C - C - O	#	7.78
40	AS	C - C * C * C * C * O	#	9.53
41	AS	C - C * C * C * C - O	#	19.86
42	AS	C - C * C * C - C - O	#	4.15
43	AS	C - C * C - C - C - O	#	1.01
44 45	AS		#	4.16 1.26
46	AS AS	C - C - C * C - C - O C - C - C - C - C - O	#	12.64
47	AS	C C C C C P	#	3.83
35	AS	C * C * C * C * S	#	14.10
36	AS	C * C - C * C * C * S	#	1.56
37	AS	C * C - C * C * C - S	#	2.60
14	AS	C * C - C - C * C - S	#	3.46
38	AS	C * C - C - C * C - S	#	5.99
39	AS	C * C - C - C - S	#	7.78
40	AS	C - C * C * C * C * S	#	9.53
41	AS	C - C * C * C * C - S	#	19.86
42	AS	C - C * C * C - C - S	#	4.15
43	AS	C - C * C - C - C - S	#	1.01
44	AS	C - C - C * C * C - S	#	4.16
45	AS	C - C - C * C - C - S	#	1.26
46	AS	C - C - C - C - S	#	12.64
47	AS	C C C C Se	#	3.83
47	AS	C C C C Si	#	3.83
47	AS	C C C C Te	#	3.83
6	AS	C * C - C * C - Cl	#	7.08
21	AS	C * C - C * C - Cl	#	1.70

Screen Number		Fragment Definition	F	requency Percent
48	AS	C * C - C - C1	#	0.77
49	AS	C - C * C * C - Cl	#	4.52
50	AS	C - C - C * C - Cl	#	1.14
51	AS	C - C - C - C - Cl	#	1.49
6	AS	C * C - C * C - F	#	7.08
21	AS	C * C - C * C - F	#	1.70
48	AS	C * C - C - C - F	#	0.77
49	AS	C - C * C * C - F	#	4.52
50	AS	C - C - C * C - F	#	1.14
51	AS	C - C - C - F	#	1.49
6	AS	C * C - C * C - I	#	7.08
21	AS	C * C - C * C - I	#	1.70
48	AS	C * C - C - C - I C - C * C * C - T	#	0.77
49 50	AS		#	4.52
51	AS AS	C - C - C * C - I C - C - C - C - I	##	$\frac{1.14}{1.49}$
52	AS AS	C * C * C * C * N	#	31.81
53	AS	C * C - C * C * N		2.97
6	AS	C * C - C * C - N	#	7.08
26	AS	C * C - C * C - N	#	1.63
54	AS	C * C - C - C * N		1.62
55	AS	C * C - C - N		8.56
56	AS	C - C * C * C * N		13.91
57	AS	C - C * C * C - N		6.09
58	AS	C - C * C - C - N		2.87
59	AS	C - C - C * C * N		7.01
60	AS	C - C - C * C - N		1.24
61	AS	C - C - C - C - N		14.08
62	AS	C * C - C - C - N * C		1.14
63	AS	C * C - C - N - C		5.95
64	AS	C - C * C * C * N - C		5.71
65	AS	C - C * C * C - N - C		2.97
66	AS	C - C * C - C - N - C		1.27
67 60	AS	C * C * C * C * N * N C * C - C - C - N - N		2.26
68 69	AS			0.23
70	AS AS		#	0.49 0.32
70	AS AS	C * C - C - C - N - O C - C * C * C - N - O	#	1.36
70	AS	C * C - C - N - S	#	0.32
71	AS	C - C * C * C - N - S	#	1.36
72	AS	C * C * C * C * O	#	19.48
73	AS	C * C - C * C * O	#	2.01
6	AS	C * C - C * C - O	#	7.08
38	AS	C * C - C * C - O	#	5.99
74	AS	C * C - C - C * O	#	1.34
75	AS	C * C - C - O	#	6.25
76	AS	C - C * C * C * O	#	7.10
77	AS	C - C * C * C - O	#	14.59
78	AS	C - C * C - C - O	#	6.22
79	AS	C - C - C * C - O	#	6.96
80	AS	C - C - C - C - O	#	21.57
81	AS	C * C - C - C - O - C	#	2.56
82	AS	C - C * C * C - O - C	#	7.34
83	AS	C - C * C - C - O - C	#	2.79
84	AS	C - C - C * C - O - C	#	1.91

85 AS C - C * C * C * C - O - N # 0.42 86 AS C - C * C * C * C - O - S # 0.75 72 AS C * C * C * C * C * S # 19.48 73 AS C * C - C * C * C * S # 2.01 6 AS C * C - C * C * C - S # 7.08 38 AS C * C - C - C * C - S # 5.99 74 AS C * C - C - C - C * S # 11.34 75 AS C * C - C - C - C - C - S # 6.25 76 AS C * C - C - C - C - S # 6.25 76 AS C - C - C - C - C - S # 14.59 78 AS C - C - C * C - C - S # 6.25 80 AS C - C - C * C - C - S # 21.57 78 AS C - C - C * C - C - S # 21.57 80 AS C - C - C * C - C - S # 21.59 81 AS C - C - C * C * C - S - C # 2.79 81 AS C - C - C * C * C - S - C # 2.79 84 AS C - C - C * C * C - S - C # 2.79 84 AS C - C * C *	Screen Number		Fragment Definition	F	Frequency Percent
86 AS	85	AS	C - C * C * C - O - N	#	0.42
72 AS C * C * C * C * S * S * # 2.01 6 AS C * C - C * C - S * B * 7.08 38 AS C * C - C * C - S * # 5.99 74 AS C * C - C - C * S * # 1.34 75 AS C * C - C - C - C * S * # 6.25 76 AS C - C * C * C * C * S * # 7.10 77 AS C - C * C * C * C * S * # 7.10 78 AS C - C * C * C * C * S * # 6.22 79 AS C - C * C * C * C * S * # 6.22 79 AS C - C - C * C * C * S * # 6.26 80 AS C - C * C * C * C * S * C * # 2.56 81 AS C - C * C * C * C * S * C * # 2.56 82 AS C - C * C * C * C * S * C * # 2.79 84 AS C - C * C * C * C * S * C * # 1.91 85 AS C - C * C * C * C * S * C * # 1.91 85 AS C - C * C * C * C * S * C * S * C * # 1.91 86 AS C - C * C * C * C * S * S * # 0.75 86 AS C - C * C * C * C * S * S * # 0.75 86 AS C - C * C * C * C * S * S *		AS	C - C * C * C - O - O		0.75
73 AS C * C - C * C * S * S * # 2.01 6 AS C * C - C * C - S * # 7.08 38 AS C * C - C * C - S * # 5.99 74 AS C * C - C - C - C * S * # 1.34 75 AS C * C - C - C - C - S * # 6.25 76 AS C - C * C * C * C * S * # 7.10 77 AS C - C * C * C - C - S * # 6.22 78 AS C - C * C - C - S * # 6.96 80 AS C - C - C - C - S * # 6.96 80 AS C - C - C - C - C - S * C * # 6.96 81 AS C - C - C - C - S - C * # 2.56 81 AS C - C - C - C - S - C * # 2.57 81 AS C - C - C - C - S - C * # 2.56 82 AS C - C - C - C - S - C * # 2.57 84 AS C - C - C - C - S - C * # 2.57 85 AS C - C * C - C - S - C * # 2.79 84 AS C - C - C - C - S - C * # 2.79 84 AS C - C - C - C - S - D * # 2.79 85 AS C - C - C - C - S - D * # 2.79 86<	86	AS	C - C * C * C - O - S	#	0.75
6 AS	72	AS	C * C * C * C * S	#	19.48
38 AS C * C - C - C * S - S # 1.34 75 AS C * C - C - C - C - S # 1.34 75 AS C - C * C * C * C * S # 7.10 77 AS C - C * C * C - C - S # 14.59 78 AS C - C * C - C - S # 6.96 80 AS C - C - C - C - C - S # 21.57 81 AS C - C - C - C - S - C # 21.57 81 AS C - C - C - C - S - C # 2.56 82 AS C - C - C - C - C - S - C # 2.79 84 AS C - C - C - C - S - C # 2.79 81 AS C - C - C - C - S - C # 2.56 82 AS C - C - C - C - C - S - C # 2.79 81 AS C - C - C - C - S - C # 2.79 84 AS C - C - C - C - S - C # 2.79 84 AS C - C - C - C - S - C # 2.79 84 AS C - C - C - C - S - S - D # 0.42 85 AS C - C - C - C - S - S - S # 0.75 86 AS C - C - C	73	AS	C * C - C * C * S		2.01
74 AS C * C - C - C * S # 6.25 75 AS C * C - C - C - S # 6.25 76 AS C - C * C * C * S # 7.10 77 AS C - C * C * C * C - S # 14.59 78 AS C - C - C - C - S # 6.22 79 AS C - C - C - C - S # 6.96 80 AS C - C - C - C - S # 21.57 81 AS C - C - C - C - S - C # 2.56 82 AS C - C - C - C - S - C # 2.79 84 AS C - C - C * C - C - S - C # 1.91 85 AS C - C - C - C - S - C # 1.91 84 AS C - C - C - C - S - C # 1.91 85 AS C - C - C - C - S - D # 0.75 86 AS C - C - C - C - S - S - D # 0.75 86 AS C - C - C - C - C - S - S - S # 0.75 87 AS C - C - C - C - C - D - F # 3.30 88 AS C - C - C - C - C - D - F	6	AS	C * C - C * C - S		
75 AS C * C - C - C - S # 7.10 76 AS C - C * C * C * S # 7.10 77 AS C - C * C * C * C - S # 14.59 78 AS C - C - C * C - C - S # 6.22 79 AS C - C - C - C - C - S # 6.22 79 AS C - C - C - C - C - S # 21.57 81 AS C - C - C - C - C - S # 21.57 81 AS C - C - C - C - S - C # 2.56 82 AS C - C - C - C - S - C # 7.34 83 AS C - C - C * C - C - S - C # 2.79 84 AS C - C - C * C - C - S - C # 1.91 85 AS C - C - C * C * C - S - O # 0.75 86 AS C - C - C * C * C - S - O # 0.75 87 AS C * C - C - C - C 1 # 3.30 88 AS C - C - C * C - C - C - C 1 # 3.30 89 AS C - C - C - C - F # 3.30 80 AS C - C - C - C - F <td></td> <td></td> <td></td> <td></td> <td></td>					
76 AS C - C * C * C * C * S # 7.10 77 AS C - C * C * C * C - S # 14,59 78 AS C - C * C * C - C * S # 6,96 80 AS C - C - C - C * C - S # 21,57 81 AS C - C - C - C - S - C # 2,56 82 AS C - C * C * C - C - S - C # 2,79 84 AS C - C * C * C - S - C # 2,79 84 AS C - C * C * C - S - C # 2,79 83 AS C - C * C * C - S - C # 2,79 84 AS C - C * C * C - S - C # 2,79 84 AS C - C * C * C - S - S - C # 1,91 85 AS C - C * C * C - S - S - N # 0,42 86 AS C - C * C * C - S - S - S # 0,75 86 AS C - C * C * C - C - C - S - S - S # 0,75 87 AS C * C - C - C - C - C - C - C - H # 2,86 87 AS C * C - C - C - C - F # 3,30 88 AS		AS			
77 AS C - C * C * C - S # 6.22 78 AS C - C * C - C - S # 6.22 79 AS C - C - C - C - C - S # 6.96 80 AS C - C - C - C - C - S # 21.57 81 AS C - C - C - C - C - S - C # 2.56 82 AS C - C - C * C - C - S - C # 2.79 84 AS C - C - C * C * C - S - C # 1.91 85 AS C - C - C * C * C - S - S - N # 0.42 86 AS C - C * C * C * C - S - S - S # 0.75 86 AS C - C * C * C - C - S - S - S # 0.75 87 AS C * C - C - C - C - C - S - S - S # 0.75 87 AS C * C - C - C - C - C - S - S - S # 0.75 88 AS C - C - C - C - C - C - S - S - S # 0.75 87 AS C * C - C - C - C - C - S - S - S # 0.75 88 AS C - C - C - C - C - C - S - S - S # 0.75 89 AS C - C - C - C - C - D - G - G - G - G - G - G - G - G - G	_				
78 AS C - C + C - C - S # 6.22 79 AS C - C - C - C - S # 6.96 80 AS C - C - C - C - S # 21.57 81 AS C - C - C - C - C - S - C # 7.34 83 AS C - C - C - C - C - S - C # 1.73 84 AS C - C - C - C - C - S - C # 1.91 85 AS C - C - C - C - C - S - N # 0.42 86 AS C - C - C - C - C - S - N # 0.75 86 AS C - C - C - C - C - S - S # 0.75 87 AS C - C - C - C - C - C - S - S # 0.75 87 AS C - C - C - C - C - C - H # 4.80 89 AS C - C - C - C - C - H # 4.80 89 AS C - C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
79 AS C - C - C - C - S # 6.96 80 AS C - C - C - C - S # 21.57 81 AS C - C - C - C - S - C # 2.56 82 AS C - C + C - C - C - S - C # 7.34 83 AS C - C + C - C - C - S - C # 2.79 84 AS C - C - C + C - C - S - C # 1.91 85 AS C - C - C + C + C - S - N # 0.42 86 AS C - C - C + C + C - S - S - N # 0.75 86 AS C - C - C + C - C - C - S - S # 0.75 87 AS C - C - C - C - C - C - H # 3.30 88 AS C - C - C - C - C - C - H # 4.80 89 AS C - C - C - C - C - F # 3.30 88 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - F # 4.80 89 AS C - C - C - F # 4.80 89 AS C - C - C - F					
80 AS C - C - C - C - S - C # 21.57 81 AS C * C - C - C - S - C # 2.56 82 AS C - C * C - C - S - C # 7.34 83 AS C - C * C - C - S - C # 2.79 84 AS C - C - C * C * C - S - C # 1.91 85 AS C - C * C * C - S - N # 0.42 86 AS C - C * C * C - S - S - S # 0.75 86 AS C - C * C - C - C - C - C - H # 3.30 88 AS C - C * C - C - C - C - C - H # 4.80 89 AS C - C - C - C - F # 3.30 88 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 2.86 87 AS C * C - C - C - F # 2.86 87 AS C * C - C - C - F # 2.86 89 AS C - C - C - C - F # 2.86					
81 AS C * C - C - C - S - C # 2.56 82 AS C - C * C * C * C - S - C # 7.34 83 AS C - C * C - C - S - C # 2.79 84 AS C - C - C * C * C - S - C # 1.91 85 AS C - C * C * C * C - S - N # 0.42 86 AS C - C * C * C * C - S - S # 0.75 86 AS C - C * C * C - C - S - S # 0.75 87 AS C * C - C * C * C - S - S # 0.75 87 AS C * C - C * C * C - S - S # 0.75 88 AS C - C * C * C - C * C * C * S - S # 0.75 89 AS C - C * C * C - C * C * C * S - S # 0.75 88 AS C - C * C * C * C * C * C * S - S # 0.75 88 AS C - C * C * C * C * C * C * S - S * S # 0.75 88 AS C - C * C * C * C * C * C * S * S * S * S *					
82 AS C - C * C - C - S - C # 7.34 83 AS C - C * C - C - S - C # 2.79 84 AS C - C - C * C - S - C # 1.91 85 AS C - C * C * C - S - N # 0.42 86 AS C - C * C * C - S - S - S # 0.75 87 AS C * C - C - C - C - S - S - S # 0.75 87 AS C * C - C - C - C - C - S - S - S # 0.75 88 AS C - C - C - C - C - C - H # 4.80 89 AS C - C - C - C - C - D - F # 3.30 88 AS C - C - C - C - F # 3.30 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 2.86 87 AS C * C - C - C - F # 4.80 89 AS C - C - C - C - F # 2.86 87 AS C * C - C - C - F # 2.86 87 AS C - C - C - C - F # 2.86 89 AS C - C - C - C - N 8.61 <td></td> <td></td> <td></td> <td></td> <td></td>					
83 AS C - C + C - C - S - C # 2.79 84 AS C - C - C + C - S - C # 1.91 85 AS C - C + C + C - S - N # 0.42 86 AS C - C + C + C - S - S - S # 0.75 86 AS C - C - C - C - C - C - C - C - C - C -					
84 AS C - C - C + C + C - S - C # 1.91 85 AS C - C + C + C + C - S - N # 0.42 86 AS C - C + C + C + C - S - S # 0.75 87 AS C + C - C - C - C1 # 3.30 88 AS C - C - C - C - C1 # 4.80 89 AS C - C - C - C - C - C1 # 2.86 87 AS C + C - C - F # 3.30 88 AS C - C - C - F # 4.80 89 AS C - C - C - F # 4.80 89 AS C - C - C - F # 4.80 89 AS C - C - C - F # 4.80 89 AS C - C - C - F # 4.80 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - F # 4.80 89 AS C - C - C - C - I # 4.80 89 AS C - C - C - C - I # 2.86 2080 AS					
85 AS C - C * C * C * C - S - N # 0.42 86 AS C - C * C * C * C - S - O # 0.75 86 AS C - C * C * C * C - S - S # 0.75 87 AS C * C - C - C - C - C - C - C - C - C -					
86 AS C - C * C * C * C - S - S # 0.75 86 AS C - C * C * C * C - S - S # 0.75 87 AS C * C - C - C - C - C - C - C - C - C -					
87 AS C * C - C - C - C - C - C - C - C - C -					
88 AS C - C - C - C - C - C - C - C - C - C -	86	AS	C - C * C * C - S - S	#	0.75
89 AS C - C - C - C - F # 3.30 88 AS C - C - C - F # 4.80 89 AS C - C - C - F # 2.86 87 AS C - C - C - F # 2.86 87 AS C - C - C - F # 3.30 88 AS C - C - C - I # 3.30 88 AS C - C - C - I # 4.80 89 AS C - C - C - C - I # 2.86 2080 AS C - C - C - C - I # 2.86 2080 AS C - C - C - C - N 67.06 90 AS C * C - C - C * N 8.61 91 AS C * C - C - C * N 22.25 92 AS C - C * C * N 16.85 93 AS C - C * C * N 6.37 94 AS C - C * C * C * N 24.66 96 AS C * C - C - C * N * C 12.91 98 AS C - C * C * N * C 12.91 99 AS C - C * C * N * C * N * C 1.84 100 AS C - C * C * N * C * N * C<	87	AS	C * C - C - Cl	#	3.30
87 AS C * C - C - F # 3.30 88 AS C - C * C - F # 4.80 89 AS C - C - C - C - F # 2.86 87 AS C * C - C - I # 3.30 88 AS C - C * C - I # 4.80 89 AS C - C - C - C - I # 4.80 89 AS C - C - C - C - I # 2.86 2080 AS C - C - C - C - I # 2.86 90 AS C * C - C - C - N 8.61 91 AS C * C - C - C - N 22.25 92 AS C - C - C - C - N 22.25 92 AS C - C - C - C - N 6.37 94 AS C - C - C - C - N 6.85 95 AS C - C - C - C - N + C 4.61 97 AS C * C - C - C - N - C 12.91 98 AS C - C - C - C - N - C 1.84 100 AS C - C - C - C - N - C 4.57 7 AS	88	AS	C - C * C - Cl		4.80
88 AS C - C * C - F # 4.80 89 AS C - C - C - F # 2.86 87 AS C * C - C - C - I # 3.30 88 AS C - C * C - I # 4.80 89 AS C - C - C - C - I # 2.86 2080 AS C C C C N 67.06 90 AS C * C - C * N 8.61 91 AS C * C - C - C * N 8.61 91 AS C * C - C - C * N 16.85 93 AS C - C * C - N 6.37 94 AS C - C - C * C - N 6.37 94 AS C - C - C - C - N 6.85 95 AS C - C - C - C - N * C 4.61 97 AS C * C - C - C - N * C 12.91 98 AS C - C - C - C - N - C 12.91 98 AS C - C - C - C - N - C 1.84 100 AS C - C - C - C - N - C 7.00 101 AS C - C - C - C - N - C * C # 6.85 102 AS C - C - C - C		AS			
89 AS C - C - C - F # 2.86 87 AS C * C - C - I # 3.30 88 AS C - C * C - I # 4.80 89 AS C - C - C - I # 2.86 2080 AS C C C C N 67.06 90 AS C * C - C * N 8.61 91 AS C * C - C - C N 22.25 92 AS C - C * C - N 16.85 93 AS C - C * C - N 6.37 94 AS C - C - C - C N 6.85 95 AS C - C - C - C - N 24.66 96 AS C * C - C - N - C 12.91 98 AS C - C - C - N - C 12.91 98 AS C - C - C - N - C 12.91 100 AS C - C - C - N - C 7.00 101 AS C - C - C - C - N - C 4.57 7 AS C - C - C - C - N - C * C # 6.85 102 AS C - C - C - N - C * C # 0.92 103 AS C - C - C - N - C * C <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
87 AS C * C - C - I # 4.80 88 AS C - C * C - I # 4.80 89 AS C - C - C - C - I # 2.86 2080 AS C C C C N 67.06 90 AS C * C - C * N 8.61 91 AS C * C - C - N 22.25 92 AS C - C * C - N 16.85 93 AS C - C * C - N 6.37 94 AS C - C - C - C - N 24.66 96 AS C * C - C - C - N 24.66 96 AS C * C - C - N - C 12.91 98 AS C * C - C - N - C 12.91 99 AS C - C * C - N - C 12.91 99 AS C - C * C - N - C 12.91 99 AS C - C * C - N - C 12.91 101 AS C - C * C - N - C 12.91 102 AS C - C * C - N - C 12.91 101 AS C - C * C - N - C 12.91 102 AS C - C * C - N - C 12.91 103 AS C - C - C - C - N - C 12.91 104 AS C - C - C - N - C 12.91 105 AS C - C - C - N - C - N 0.37 106 AS C - C - C - N - C - N 0.37 106 AS C - C - C - N - C - N 0					
88 AS C - C + C - I # 4.80 89 AS C - C - C - I # 2.86 2080 AS C C C N 67.06 90 AS C * C - C * N 8.61 91 AS C * C - C - C N 22.25 92 AS C - C * C * N 16.85 93 AS C - C * C - C N 6.37 94 AS C - C - C - C - N 24.66 96 AS C * C - C - C - N * C 4.61 97 AS C * C - C - C - N - C 12.91 98 AS C - C * C - C - N - C 5.92 99 AS C - C * C - C - N - C 12.91 98 AS C - C * C - N - C 12.91 98 AS C - C * C - N - C 1.84 100 AS C - C * C - N - C 4.57 7 AS C - C - C - C - N - C * C 4.57 7 AS C - C * C - N - C * C # 6.85 102 AS C - C * C - N - C * N 9.30 104 AS C * C * C * N * C					
89 AS C - C - C - C - I # 2.86 2080 AS C C C C N 67.06 90 AS C * C - C * N 8.61 91 AS C * C - C - C N 22.25 92 AS C - C * C * N 16.85 93 AS C - C * C - N 6.37 94 AS C - C - C - C * N 24.66 96 AS C * C - C - C - N * C 4.61 97 AS C * C - C - C - N - C 12.91 98 AS C - C - C * C * N - C 12.91 98 AS C - C - C * C - N - C 12.91 99 AS C - C - C * C - N - C 1.84 100 AS C - C - C * C - N - C 4.57 7 AS C - C - C * C - N - C 4.57 7 AS C - C - C * C - N - C * C # 6.85 102 AS C - C - C * C - N - C * C # 0.92 103 AS C - C - C * C - N - C * N - C * N 9.30 <					
2080 AS C C C N 67.06 90 AS C C C N 8.61 91 AS C C C N 22.25 92 AS C C C N 16.85 93 AS C C C N 6.37 94 AS C C C N 6.85 95 AS C C C N 24.66 96 AS C C C N C 4.61 97 AS C C C N C 12.91 98 AS C C C N C 12.91 98 AS C C C N C 12.91 99 AS C C C N C 1.84 100 AS C C C N C 7.00 101 AS C					
90 AS C * C - C * N 8.61 91 AS C * C - C - N 22.25 92 AS C - C * C * N 16.85 93 AS C - C * C - N 6.37 94 AS C - C - C - C * N 6.85 95 AS C - C - C - C - N 24.66 96 AS C * C - C - C - N * C 4.61 97 AS C * C - C - N - C 12.91 98 AS C - C * C * N - C 5.92 99 AS C - C * C - N - C 7.00 101 AS C * C - C - C - N - C 4.57 7 AS C - C * C - N - C * C 4.57 7 AS C - C * C - N - C * C # 6.85 102 AS C - C * C - N - C * C # 0.92 103 AS C * C - C * N - C * N 9.30 104 AS C * C - C * N - C * N 0.88 105 AS C - C * C - N - C - N 0.37 106 AS C * C - C - N - C - O # 2.79 107 AS				#	
91 AS C * C - C - N 22.25 92 AS C - C * C * N 16.85 93 AS C - C - C * N 6.37 94 AS C - C - C - C * N 6.85 95 AS C - C - C - C - N 24.66 96 AS C * C - C - C - N * C 4.61 97 AS C * C - C - N - C 12.91 98 AS C - C * C + N - C 5.92 99 AS C - C * C - N - C 1.84 100 AS C - C - C - C - N - C 7.00 101 AS C * C - C - C - N - C * C 4.57 7 AS C - C * C - N - C * C # 6.85 102 AS C - C * C - N - C * C # 0.92 103 AS C - C * C - N - C * C # 0.92 103 AS C * C - C * C - N - C * N 0.88 105 AS C - C * C - N - C - N 0.37 106 AS C * C - C - C - N - C - N # 2.79 107 AS C * C - C - N - C - O # 3.00 109					
92 AS C - C * C * N 16.85 93 AS C - C * C - N 6.37 94 AS C - C - C - C * N 6.85 95 AS C - C - C - N * C 4.66 96 AS C * C - C - N - C 12.91 98 AS C - C * C * N - C 12.91 98 AS C - C * C - N - C 1.84 100 AS C - C - C - C - N - C 1.84 100 AS C - C - C - C - N - C 7.00 101 AS C * C - C - N - C * C 4.57 7 AS C - C * C - N - C * C # 6.85 102 AS C - C * C - N - C * C # 0.92 103 AS C - C * C - N - C * N 9.30 104 AS C * C - C * C - N - C - N 0.88 105 AS C - C * C - N - C - N 0.37 106 AS C * C - C - N - C - N # 2.79 107 AS C * C - C - N - C - O # 3.00 109 AS C - C - C - C - N - C - O # 2.79 106 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
93 AS C - C * C - N 6.37 94 AS C - C - C - C * N 6.85 95 AS C - C - C - N * C 4.66 96 AS C * C - C - N - C 4.61 97 AS C * C - C - N - C 12.91 98 AS C - C * C * N - C 5.92 99 AS C - C * C - N - C 7.00 101 AS C - C - C - N - C 7.00 101 AS C * C - C - N - C * C # 6.85 102 AS C - C * C - N - C * C # 6.85 102 AS C - C * C - N - C * C # 0.92 103 AS C * C - C * C - N - C * N 9.30 104 AS C * C - C * C - N - C - N 0.88 105 AS C * C - C * C - N - C - N 0.37 106 AS C * C - C - C - N - C - O # 2.79 107 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - C - N - C - O # 2.05 <td></td> <td></td> <td></td> <td></td> <td></td>					
95 AS C - C - C - N 24.66 96 AS C * C - C - N * C 4.61 97 AS C * C - C - N - C 12.91 98 AS C - C * C * N - C 5.92 99 AS C - C * C - N - C 1.84 100 AS C - C - C - C - N - C 7.00 101 AS C * C - C - N - C * C 4.57 7 AS C - C * C - N - C * C # 6.85 102 AS C - C * C - N - C * C # 0.92 103 AS C * C * C * N * C * N 9.30 104 AS C * C - C - N - C - N 0.88 105 AS C * C - C - N - C - N 0.37 106 AS C * C - C - C - N * C - O # 2.79 107 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.05 106 AS C * C - C - N - C - O # 2.79 107 AS C * C - C - N - C - O # 2.79 107 AS C * C - C - N - C - O # 2.79		AS			
96 AS C * C - C - N * C 4.61 97 AS C * C - C - N - C 12.91 98 AS C - C * C * N - C 5.92 99 AS C - C * C - N - C 1.84 100 AS C - C - C - N * C 7.00 101 AS C * C - C - N - C * C 4.57 7 AS C - C * C - N - C * C # 6.85 102 AS C - C * C - N - C * C # 0.92 103 AS C * C * C * N * C * N 9.30 104 AS C * C - C - N - C - N 0.88 105 AS C * C - C - N - C - N 0.37 106 AS C * C - C - N * C * O # 2.79 107 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.05 106 AS C * C - C - N - C - N - C - O # 2.79 107 AS C * C - C - N - C - N - C - O # 2.79 107 AS C * C - C - N - C - N - C - O # 2.79 107 AS C * C - C - C - N - C - S #	94	AS	C - C - C * N		6.85
97 AS C * C - C - N - C 12.91 98 AS C - C * C * N - C 5.92 99 AS C - C - C - N - C 1.84 100 AS C - C - C - N - C 7.00 101 AS C * C - C - N - C * C 4.57 7 AS C - C * C - N - C * C # 6.85 102 AS C - C * C - N - C * C # 0.92 103 AS C * C * C * N * C * N 9.30 104 AS C * C - C - N - C - N 0.88 105 AS C - C * C - N - C - N 0.37 106 AS C * C - C * C * N * C * O # 2.79 107 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.05 106 AS C * C - C * C - N - C - O # 2.79 107 AS C * C - C - N - C - O # 2.05 106 AS C * C - C - N - C - N - C - O # 2.79 107 AS C * C - C - N - C - N - C - S # 2.79 107 AS C * C - C - C - N - C - S	95	AS	C - C - C - N		24.66
98 AS C - C * C * N - C 5.92 99 AS C - C * C - N - C 1.84 100 AS C - C - C - N - C 7.00 101 AS C * C - C - N - C * C 4.57 7 AS C - C * C - N - C * C # 6.85 102 AS C - C * C - N - C * C # 0.92 103 AS C * C * C * C * N * C * N 9.30 104 AS C * C - C - N - C - N 0.88 105 AS C - C * C - N - C - N 0.37 106 AS C * C - C * C * N * C * O # 2.79 107 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.05 106 AS C * C - C * C - N - C - O # 2.79 107 AS C * C - C * C - N - C - S # 2.79 107 AS C * C - C - C - N * C - S # 2.79	96	AS			4.61
99 AS C - C * C - N - C 1.84 100 AS C - C - C - C - N * C 7.00 101 AS C * C - C - N - C * C 4.57 7 AS C - C * C - N - C * C # 6.85 102 AS C - C * C - N - C * C # 0.92 103 AS C * C * C * N * C * N 9.30 104 AS C * C - C - N - C - N 0.88 105 AS C - C * C - N - C - N 0.37 106 AS C * C + C * N * C * O # 2.79 107 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.05 106 AS C * C - C - N - C - S # 2.79 107 AS C * C - C - N - C - S # 2.79					
100 AS C - C - C - N * C 7.00 101 AS C * C - C - N - C * C 4.57 7 AS C - C * C - N - C * C # 6.85 102 AS C - C * C - N - C * C # 0.92 103 AS C * C * C * N * C * N 9.30 104 AS C * C - C - N - C - N 0.88 105 AS C - C * C - N - C - N 0.37 106 AS C * C * C * C * N * C * O # 2.79 107 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.05 106 AS C * C - C - N - C - O # 2.79 107 AS C * C - C - N - C - S # 2.79 107 AS C * C - C - N * C - S # 2.79					
101 AS C * C - C - N - C * C 4.57 7 AS C - C * C - N - C * C # 6.85 102 AS C - C * C - N - C * C # 0.92 103 AS C * C * C * N * C * N 9.30 104 AS C * C - C - N - C - N 0.88 105 AS C - C * C - N - C - N 0.37 106 AS C * C * C * C * N * C * O # 2.79 107 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 3.00 106 AS C * C - C * C - N - C - O # 2.79 107 AS C * C - C * C - N - C - S # 2.79 107 AS C * C - C - N * C - S # 2.79					
7 AS C - C * C - N - C * C # 6.85 102 AS C - C * C - N - C * C # 0.92 103 AS C * C * C * N * C * N 9.30 104 AS C * C - C - N - C - N 0.88 105 AS C - C * C - N - C - N 0.37 106 AS C * C * C * C * N * C * O # 2.79 107 AS C * C - C - N * C - O # 1.02 108 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.79 106 AS C * C - C - N - C - S # 2.79 107 AS C * C - C - N * C - S # 1.02					
102 AS C - C * C - N - C * C # 0.92 103 AS C * C * C * N * C * N 9.30 104 AS C * C - C - N - C - N 0.88 105 AS C - C * C - N - C - N 0.37 106 AS C * C * C * N * C * O # 2.79 107 AS C * C - C - N * C - O # 1.02 108 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.75 106 AS C * C * C * C * N * C * S # 2.79 107 AS C * C - C - N * C - S # 1.02					
103 AS C * C * C * N * C * N 9.30 104 AS C * C - C - N - C - N 0.88 105 AS C - C * C - N - C - N 0.37 106 AS C * C * C * N * C * O # 2.79 107 AS C * C - C - N * C - O # 1.02 108 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.05 106 AS C * C * C * N * C * S # 2.79 107 AS C * C - C - N * C - S # 1.02					
104 AS C * C - C - N - C - N 0.88 105 AS C - C * C - N - C - N 0.37 106 AS C * C * C * N * C * O # 2.79 107 AS C * C - C - N * C - O # 1.02 108 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.05 106 AS C * C * C * N * C * S # 2.79 107 AS C * C - C - N * C - S # 1.02				#	
105 AS C - C * C - N - C - N 0.37 106 AS C * C * C * N * C * O # 2.79 107 AS C * C - C - N * C - O # 1.02 108 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.05 106 AS C * C * C * N * C * S # 2.79 107 AS C * C - C - N * C - S # 1.02					
106 AS C * C * C * N * C * O # 2.79 107 AS C * C - C - N * C - O # 1.02 108 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.05 106 AS C * C * C * N * C * S # 2.79 107 AS C * C - C - N * C - S # 1.02					
107 AS C * C - C - N * C - O # 1.02 108 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.05 106 AS C * C * C * N * C * S # 2.79 107 AS C * C - C - N * C - S # 1.02				#	
108 AS C * C - C - N - C - O # 3.00 109 AS C - C * C - N - C - O # 2.05 106 AS C * C * C * N * C * S # 2.79 107 AS C * C - C - N * C - S # 1.02					
109 AS C - C * C - N - C - O # 2.05 106 AS C * C * C * N * C * S # 2.79 107 AS C * C - C - N * C - S # 1.02					
107 AS C * C - C - N * C - S # 1.02					
		AS			
108 AS C * C - C - N - C - S # 3.00					
	108	AS	C * C - C - N - C - S	#	3.00

Screen Number		Fragment Definition	F	requency Percent
109	AS	C - C * C - N - C - S	#	2.05
110	AS	C * C * C * N * N		4.61
111	AS	C * C - C - N - N		2.65
112	AS	C - C * C - N - N		0.55
113	AS	C - C - C - N - N		1.14
114	AS	C * C - C - N - O	#	1.22
115	AS	C - C * C - N - O	#	0.94
114	AS	C * C - C - N - S	#	1.22
115	AS	C - C * C - N - S	#	0.94
2081	AS	C C C O	#	76.51
116	AS		#	4.30
117 118	AS AS	C * C - C - O C - C * C * O	# #	33.04 9.42
119	AS AS	C - C * C - O	#	18.18
120	AS AS	C - C - C * O	#	5.21
121	AS AS	C - C - C - O	#	32.90
122	AS	C * C - C - O - C	#	13.92
123	AS	C - C * C - O - C	#	6.93
124	AS	C - C - C - O - C	#	16.58
125	AS	C * C - C - O - C * C	#	4.07
7	AS	C - C * C - O - C * C	#	6.85
126	AS	C - C * C - O - C * C	#	2.20
127	AS	C - C - C - O - C * C	#	5.20
128	AS	C * C - C - O - C - O	#	3.28
128	AS	C * C - C - O - C - S	#	3.28
129	AS	C * C - C - O - N	#	0.35
130	AS	C - C * C - O - N	#	0.32
131	AS	C * C - C - O - O	#	0.48
132	AS	C - C * C - O - O	#	0.71
133 131	AS AS	C - C - C - O - O C * C - C - O - S	#	1.20
132	AS	C - C * C - O - S	#	0.40
133	AS	C - C - C - S	#	1.20
134	AS	C C C P	#	4.57
2081	AS	C C C S	#	76.51
116	AS	C * C - C * S	#	4.30
117	AS	C * C - C - S	#	33.04
118	AS	C - C * C * S	#	9.42
119	AS	C - C * C - S	#	18.18
120	AS	C - C - C * S	#	5.21
121	AS	C - C - C - S	#	32.90
122	AS	C * C - C - S - C	#	13.92
123	AS	C - C * C - S - C	#	6.93
124	AS	C - C - C - S - C	#	16.58
125	AS	C * C - C - S - C * C	#	4.07
7 126	AS	C - C * C - S - C * C C - C * C - S - C * C	#	6.85
126 127	AS AS	C - C * C - S - C * C C - C - C - S - C * C	# #	2.20 5.20
128	AS AS	C * C - C - S - C - O	#	3.28
128	AS	C * C - C - S - C - S	#	3.28
129	AS	C * C - C - S - N	#	0.35
130	AS	C - C * C - S - N	#	0.32
131	AS	C * C - C - S - O	#	0.48
132	AS	C - C * C - S - O	#	0.71
133	AS	C - C - C - S - O	#	1.20

Screen Number		Fragment Definition	F	requency Percent
131	AS	C * C - C - S - S	#	0.48
132	AS	C - C * C - S - S	#	0.71
133	AS	C - C - C - S - S	#	1.20
134	AS	C C C Se	#	4.57
134	AS	C C C Si	#	4.57
134	AS	C C C Te	#	4.57
2083	AS	C C N C		61.18
135	AS	C * C - N * C		8.07
136	AS	C * C - N - C		18.27
<u>137</u> 138	AS AS	C - C * N - C C - C - N * C		8.60 14.80
139	AS AS	C - C - N - C		29.65
140	AS AS	C * C * N * C * C		30.93
141	AS	C * C - N * C - C		1.71
142	AS	C * C - N - C * C		1.80
143	AS	C * C - N - C - C		12.19
144	AS	C - C * N * C - C		3.03
141	AS	C - C * N - C * C		1.71
143	AS	C - C - N - C * C		12.19
145	AS	C - C - N - C - C		15.23
21	AS	C * C - N - C * C - Br	#	1.70
102	AS	C * C - N - C * C - Br	#	0.92
7	AS	C * C - N - C * C - C	#	6.85
102	AS	C * C - N - C * C - C	#	0.92
101	AS	C * C - N - C - C * C		4.57
21	AS	C * C - N - C * C - C1	#	1.70
102	AS	C * C - N - C * C - Cl C * C - N - C * C - F	#	0.92
21 102	AS AS	C * C - N - C * C - F C * C - N - C * C - F	#	1.70 0.92
21	AS	C * C - N - C * C - I	#	1.70
102	AS	C * C - N - C * C - I	#	0.92
146	AS	C * C * N * C * C * N	"	6.79
26	AS	C * C - N - C * C - N	#	1.63
102	AS	C * C - N - C * C - N	#	0.92
147	AS	C * C - N - C - C - N		1.84
148	AS	C * C * N * C * C * O	#	3.85
38	AS	C * C - N - C * C - O	#	5.99
102	AS	C * C - N - C * C - O	#	0.92
149	AS	C * C - N - C - C - O	#	2.49
148	AS	C * C * N * C * C * S	#	3.85
38	AS	C * C - N - C * C - S	#	5.99
102	AS	C * C - N - C * C - S	#	0.92
149 150	AS AS	C * C - N - C - C - S C * C * N * C * N	#	2.49 12.29
151	AS AS	C * C - N - C * N		1.72
152	AS	C * C - N - C - N		2.36
153	AS	C - C * N * C * N		5.44
154	AS	C - C * N * C - N		2.20
155	AS	C - C - N - C - N		3.79
156	AS	C * C - N - C - N - C		1.65
157	AS	C * C * N * C * O	#	6.29
158	AS	C * C - N * C - O	#	3.59
159	AS	C * C - N - C * O	#	0.71
160	AS	C * C - N - C - O	#	11.07
161	AS	C - C * N * C * O	#	3.21

Screen Number		Fragment Definition	F	requency Percent
162	AS	C - C * N * C - O	#	4.84
163	AS	C - C * N - C - O	#	2.74
164	AS	C - C - N - C - O	#	13.37
165	AS	C * C - N - C - O - C	#	0.83
157	AS	C * C * N * C * S	#	6.29
158	AS	C * C - N * C - S	#	3.59
159	AS	C * C - N - C * S	#	0.71
160	AS	C * C - N - C - S	#	11.07
161	AS	C - C * N * C * S	#	3.21
162	AS	C - C * N * C - S	#	4.84
163	AS	C - C * N - C - S	#	2.74
164	AS	C - C - N - C - S	#	13.37
165	AS	C * C - N - C - S - C	#	0.83
2085	AS	C C N N	#	26.07
166	AS	C * C - N * N		1.79
167	AS	C * C - N - N		2.67
168	AS	C - C * N * N		4.81
169	AS	C - C - N - N		3.78
170	AS	C - C * N * N - C		1.83
171	AS	C - C - N - N - C		2.85
172	AS	C * C - N - N - C * C		1.18
2085	AS	C C N O	#	26.07
173	AS	C * C * N * O	#	1.32
174	AS	C * C - N - O	#	6.36
175	AS	C - C * N - O	#	0.56
176	AS	C - C - N - O	#	3.06
177	AS	C * C - N - O - C	#	1.40
178	AS	C - C - N - O - C	#	2.11
179	AS	C * C - N - O - O	#	1.31
179	AS	C * C - N - O - S C C N S	# #	1.31
2085	AS			26.07
173 174	AS AS	C * C * N * S C * C - N - S	# #	6.36
175	AS AS	C - C * N - S	#	0.56
176	AS	C - C - N - S	#	3.06
$\frac{170}{177}$	AS	C * C - N - S - C	#	1.40
178	AS	C - C - N - S - C	#	2.11
179	AS	C * C - N - S - O	#	1.31
179	AS	C * C - N - S - S	#	1.31
196	AS	C C O Br	#	0.10
2084	AS	C C O C	#	55.24
180	AS	C * C - O - C	#	26.47
181	AS	C * C * O * C * C	#	17.85
182	AS	C * C - O - C * C	#	3.48
183	AS	C * C - O - C - C	#	14.37
184	AS	C - C * O * C - C	#	2.61
183	AS	C - C - O - C * C	#	14.37
185	AS	C - C - O - C - C	#	13.52
186	AS	C C O C C Br	#	2.66
21	AS	C * C - O - C * C - Br	#	1.70
126	AS	C * C - O - C * C - Br	#	2.20
7	AS	C * C - O - C * C - C	#	6.85
126	AS	C * C - O - C * C - C	#	2.20
125	AS	C * C - O - C - C * C	#	4.07
127	AS	C * C - O - C - C - C	#	5.20

Screen Number		Fragment Definition	F	requency Percent
186	AS	C C O C C Cl	#	2.66
21	AS	C * C - O - C * C - Cl	#	1.70
126	AS	C * C - O - C * C - Cl	#	2.20
186	AS	C C O C C F	#	2.66
21	AS	C * C - O - C * C - F	#	1.70
126	AS	C * C - O - C * C - F	#	2.20
186	AS	C C O C C I	#	2.66
21	AS	C * C - O - C * C - I	#	1.70
126	AS	C * C - O - C * C - I	#	2.20
26	AS	C * C - O - C * C - N	#	1.63
126 38	AS AS		#	2.20 5.99
36 126	AS AS	C * C - O - C * C - O C * C - O - C * C - O	#	2.20
187	AS AS	C * C - O - C - C - O	#	3.29
38	AS AS	C * C - O - C * C - S	#	5.99
126	AS	C * C - O - C * C - S	#	2.20
187	AS	C * C - O - C - C - S	#	3.29
188	AS	C * C - O - C * N	#	0.61
189	AS	C * C - O - C - N	#	0.58
190	AS	C - C * O * C * N	#	2.79
191	AS	C - C * O * C - N	#	2.04
192	AS	C * C - O - C * O	#	1.20
193	AS	C * C - O - C - O	#	4.71
194	AS	C - C * O * C - O	#	3.38
195	AS	C - C - O - C - O	#	13.48
192	AS	C * C - O - C * S	#	1.20
193	AS	C * C - O - C - S	#	4.71
194	AS	C - C * O * C - S	#	3.38
195	AS	C - C - O - C - S	#	13.48
196	AS	C C O Cl	#	0.10
196	AS	C C O F	#	0.10
196 2085	AS AS	C C O I C C O N	# #	0.10 26.07
2065 197	AS AS	C C O N C * C - O - N	#	3.51
197	AS AS	C - C * O * N	#	0.77
199	AS AS	C - C - O - N	#	1.12
200	AS	C * C - O - N - C	#	2.34
2085	AS	C C O O	#	26.07
201	AS	C * C - O - O	#	6.11
202	AS	C - C - O - O	#	2.21
203	AS	C * C - O - O - C * C	#	0.20
2085	AS	C C O S	#	26.07
201	AS	C * C - O - S	#	6.11
202	AS	C - C - O - S	#	2.21
203	AS	C * C - O - S - C * C	#	0.20
196	AS	C C S Br	#	0.10
2084	AS	C C S C	#	55.24
180	AS	C * C - S - C	#	26.47
181	AS	C * C * S * C * C	#	17.85
182	AS	C * C - S - C * C	#	3.48
183	AS	C * C - S - C - C C - C * S * C - C	#	14.37
184	AS	C - C * S * C - C C - C - S - C * C	#	2.61
183 185	AS AS	C - C - S - C - C	# #	14.37 13.52
186	AS AS	C C S C C Br	#	2.66
±00	AD	С С В С С ВІ	11	2.00

21	Screen Number		Fragment Definition	F	requency Percent
126	21	AS	C * C - S - C * C - Br	#	1.70
7 AS	126	AS	C * C - S - C * C - Br		2.20
125 AS	7	AS	C * C - S - C * C - C		6.85
127 AS C * C - S - C - C - C - C # 2.60 186 AS C C S - C - C - C - C # 2.66 21 AS C * C - S - C * C - C - C # 2.20 186 AS C * C - S - C * C - C - E # 2.66 21 AS C * C - S - C * C - F # 2.66 21 AS C * C - S - C * C - F # 2.20 186 AS C * C - S - C * C - F # 2.20 186 AS C * C - S - C * C - F # 2.20 186 AS C * C - S - C * C - I # 1.70 126 AS C * C - S - C * C - I # 2.66 21 AS C * C - S - C * C - I # 2.20 186 AS C * C - S - C * C - I # 2.20 26 AS C * C - S - C * C - N # 1.63 126 AS C * C - S - C * C - N # 2.20 38 AS C * C - S - C * C - N # 2.20 38 AS C * C - S - C * C - O # 5.99 126 AS C * C - S - C * C - C - O # 3.29 38 AS C * C - S - C * C - S # 2.20 187 AS C * C - S - C * C - S # 3.29 126 AS C * C - S - C * C - S # 3.29 </td <td>126</td> <td>AS</td> <td>C * C - S - C * C - C</td> <td></td> <td>2.20</td>	126	AS	C * C - S - C * C - C		2.20
186	125	AS	C * C - S - C - C * C	#	4.07
AS	127	AS	C * C - S - C - C - C	#	5.20
126	186	AS	C C S C C Cl	#	2.66
186		AS			
21					
126 AS C * C S C * C F # 2.20 186 AS C C C I # 2.66 21 AS C * C - S - C * C I # 1.70 126 AS C * C - S - C * C N # 1.63 126 AS C * C - S - C * C N # 2.20 38 AS C * C - S - C * C N # 2.20 38 AS C * C - S - C * C N # 2.20 187 AS C * C - S - C * C O # 2.20 187 AS C * C - S - C - C S # 2.20 188 AS C * C - S - C - S # 2.20 188 AS C <					
186 AS C C S C C I # 2.66 21 AS C C C S C I # 1.70 26 AS C C C S C C N # 2.20 38 AS C C C S C C N # 2.20 38 AS C C C S C C O # 5.99 126 AS C C C S C C O # 3.29 38 AS C C C S C C O # 3.29 186 AS C C C S C C S # 5.99 126 AS C C C S C C S # 5.99 126 AS C C S C C S #					
21 AS C * C - S - C * C - I # 1.70 126 AS C * C - S - C * C - I # 2.20 26 AS C * C - S - C * C - N # 1.63 126 AS C * C - S - C * C - N # 2.20 38 AS C * C - S - C * C - O # 5.99 126 AS C * C - S - C - C - O # 3.29 38 AS C * C - S - C - C - O # 3.29 38 AS C * C - S - C - C - O # 3.29 38 AS C * C - S - C - C - O # 3.29 38 AS C * C - S - C - C - S # 5.99 126 AS C * C - S - C - C - S # 2.20 187 AS C * C - S - C - C - S # 3.29 188 AS C * C - S - C - C - S # 3.29 188 AS C * C - S - C - C - S # 2.20 189 AS C * C - S - C - N # 0.61 189 AS C * C - S - C - N # 2.04 192 AS C * C - S - C - N # 2.04 192 AS C * C - S - C - S - C N # 1					
126 AS C * C - S - C * C - N # 2.20 26 AS C * C - S - C * C - N # 1.63 126 AS C * C - S - C * C - N # 2.20 38 AS C * C - S - C * C - O # 5.99 126 AS C * C - S - C - C - O # 2.20 187 AS C * C - S - C - C - O # 3.29 38 AS C * C - S - C - C - S # 5.99 126 AS C * C - S - C - C - S # 2.20 187 AS C * C - S - C - C - S # 2.20 187 AS C * C - S - C - C - S # 2.20 187 AS C * C - S - C - C - S # 2.20 188 AS C * C - S - C - C - S # 3.29 188 AS C * C - S - C - C - S # 2.20 187 AS C * C - S - C - C - S # 2.20 189 AS C * C - S - C - N # 2.79 191 AS C - C - S * C - N # 2.04 192 AS C - C - S * C - N					
26 AS C * C - S - C * C - N # 1.63 126 AS C * C - S - C * C - N # 2.20 38 AS C * C - S - C * C - O # 5.99 126 AS C * C - S - C * C - O # 2.20 187 AS C * C - S - C * C - S # 5.99 126 AS C * C - S - C * C - S # 5.99 126 AS C * C - S - C * C - S # 2.20 187 AS C * C - S - C * C - S # 3.29 188 AS C * C - S - C - C * S # 2.20 187 AS C * C - S - C - C * S # 3.29 188 AS C * C - S - C - C * S # 2.20 187 AS C * C - S - C - S & C * N # 0.61 189 AS C * C - S - C - N # 0.61 189 AS C * C - S - C - N # 2.04 192 AS C * C - S - C - N # 2.04 192 AS C * C - S - C - S - C * O # 4.71 194 AS C - C - S - C - S - C * S # 1.20 193 AS C - C - S - C - S - C * S					
126 AS C * C - S - C * C - N # 2.20 38 AS C * C - S - C * C - O # 5.99 126 AS C * C - S - C - C - O # 3.29 38 AS C * C - S - C - C - O # 3.29 38 AS C * C - S - C * C - S # 5.99 126 AS C * C - S - C * C - S # 2.20 187 AS C * C - S - C * C - S # 3.29 188 AS C * C - S - C * N # 0.61 189 AS C * C - S - C - N # 0.61 189 AS C * C - S - C - N # 2.79 191 AS C - C * S * C - N # 2.79 191 AS C - C * S * C - N # 2.04 192 AS C * C - S - C - O # 4.71 194 AS C * C - S - C - O # 4.71 194 AS C - C - S - C - O # 13.48 195 AS C * C - S - C - S # 1.20 193 AS C * C - S - C - S # 1.20 193 AS C * C - S - C - S # 0.10					
38 AS C * C - S - C * C - O # 5.99 126 AS C * C - S - C * C - O # 2.20 187 AS C * C - S - C - C - O # 3.29 38 AS C * C - S - C * C - S # 5.99 126 AS C * C - S - C * C - S # 2.20 187 AS C * C - S - C * C - S # 3.29 188 AS C * C - S - C * N # 0.61 189 AS C * C - S - C * N # 0.61 189 AS C - C * S * C * N # 2.79 191 AS C - C * S * C * N # 2.04 192 AS C * C - S - C * O # 1.20 193 AS C * C - S - C * O # 1.71 194 AS C * C - S - C * O # 13.48 195 AS C - C * S * C * S * C * S # 1.20 193 AS C * C * S - C * S # 1.20 193 AS C * C * S * C * S # 1.348 195 AS C * C * S * C * S # 1.348 195 AS C * C * S * C * S # 1.348					
126 AS C * C - S - C * C - O # 2.20 187 AS C * C - S - C - C - O # 3.29 38 AS C * C - S - C * C - S # 5.99 126 AS C * C - S - C * C - S # 2.20 187 AS C * C - S - C - C - S # 3.29 188 AS C * C - S - C * N # 0.61 189 AS C * C - S - C - N # 0.58 190 AS C - C * S * C * N # 2.04 191 AS C - C * S * C - N # 2.04 192 AS C * C - S - C * O # 4.71 194 AS C * C - S - C - O # 3.38 195 AS C * C - S - C - O # 3.38 195 AS C * C - S - C - S # 1.20 193 AS C * C - S - C - S # 1.20 193 AS C * C - S - C - S # 1.348 192 AS C * C - S - C - S # 1.348 192 AS C * C - S - C - S # 4.71 194 AS C - C - S - C - S # 3.38					
187 AS C * C - S - C - C - O # 3.29 38 AS C * C - S - C * C - S # 5.99 126 AS C * C - S - C * C - S # 2.20 187 AS C * C - S - C * C - S # 3.29 188 AS C * C - S - C * N # 0.61 189 AS C * C - S - C * N # 0.58 190 AS C - C * S * C * N # 2.79 191 AS C - C * S * C - N # 2.04 192 AS C * C - S - C * O # 1.20 193 AS C * C - S * C - O # 4.71 194 AS C - C * S * C - O # 3.38 195 AS C - C * S * C - S # 1.20 193 AS C * C - S - C - S # 1.20 193 AS C * C - S - C - S # 1.348 195 AS C - C * S - C - S # 1.348 192 AS C * C - S - C - S # 3.38 195 AS C - C - S - C - S # 1.20					
38 AS C * C - S - C * C - S # 5.99 126 AS C * C - S - C * C - S # 2.20 187 AS C * C - S - C - C - S # 3.29 188 AS C * C - S - C - N # 0.61 189 AS C * C - S - C - N # 0.58 190 AS C - C * S * C - N # 2.79 191 AS C - C * S * C - N # 2.04 192 AS C * C - S - C * O # 1.20 193 AS C * C - S - C - O # 4.71 194 AS C - C * S * C - O # 3.38 195 AS C * C - S - C - S # 1.20 193 AS C * C - S - C - S # 1.20 193 AS C * C - S - C - S # 4.71 194 AS C - C - S - C - S # 4.71 194 AS C - C - S - C - S # 1.20 193 AS C * C - S - C - S # 1.20 194 AS C - C - S - C - S # 0.10 196 AS C - C - S - C - S # 0.10 196 <td></td> <td></td> <td></td> <td></td> <td></td>					
187 AS C * C - S - C - C - S # 3.29 188 AS C * C - S - C * N # 0.61 189 AS C * C - S - C - N # 0.58 190 AS C - C * S * C * N # 2.79 191 AS C - C * S * C - N # 2.04 192 AS C * C - S - C * O # 1.20 193 AS C * C - S - C - O # 4.71 194 AS C - C * S * C - O # 3.38 195 AS C - C - S - C - O # 1.20 193 AS C * C - S - C - S # 1.20 193 AS C * C - S - C - S # 1.20 193 AS C * C - S - C - S # 4.71 194 AS C * C - S - C - S # 4.71 194 AS C * C - S - C - S # 3.38 195 AS C * C - S - C - S # 3.38 195 AS C * C - S - C - S # 0.10 196 AS C C C S F # 0.10 196 AS C C C S F # 0.10 2085 AS					
188 AS C * C - S - C * N # 0.61 189 AS C * C - S - C - N # 0.58 190 AS C - C * S * C * N # 2.79 191 AS C - C * S * C - N # 2.04 192 AS C * C - S - C * O # 1.20 193 AS C * C - S - C - O # 4.71 194 AS C - C * S * C - O # 3.38 195 AS C - C - S - C - S # 1.20 193 AS C * C - S - C - S # 1.20 194 AS C - C - S - C - S # 4.71 194 AS C - C - S - C - S # 1.20 193 AS C * C - S - C - S # 13.48 192 AS C * C - S - C - S # 4.71 194 AS C - C - S - C - S # 3.38 195 AS C - C - S - C - S # 3.38 195 AS C - C - S - C - S # 3.38 195 AS C - C - S - C - S # 0.10 196 AS C - C - S - D # 0.10 196 A	126	AS	C * C - S - C * C - S	#	2.20
189 AS C * C - S - C - N # 0.58 190 AS C - C * S * C * N # 2.79 191 AS C - C * S * C - N # 2.04 192 AS C * C - S - C * O # 1.20 193 AS C * C - S - C - O # 4.71 194 AS C - C * S * C - O # 3.38 195 AS C - C - S - C - O # 13.48 192 AS C * C - S - C * S # 1.20 193 AS C * C - S - C * S # 1.20 193 AS C * C - S - C * S # 4.71 194 AS C - C - S - C * S # 4.71 194 AS C - C - S - C * S # 3.38 195 AS C - C - S - C * S # 3.38 196 AS C - C * S + C - S # 13.48 196 AS C C C S T # 0.10 196 AS C C C S T # 0.10 2085 AS C C C S N # 0.10 196	187	AS	C * C - S - C - C - S	#	3.29
190 AS C - C * S * C * N # 2.79 191 AS C - C * S * C - N # 2.04 192 AS C * C - S - C * O # 1.20 193 AS C * C - S - C - O # 4.71 194 AS C - C * S * C - O # 3.38 195 AS C - C - S - C - S # 1.20 193 AS C * C - S - C - S # 4.71 194 AS C - C - S - C - S # 4.71 194 AS C - C - S - C - S # 3.38 195 AS C - C - S - C - S # 4.71 194 AS C - C - S - C - S # 3.38 195 AS C - C - S - C - S # 3.38 195 AS C - C - S - C - S # 3.38 196 AS C C C S C C S H # 0.10 196 AS C C C S I M # 0.10 2085 AS C C C S N M # 26.07 197 AS C * C - S - N # 0.20 2085 AS C - C - S - N # 1.12 200 AS <td< td=""><td>188</td><td>AS</td><td>C * C - S - C * N</td><td>#</td><td>0.61</td></td<>	188	AS	C * C - S - C * N	#	0.61
191 AS C - C * S * C - N # 2.04 192 AS C * C - S - C * O # 1.20 193 AS C * C - S - C - O # 4.71 194 AS C - C * S * C - O # 3.38 195 AS C - C - S - C - O # 13.48 192 AS C * C - S - C * S # 1.20 193 AS C * C - S - C * S # 4.71 194 AS C - C * S * C - S # 3.38 195 AS C - C - S - C - S # 3.38 195 AS C - C - S - C - S # 4.71 194 AS C - C - S - C - S # 3.38 195 AS C - C - S - C - S # 3.38 196 AS C C C S C C S # 0.10 196 AS C C C S F # 0.10 196 AS C C C S I # 0.10 2085 AS C C C S N # 26.07 197 AS C * C - S - N # 3.51 198 AS C - C - S - N # 1.12 200 AS C * C - S - N	189	AS	C * C - S - C - N		
192 AS C * C - S - C * O # 1.20 193 AS C * C - S - C - O # 4.71 194 AS C - C * S * C - O # 3.38 195 AS C - C - S - C - O # 13.48 192 AS C * C - S - C * S # 1.20 193 AS C * C - S - C * S # 4.71 194 AS C - C * S * C - S # 3.38 195 AS C - C * S * C - S # 3.38 195 AS C - C * S * C - S # 3.38 195 AS C - C * S * C - S # 3.38 196 AS C C C S C					
193 AS C * C - S - C - O # 4.71 194 AS C - C * S * C - O # 3.38 195 AS C - C - S - C - O # 13.48 192 AS C * C - S - C - S - C * S # 1.20 193 AS C * C - S - C - S - C - S # 4.71 194 AS C - C * S * C - S - C - S # 3.38 195 AS C - C * S - C - S - S # 3.38 195 AS C - C * S - C - S - S # 3.38 196 AS C C C S C - S - C - S # 13.48 196 AS C C C S F + D - D - D - D - D - D - D - D - D - D					
194 AS C - C * S * C - O # 3.38 195 AS C - C - S - C - O # 13.48 192 AS C * C - S - C - S # 1.20 193 AS C * C - S - C - S # 4.71 194 AS C - C * S * C - S # 3.38 195 AS C - C - S - C - S # 3.38 196 AS C C C S Cl # 0.10 196 AS C C C S F # 0.10 196 AS C C C S I # 0.10 196 AS C C C S I # 26.07 197 AS C C C S N # 26.07 197 AS C * C - S - N # 3.51 198 AS C - C - S - N # 1.12 200 AS C - C - S - N # 1.12 200 AS C - C - S - N - C # 2.34 2085 AS C - C - S - N - C # 2.34 2085 AS C - C - S - O - C * C # 0.20 2085 AS C - C - S - S - S - C * C # 26.07 201 AS C * C - S -					
195 AS C - C - S - C - O # 13.48 192 AS C * C - S - C * S # 1.20 193 AS C * C - S - C - S # 4.71 194 AS C - C * S * C - S # 3.38 195 AS C - C - S - C - S # 13.48 196 AS C C C S Cl # 0.10 196 AS C C C S F # 0.10 196 AS C C C S I # 0.10 196 AS C C C S I # 0.10 2085 AS C C C S N # 26.07 197 AS C * C - S - N # 3.51 198 AS C - C - S - N # 0.77 199 AS C - C - S - N # 1.12 200 AS C * C - S - N - C # 2.34 2085 AS C C C S O # 26.07 201 AS C * C - S - O # 6.11 202 AS C - C - S - O # 2.21 203 AS C * C - S - S - S # 26.07 201 AS C * C - S - S - S # 26.07					
192 AS C * C - S - C * S # 1.20 193 AS C * C - S - C - S # 4.71 194 AS C - C * S * C - S # 3.38 195 AS C - C - S - C - S # 13.48 196 AS C C S Cl # 0.10 196 AS C C C S I # 0.10 196 AS C C C S I # 0.10 2085 AS C C C S N # 26.07 197 AS C * C - S - N # 3.51 198 AS C - C - S - N # 0.77 199 AS C - C - S - N # 1.12 200 AS C * C - S - N - C # 2.34 2085 AS C C C S O # 26.07 201 AS C * C - S - O # 26.07 201 AS C * C - S - O # 26.07 201 AS C * C - S - O # 6.11 202 AS C - C - S - O # 2.21 203 AS C * C - S - S - S # 26.07 201 AS C * C - S - S - S # 26.07<					
193 AS C * C - S - C - S # 4.71 194 AS C - C * S * C - S # 3.38 195 AS C - C - S - C - S # 13.48 196 AS C C S CI # 0.10 196 AS C C C S F # 0.10 196 AS C C C S I # 0.10 2085 AS C C C S N # 26.07 197 AS C * C - S - N # 3.51 198 AS C - C * S * N # 0.77 199 AS C - C - S - N - C # 2.34 200 AS C * C - S - N - C # 26.07 201 AS C * C - S - N - C # 26.07 201 AS C * C - S - O - N - C # 26.07 201 AS C * C - S - O - C * C # 0.20 2085 AS C - C - S - O - C * C # 0.20 2085 AS C * C - S - S - S - S + C * C # 0.20 2085 AS C * C - S - S - S - S + C * C # 0.20 2085 AS C * C - S - S - S - C * C # 0.20 2085					
194 AS C - C * S * C - S # 3.38 195 AS C - C - S - C - S # 13.48 196 AS C C S CI # 0.10 196 AS C C S F # 0.10 196 AS C C S I # 0.10 2085 AS C C S N # 26.07 197 AS C * C - S - N # 3.51 198 AS C - C * S * N # 0.77 199 AS C - C - S - N # 1.12 200 AS C * C - S - N - C # 2.34 2085 AS C C C S O # 26.07 201 AS C * C - S - O # 6.11 202 AS C - C - S - O # 2.21 203 AS C * C - S - O - C * C # 0.20 2085 AS C C C S S S # 26.07 201 AS C * C - S - S - S S # 26.07 201 AS C * C - S - S - S S # 26.07 201 AS C * C - S - S - S S # 26.07 201 AS C * C - S - S - S S - C * C					
195 AS C - C - S - C - S # 13.48 196 AS C C S C S F # 0.10 196 AS C C S I # 0.10 196 AS C C S I # 0.10 2085 AS C C S N # 26.07 197 AS C * C - S - N # 3.51 198 AS C - C * S * N # 0.77 199 AS C - C - S - N # 1.12 200 AS C * C - S - N - C # 2.34 2085 AS C C C S O # 26.07 201 AS C * C - S - O # 26.07 201 AS C * C - S - O # 2.21 203 AS C * C - S - O # 2.21 203 AS C * C - S - S - S # 26.07 201 AS C * C - S - S - S # 26.07 201 AS C * C - S - S - S # 26.07 201 AS C * C - S - S - S # 26.07 201 AS C * C - S - S - S # 26.07 201 AS C * C - S - S - S # 2.					
196 AS C C S C1 # 0.10 196 AS C C S F # 0.10 196 AS C C S I # 0.10 2085 AS C C S N # 26.07 197 AS C C S N # 26.07 198 AS C C S N # 0.77 199 AS C C C S N # 1.12 200 AS C C C S N # 2.34 2085 AS C C S O # 2.34 201 AS C C C S O # 26.07 201 AS C C C S C # 0.20 2085 AS C C C S C # 0.20					
196 AS C C S F # 0.10 196 AS C C S I # 0.10 2085 AS C C S N # 26.07 197 AS C C C S N # 0.77 198 AS C C C S N # 0.77 199 AS C C C S N # 0.77 199 AS C C C S N # 1.12 200 AS C C S N # 2.34 2085 AS C C S O # 26.07 201 AS C C C S S # 26.07 201 AS C C S S # 26.07 201 AS C C C S S # 26.07					
196 AS C C S I # 0.10 2085 AS C C S N # 26.07 197 AS C * C S N # 3.51 198 AS C C C S N # 0.77 199 AS C C C S N # 1.12 200 AS C * C S N # 2.34 200 AS C C S O # 26.07 201 AS C C S O # 26.07 201 AS C C C S S # 26.07 201 AS C C C S S # 26.07 201 AS C C C S S # 26.07 201 AS C C C S S		AS			0.10
197 AS C * C - S - N # 3.51 198 AS C - C * S * N # 0.77 199 AS C - C - S - N # 1.12 200 AS C * C - S - N - C # 2.34 2085 AS C C S O # 26.07 201 AS C * C - S - O # 6.11 202 AS C - C - S - O - C * C # 0.20 2085 AS C C C S S # 26.07 201 AS C * C - S - S - S - W # 6.11 202 AS C C C S S S # 26.07 201 AS C * C - S - S - S - W # 6.11 202 AS C - C - S - S - S - S - W # 2.21 203 AS C * C - C - S - S - S - C * C # 0.20 2083 AS C * C - S - S - S - C * C # 0.20 2083 AS C * N - C * C 8.07 138 AS C * N - C - C 14.80			C C S I		
198 AS C - C * S * N # 0.77 199 AS C - C - S - N # 1.12 200 AS C * C - S - N - C # 2.34 2085 AS C C S O # 26.07 201 AS C * C - S - O # 6.11 202 AS C - C - S - O # 2.21 203 AS C * C - S - O - C * C # 0.20 2085 AS C C C S S # 26.07 201 AS C * C - S - S - S # 6.11 202 AS C - C - S - S - S # 2.21 203 AS C * C - S - S - S # 2.21 203 AS C * C - S - S - S - C * C # 0.20 2083 AS C * N - C - C * C 8.07 138 AS C * N - C - C 14.80	2085	AS	C C S N	#	26.07
199 AS C - C - S - N # 1.12 200 AS C * C - S - N - C # 2.34 2085 AS C C S O # 26.07 201 AS C * C - S - O # 6.11 202 AS C - C - S - O # 2.21 203 AS C * C - S - O - C * C # 0.20 2085 AS C C C S S S # 26.07 201 AS C * C - S - S - S # 6.11 202 AS C - C - S - S - S # 2.21 203 AS C * C - S - S - S - C * C # 0.20 2083 AS C N C C S - S - S - C * C # 0.20 2083 AS C N C C S - S - S - C * C # 0.20 138 AS C * N - C - C # 0.20	197	AS			
200 AS C * C - S - N - C # 2.34 2085 AS C C S O # 26.07 201 AS C * C - S - O # 6.11 202 AS C - C - S - O - C * C # 0.20 203 AS C * C - S - S - O - C * C # 0.20 2085 AS C C S S S # 26.07 201 AS C * C - S - S - S # 6.11 202 AS C - C - S - S - S # 2.21 203 AS C * C - C - S - S - C * C # 0.20 2083 AS C N C C S C & S - S - C * C # 0.20 2083 AS C * N - C * C & S - S - C * C # 0.20 138 AS C * N - C * C & S - S - C * C # 0.20					
2085 AS C C S O # 26.07 201 AS C * C S O # 6.11 202 AS C C C S O # 2.21 203 AS C * C S S # 26.07 201 AS C C S S # 26.07 201 AS C * C S S # 26.07 201 AS C * C S S # 26.07 201 AS C * C S S # 26.07 201 AS C * C S S # 20.11 202 AS C * C S S - # 20.21 203 AS C * C C * 61.18 135 AS C * N					
201 AS C * C - S - O # 6.11 202 AS C - C - S - O # 2.21 203 AS C * C - S - O - C * C # 0.20 2085 AS C C S S S # 26.07 201 AS C * C - S - S - S # 6.11 202 AS C - C - S - S - S # 2.21 203 AS C * C - S - S - C * C # 0.20 2083 AS C N C C 61.18 135 AS C * N - C * C 8.07 138 AS C * N - C - C 14.80					
202 AS C - C - S - O # 2.21 203 AS C * C - S - O - C * C # 0.20 2085 AS C C S S S # 26.07 201 AS C * C - S - S - S # 6.11 202 AS C - C - S - S - S # 2.21 203 AS C * C - S - S - C * C # 0.20 2083 AS C N C C 61.18 135 AS C * N - C * C 8.07 138 AS C * N - C - C 14.80					
203 AS C * C - S - O - C * C # 0.20 2085 AS C C S S S # 26.07 201 AS C * C - S - S - S # 6.11 202 AS C - C - S - S - S + C * C # 0.20 203 AS C * C - S - S - C * C # 0.20 2083 AS C N C C + C + C + C + C + C + C + C + C					
2085 AS C C S S # 26.07 201 AS C C S S # 6.11 202 AS C C C S - S - C 1 2.21 203 AS C C C C 0.20 61.18 2083 AS C N C C 8.07 135 AS C N C C 14.80					
201 AS C * C - S - S # 6.11 202 AS C - C - S - S # 2.21 203 AS C * C - S - S - C * C # 0.20 2083 AS C N C C 61.18 135 AS C * N - C * C 8.07 138 AS C * N - C - C 14.80					
202 AS C - C - S - S # 2.21 203 AS C * C - S - S - C * C # 0.20 2083 AS C N C C 61.18 135 AS C * N - C * C 8.07 138 AS C * N - C - C 14.80					
203 AS C * C - S - S - C * C # 0.20 2083 AS C N C C 61.18 135 AS C * N - C * C 8.07 138 AS C * N - C - C 14.80					
2083 AS C N C C 61.18 135 AS C * N - C * C 8.07 138 AS C * N - C - C 14.80					
135 AS C * N - C * C 138 AS C * N - C - C				"	
138 AS C * N - C - C 14.80					

Screen Number		Fragment Definition	Frequency Percent
136	AS	C - N - C * C	18.27
139	AS	C - N - C - C	29.65
212	AS	C N C C Br	# 4.26
96	AS	C * N - C - C * C	4.61
100	AS	C * N - C - C - C	7.00
98	AS	C - N * C * C - C	5.92
99	AS	C - N - C * C - C	1.84
97	AS	C - N - C - C * C	12.91
62	AS	C * N - C - C - C * C	1.14
64	AS	C - N * C * C * C - C	5.71
65	AS	C - N - C * C * C - C	2.97
66	AS	C - N - C - C * C - C	1.27
63	AS	C - N - C - C - C * C	5.95
204	AS	C * N - C * C * C * N	0.75
205 206	AS	C * N - C - C - C - N C - N * C * C - C - N	0.86
207	AS AS	C - N * C * C - C - N C - N - C * C * C - N	0.82
207	AS AS	C - N * C * C * C - N	# 3.76
209	AS AS	C - N - C * C * C - O	# 2.16
210	AS	C - N - C * C - C - O	# 1.11
211	AS	C - N - C - C * C - O	# 1.57
208	AS	C - N * C * C * C - S	# 3.76
209	AS	C - N - C * C * C - S	# 2.16
210	AS	C - N - C * C - C - S	# 1.11
211	AS	C - N - C - C * C - S	# 1.57
212	AS	C N C C Cl	# 4.26
212	AS	C N C C F	# 4.26
212	AS	C N C C I	# 4.26
213	AS	C * N - C * C * N	0.36
214	AS	C * N - C - C - N	3.24
215	AS	C - N * C * C * N	6.81
216	AS	C - N * C * C - N	1.18
217	AS	C - N * C - C - N	2.43
218	AS	C - N - C * C - N	0.85
219	AS	C - N - C - C - N	7.91
220	AS	C - N * C * C * N - C	2.77
221	AS	C N C C N N	2.85
222	AS	C - N - C * C - N - O	# 0.32
222	AS	C - N - C * C - N - S	# 0.32
223	AS	C * N - C * C - O	# 0.96
224	AS	C * N - C - C - O	# 2.89
225	AS	C - N * C * C * O	# 3.33
226	AS	C - N * C * C - O	# 1.88
227	AS	C - N * C - C - O	# 2.68
228	AS	C - N - C * C - O	# 3.06
229	AS	C - N - C - C - O	# 12.06
230 223	AS	C - N - C * C - O - C C * N - C * C - S	# 1.28
223 224	AS AS	C * N - C - C - S C * N - C - C - S	# 0.96 # 2.89
224	AS AS	C - N + C + C + S	# 2.89 # 3.33
226	AS AS	C - N * C * C - S	# 1.88
227	AS AS	C - N * C - C - S	# 2.68
228	AS AS	C - N - C * C - S	# 3.06
229	AS	C - N - C - C - S	# 12.06
230	AS	C - N - C * C - S - C	# 1.28
			1.20

Screen Number		Fragment Definition	F	requency Percent
2086	AS	C N C N	#	30.95
231	AS	C * N - C * N		1.29
232	AS	C * N - C - N		0.93
233	AS	C - N * C * N		7.12
234	AS	C - N - C * N		4.77
235	AS	C - N - C - N		5.46
236	AS	C - N * C * N - C		1.19
237	AS	C - N - C - N - C		2.24
156	AS	C - N - C - N - C * C C * N * C * N * C * N		1.65
238	AS AS	C * N * C * N * C * N C N C O	#	<u>2.92</u> 39.80
239	AS AS	C * N - C * O	#	1.30
240	AS	C * N - C - O	#	5.80
241	AS	C - N * C * O	#	1.96
242	AS	C - N * C - O	#	8.74
243	AS	C - N - C - O	#	23.15
244	AS	C * N - C - O - C	#	1.06
245	AS	C - N * C - O - C	#	1.08
246	AS	C - N - C - O - C	#	3.12
2087	AS	C N C S	#	39.80
239	AS	C * N - C * S	#	1.30
240	AS	C * N - C - S	#	5.80
241	AS	C - N * C * S	#	1.96
242	AS	C - N * C - S	#	8.74
243	<u>AS</u>	<u>C - N - C - S</u>	#	23.15
244	AS	C * N - C - S - C	#	1.06
245	AS	C - N * C - S - C C - N - C - S - C	#	1.08
246 2093	AS AS	C - N - C - S - C C N N C	#	3.12 24.67
247	AS	C - N * N - C	#	0.23
248	AS	C - N - N - C		4.27
170	AS	C - N * N * C - C		1.83
171	AS	C - N - N - C - C		2.85
249	AS	C - N * N * C - O	#	0.35
249	AS	C - N * N * C - S	#	0.35
250	AS	C N N N		1.47
2092	AS	C N O C	#	13.08
251	AS	C * N - O - C	#	1.09
252	AS	C - N - O - C	#	3.76
200	AS	C - N - O - C * C	#	2.34
2092	AS	C N O O	#	13.08
253	AS	C * N - O - O	#	0.97
254 255	AS AS	C - N - O * O C - N - O - O	#	0.00 2.96
2092	AS	C - N - O - O C N O S	# #	13.08
253	AS	C * N - O - S	#	0.97
254	AS	C - N - O * S	#	0.00
255	AS	C - N - O - S	#	2.96
2092	AS	C N S C	#	13.08
251	AS	C * N - S - C	#	1.09
252	AS	C - N - S - C	#	3.76
200	AS	C - N - S - C * C	#	2.34
2092	AS	C N S O	#	13.08
253	AS	C * N - S - O	#	0.97
254	AS	C - N - S * O	#	0.00

Screen Number		Fragment Definition	F	requency Percent
255	AS	C - N - S - O	#	2.96
2092	AS	C N S S	#	13.08
253	AS	C * N - S - S	#	0.97
254	AS	C - N - S * S	#	0.00
255	AS	C - N - S - S	#	2.96
2084	AS	C O C C	#	55.24
180	AS	C - O - C * C	#	26.47
265	AS	C - O - C * C - Br	#	1.77
123	AS	C - O - C * C - C	#	6.93
122	AS	<u>C - 0 - C - C * C</u>	#	13.92
124 256	AS AS	C - O - C - C C O C C Br	#	16.58 3.02
82	AS AS	C O C C C Br C-O-C*C*C-C	#	3.02 7.34
84	AS AS	C - O - C * C - C - C	#	1.91
83	AS	C - O - C - C * C - C	#	2.79
81	AS	C - O - C - C - C * C	#	2.56
256	AS	C O C C Cl	#	3.02
256	AS	C O C C F	#	3.02
256	AS	C O C C C I	#	3.02
257	AS	C - O - C * C * C - N	#	1.86
258	AS	C - O - C * C - C - N	#	1.12
259	AS	C - O - C - C * C - N	#	0.72
260	AS	C - O - C - C - C - N	#	2.88
261	AS	C - O - C * C * C - O	#	4.46
262	AS	C - O - C * C - C - O	#	2.33
263	AS	C - O - C - C * C - O	#	2.05
264	AS	C - O - C - C - C - O	#	3.09
261	AS	C - O - C * C * C - S	#	4.46
262	AS	C - O - C * C - C - S	#	2.33
263 264	AS AS	C - O - C - C * C - S C - O - C - C - C - S	#	2.05 3.09
265	AS AS	C - O - C - C - C - S C - O - C * C - Cl	#	1.77
265	AS AS	C - O - C * C - F	#	1.77
265	AS	C - O - C * C - I	#	1.77
266	AS	C - O - C * C * N	#	1.56
267	AS	C - O - C * C - N	#	2.37
268	AS	C - O - C - C * N	#	1.79
269	AS	C - O - C - C - N	#	6.99
230	AS	C - O - C * C - N - C	#	1.28
270	AS	C O C C N N	#	2.19
271	AS	C - O - C * C - N - O	#	0.42
271	AS	C - O - C * C - N - S	#	0.42
272	AS	C - O - C * C - O	#	6.16
273	AS	C - O - C - C - O	#	8.01
272	AS	C - O - C * C - S	#	6.16
273	AS	C - O - C - C - S	#	8.01
2086	AS	C O C N	#	30.95
2093 274	AS	C O C N C - O - C * N	# #	24.67 3.68
27 4 275	AS AS	C - O - C - N	#	4.54
245	AS	C - O - C - N - C	#	1.08
244	AS	C - O - C - N * C	#	1.06
246	AS	C - O - C - N - C	#	3.12
165	AS	C - O - C - N - C * C	#	0.83
276	AS	C - O - C * N * N	#	1.23

Screen Number		Fragment Definition	F	requency Percent
2088 2094	AS AS	C O C O C O C O	# #	27.26 27.26
277	AS	C - O - C * O	#	2.86
278	AS	C - O - C - O - C	#	1.42
2088	AS	C O C S	#	27.26
2094	AS	C O C S	#	27.26
277	AS	C - O - C * S	#	2.86
278	AS	C - O - C - S - C	#	1.42
2092 251	AS AS	C O N C C - O - N * C	# #	13.08 1.09
252	AS AS	C - O - N * C C - O - N - C	#	3.76
177	AS	C - O - N - C * C	#	1.40
178	AS	C - O - N - C - C	#	2.11
279	AS	C O N O	#	0.17
279	AS	C O N S	#	0.17
2092	AS	C O O C	#	13.08
2093	AS	C O O C	#	24.67
280	AS	C - O - O - C	#	0.81
281 282	AS	C O O N C O O O	# #	0.09
282	AS AS	C O O O C	#	1.03
2092	AS	C O S C	#	13.08
2093	AS	C O S C	#	24.67
280	AS	C - O - S - C	#	0.81
281	AS	C O S N	#	0.09
282	AS	C O S O	#	1.03
282	AS	C O S S	#	1.03
2084	AS	C S C C	#	55.24
180 265	AS AS	C - S - C * C C - S - C * C - Br	# #	26.47 1.77
123	AS AS	C - S - C * C - B1	#	6.93
122	AS	C - S - C - C * C	#	13.92
124	AS	C - S - C - C - C	#	16.58
256	AS	C S C C C Br	#	3.02
82	AS	C - S - C * C * C - C	#	7.34
84	AS	C - S - C * C - C - C	#	1.91
83	AS	C - S - C - C * C - C	#	2.79
81 256	AS AS	C - S - C - C + C C S C C C C1	# #	2.56 3.02
256	AS AS	C S C C C F	#	3.02
256	AS	C S C C C I	#	3.02
257	AS	C - S - C * C * C - N	#	1.86
258	AS	C - S - C * C - C - N	#	1.12
259	AS	C - S - C - C * C - N	#	0.72
260	AS	C - S - C - C - N	#	2.88
261	AS	C - S - C * C * C - O	#	4.46
262	AS	C - S - C * C - C - O	#	2.33
263 264	AS AS	C - S - C - C * C - O C - S - C - C - C - O	# #	2.05 3.09
261	AS AS	C - S - C - C - C - O	#	4.46
262	AS	C - S - C * C - C - S	#	2.33
263	AS	C - S - C - C * C - S	#	2.05
264	AS	C - S - C - C - C - S	#	3.09
265	AS	C - S - C * C - Cl	#	1.77
265	AS	C - S - C * C - F	#	1.77

Screen Number		Fragment Definition	F	requency Percent
265	AS	C - S - C * C - I	#	1.77
266	AS	C - S - C * C * N	#	1.56
267	AS	C - S - C * C - N	#	2.37
268	AS	C - S - C - C * N	#	1.79
269	AS	C - S - C - C - N	#	6.99
230	AS	C - S - C * C - N - C	#	1.28
270	AS	C S C C N N	#	2.19
271	AS	C - S - C * C - N - O	#	0.42
271	AS	C - S - C * C - N - S	#	0.42
272	AS	C - S - C * C - O	#	6.16
273	AS	C - S - C - C - O	#	8.01
272	AS	C - S - C * C - S	#	6.16
273	AS	C - S - C - C - S	#	8.01
2086	AS	C S C N	#	30.95
2093	AS	C S C N	#	24.67
274	AS	C - S - C * N	#	3.68
275	AS	C - S - C - N	#	4.54
245	AS	C - S - C * N - C	#	1.08
244	AS	C - S - C - N * C	#	1.06
246	AS	C - S - C - N - C	#	3.12
165	AS	C - S - C - N - C * C	#	0.83
276	AS	C - S - C * N * N	#	1.23
2088	AS	C S C O	#	27.26
2094	AS	C S C O	#	27.26
277	AS	C - S - C * O	#	2.86
278	AS	C - S - C - O - C	#	1.42
2088	AS	C S C S	#	27.26
2094	AS	C S C S	#	27.26
277	AS	C - S - C * S	#	2.86
278	AS	C - S - C - S - C	#	1.42
2092	AS	C S N C	#	13.08
251	AS	C - S - N * C	#	1.09
252	AS	C - S - N - C	#	3.76
177	AS	C - S - N - C * C	#	1.40
178	AS	C - S - N - C - C	#	2.11
279	AS	C S N O	#	0.17
279	AS	C S N S	#	0.17
2092	AS	C S O C	#	13.08
2093	AS	C S O C	#	24.67
280	AS	C - S - O - C	#	0.81
281	AS	C S O N	#	0.09
282	AS	C S O O	#	1.03
282	AS	C S O S	#	1.03
2092	AS	C S S C	#	13.08
2093	AS	C S S C	#	24.67
280	AS	C - S - S - C	#	0.81
281	AS	C S S N	#	0.09
282	AS	C S S O	#	1.03
282	AS	C S S S	#	1.03
331	AS	Cl C C As	#	1.39
331	AS	Cl C C B	#	1.39
312	AS	Cl- C * C - Br	#	2.00
313	AS	Cl- C - C - Br	#	0.90
88	AS	Cl- C * C - C	#	4.80
87	AS	Cl- C - C * C	#	3.30

Screen Number		Fragment Definition	Fı	requency Percent
89	AS	Cl- C - C - C	#	2.86
311	AS	Cl C C C As	#	1.14
311	AS	Cl C C B	#	1.14
292	AS	Cl- C * C * C - Br	#	3.37
293	AS	Cl- C * C - C - Br	#	0.20
293	AS	Cl- C - C * C - Br	#	0.20
294	AS	Cl- C - C - C - Br	#	0.74
49	AS	Cl- C * C * C - C	#	4.52
6	AS	Cl- C * C - C * C	#	7.08
21	AS	Cl- C * C - C * C	#	1.70
50	AS	Cl- C * C - C - C	#	1.14
48	AS	Cl- C - C - C * C	#	0.77
51	AS	C1- C - C - C - C	#	1.49
291	AS	Cl C C C As	#	0.79
291	AS	C1 C C C C B	#	0.79
283	AS		#	1.11 0.36
284	AS	Cl- C - C - C - Br Cl- C * C * C * C - C	# #	0.36 5.91
22 14	AS AS		#	3.46
21	AS AS	C1- C * C - C - C * C C1- C * C - C - C * C	#	1.70
23	AS AS	C1- C - C - C - C	<u>#</u> #	0.96
283	AS	Cl- C * C * C * C - Cl	#	1.11
284	AS	Cl- C - C - C - Cl	#	0.36
283	AS	Cl- C * C * C * C - F	#	1.11
284	AS	Cl- C - C - C - F	#	0.36
283	AS	Cl- C * C * C * C - I	#	1.11
284	AS	Cl- C - C - C - I	#	0.36
285	AS	Cl C C C N	#	7.02
286	AS	Cl- C * C * C * C - N	#	2.55
287	AS	Cl- C * C * C - C - N	#	1.22
288	AS	Cl C C C C	#	6.39
289	AS	Cl- C * C * C * C - O	#	3.00
290	AS	Cl- C * C * C - C - O	#	1.30
291	AS	Cl C C C P	#	0.79
288	AS	Cl C C C S	#	6.39
289	AS	Cl- C * C * C * C - S	#	3.00
290	AS	Cl- C * C * C - C - S	#	1.30
291	AS	Cl C C C Se	#	0.79
291	AS	Cl C C C Si	#	0.79
291	AS	Cl C C C Te	#	0.79
292	AS	Cl- C * C * C - Cl	#	3.37
293	AS	Cl- C * C - C - Cl	#	0.20
293	AS	Cl- C - C * C - Cl	#	0.20
294	AS	Cl- C - C - C - Cl	#	0.74
292	AS	Cl- C * C * C - F	#	3.37
293	AS	Cl- C * C - C - F	#	0.20
293	AS	Cl- C - C * C - F	#	0.20
294	AS	Cl- C - C - F Cl- C * C * C - I	#	0.74
292 293	AS		#	3.37
293	AS		# #	0.20
293 294	AS AS		# #	0.20 0.74
29 4 295	AS AS	C1	#	5.58
295 296	AS AS	Cl - C * C * C * N	#	1.36
297	AS AS	Cl- C * C * C - N	#	1.96
١ ر ۵	AD		πŤ	1.70

Screen Number		Fragment Definition	Fr	equency Percent
298	AS	Cl- C * C - C - N	#	1.26
299	AS	Cl-C-C-C-N	#	0.37
302	AS	Cl C C N As	#	0.44
302	AS	Cl C C N B	#	0.44
300	AS	Cl C C N N	#	0.84
301	AS	Cl C C C N O	#	0.55
302	AS	Cl C C N P	#	0.44
301	AS	Cl C C N S	#	0.55
302	AS	Cl C C N Se	#	0.44
302	AS	Cl C C N Si	#	0.44
302	AS	Cl C C N Te	#	0.44
303	AS	Cl	#	5.10 0.64
304 305	AS	Cl- C * C * C - O	#	1.72
305	AS AS	C1- C * C - C - O	# #	1.72
307	AS AS	C1- C - C - C - O	#	0.86
310	AS	Cl C C C O As	#	2.38
310	AS	Cl C C C O B	#	2.38
256	AS	Cl C C C O C	#	3.02
308	AS	Cl C C C O N	#	0.26
309	AS	Cl C C C O O	#	0.37
310	AS	Cl C C C O P	#	2.38
309	AS	cl c c c o s	#	0.37
310	AS	Cl C C C O Se	#	2.38
310	AS	Cl C C C O Si	#	2.38
310	AS	Cl C C C Te	#	2.38
311	AS	Cl C C C P	#	1.14
303	AS	Cl C C C S	#	5.10
304	AS	Cl- C * C * C * S	#	0.64
305	AS	Cl- C * C * C - S	#	1.72
306	AS	Cl- C * C - C - S	#	1.61
307	AS	Cl- C - C - C - S	#	0.86
310	AS	Cl C C S As	#	2.38
310 256	AS AS	Cl C C C S B Cl C C C S C	# #	3.02
308	AS AS	Cl C C C S N	#	0.26
309	AS	Cl C C C S O	#	0.20
310	AS	Cl C C C S P	#	2.38
309	AS	Cl C C C S S	#	0.37
310	AS	Cl C C C S Se	#	2.38
310	AS	Cl C C C S Si	#	2.38
310	AS	Cl C C C S Te	#	2.38
311	AS	Cl C C Se	#	1.14
311	AS	Cl C C C Si	#	1.14
311	AS	Cl C C Te	#	1.14
312	AS	Cl- C * C - Cl	#	2.00
313	AS	Cl- C - C - Cl	#	0.90
312	AS	Cl- C * C - F	#	2.00
313	AS	Cl- C - C - F	#	0.90
312	AS	Cl- C * C - I	#	2.00
313	AS	Cl- C - C - I	#	0.90
314	AS	Cl- C * C * N	#	1.48
315	AS	Cl- C * C - N	#	2.34
316	AS	Cl- C - C * N	#	0.64
317	AS	Cl- C - C - N	#	1.12

Screen Number		Fragment Definition	Fre	equency Percent
302	AS	Cl C C N As	#	0.44
302	AS	Cl C C N B	#	0.44
212	AS	Cl C C N C	#	4.26
21	AS	Cl- C * C - N - C * C	#	1.70
102	AS	Cl- C * C - N - C * C	#	0.92
318	AS	Cl C C N C N	#	1.48
319	AS	Cl C C N C O	#	1.84
320	AS	C1- C * C - N - C - O	#	0.72
319	AS	Cl C C N C S	#	1.84
320	AS	Cl- C * C - N - C - S	#	0.72
321	AS	Cl C C N N	#	0.82
322	AS	Cl C C N O	#	0.39
302 322	AS	Cl C C N P Cl C C N S	#	0.44
322 302	AS AS	Cl C C N S Cl C C N Se	# #	0.39 0.44
302	AS AS	Cl C C N Si	#	0.44
302	AS	Cl C C N Te	#	0.44
323	AS	Cl- C * C * O	#	0.61
324	AS	Cl- C * C - O	#	2.95
325	AS	Cl- C - C * O	#	0.45
326	AS	C1- C - C - O	#	2.53
310	AS	Cl C C O As	#	2.38
310	AS	Cl C C O B	#	2.38
265	AS	Cl- C * C - O - C	#	1.77
186	AS	Cl C C O C C	#	2.66
21	AS	Cl- C * C - O - C * C	#	1.70
126	AS	Cl- C * C - O - C * C	#	2.20
327	AS	Cl C C O C N	#	0.27
328	AS	cl c c o c o	#	0.64
328	AS	cl c c o c s	#	0.64
329	AS	Cl C C O N	#	0.30
330	AS	C1 C C O O	#	0.43
310	AS	Cl C C O P Cl C C O S	#	2.38
330 310	AS		#	0.43 2.38
310	AS AS	Cl C C O Se Cl C C O Si	# #	2.38
310	AS	Cl C C O Te	#	2.38
331	AS	Cl C C P	#	1.39
323	AS	Cl- C * C * S	#	0.61
324	AS	Cl- C * C - S	#	2.95
325	AS	Cl- C - C * S	#	0.45
326	AS	Cl- C - C - S	#	2.53
310	AS	Cl C C S As	#	2.38
310	AS	Cl C C S B	#	2.38
265	AS	Cl- C * C - S - C	#	1.77
186	AS	Cl C C S C C	#	2.66
21	AS	Cl- C * C - S - C * C	#	1.70
126	AS	Cl- C * C - S - C * C	#	2.20
327	AS	Cl C C S C N	#	0.27
328	AS	Cl C C S C O	#	0.64
328	AS	Cl C C S C S	#	0.64
329	AS	Cl C C S N	#	0.30
330	AS	Cl C C S O	#	0.43
310	AS	Cl C C S P	#	2.38
330	AS	Cl C C S S	#	0.43

Screen Number		Fragment Definition	Fr	equency Percent
310	AS	Cl C C S Se	#	2.38
310	AS	Cl C C S Si	#	2.38
310	AS	Cl C C S Te	#	2.38
331	AS	Cl C C Se	#	1.39
331	AS	Cl C C Si	#	1.39
331	AS	Cl C C Te	#	1.39
332	AS	Cl C N C Br	#	0.12
332	AS	Cl C N C Cl	#	0.12
332	AS	Cl C N C F	#	0.12
332	AS	Cl C N C I	#	0.12
333	AS	Cl C N C N	#	0.53
334	AS	Cl C N C O	#	0.18
334	AS	Cl C N C S	#	0.18
335	AS	Cl C N O	#	0.09
335 336	AS	Cl C N S Cl C O O	# #	0.09
336	AS AS	Cl C O O Cl C O S	#	0.37
336	AS AS	Cl C S O	#	0.37
336	AS AS	Cl C S S	#	0.37
196	AS AS	Cl O C C	#	0.37
196	AS	Cl S C C	#	0.10
331	AS	F C C As	#	1.39
331	AS	F C C B	#	1.39
312	AS	F - C * C - Br	#	2.00
313	AS	F - C - C - Br	#	0.90
88	AS	F - C * C - C	#	4.80
87	AS	F - C - C * C	#	3.30
89	AS	F - C - C - C	#	2.86
311	AS	F C C C As	#	1.14
311	AS	F C C C B	#	1.14
292	AS	F - C * C * C - Br	#	3.37
293	AS	F - C * C - C - Br	#	0.20
293	AS	F - C - C * C - Br	#	0.20
294	AS	F - C - C - Br	#	0.74
49	AS	F - C * C * C - C	#	4.52
6	AS	F - C * C - C * C	#	7.08
21	AS	F - C * C - C * C	#	1.70
50	AS	F - C * C - C - C	#	1.14
48	AS	F - C - C - C * C	#	0.77
51	AS	F - C - C - C - C	#	1.49
291	AS	F C C C C As	#	0.79
291	AS	F	#	0.79
283 284	AS AS	F - C * C * C * C - Br F - C - C - C - Br	#	1.11
204	AS AS	F - C - C - C - B1 F - C * C * C * C - C	# #	0.36 5.91
14	AS AS	F - C * C - C - C * C	#	3.46
21	AS	F - C * C - C - C * C	#	1.70
23	AS	F - C - C - C - C	#	0.96
283	AS	F - C * C * C * C - Cl	#	1.11
284	AS	F - C - C - C - Cl	#	0.36
283	AS	F - C * C * C * C - F	#	1.11
284	AS	F - C - C - C - F	#	0.36
283	AS	F - C * C * C * C - I	#	1.11
284	AS	F - C - C - C - I	#	0.36
285	AS	F C C C N	#	7.02

Screen Number		Fragment Definition	Fr	equency Percent
286	AS	F - C * C * C * C - N	#	2.55
287	AS	F - C * C * C - C - N	#	1.22
288	AS	F C C C C O	#	6.39
289	AS	F - C * C * C * C - O	#	3.00
290	AS	F - C * C * C - C - O	#	1.30
291	AS	F C C C P	#	0.79
288	AS	F C C C C S	#	6.39
289	AS	F - C * C * C * C - S	#	3.00
290	AS	F - C * C * C - C - S	#	1.30
291	AS	F C C C C Se	#	0.79
291	AS	F C C C Si	#	0.79
291	AS	F C C C Te	#	0.79
292	AS	F - C * C * C - Cl	#	3.37
293	AS	F - C * C - C - Cl	#	0.20
293	AS	F - C - C * C - Cl	#	0.20
294	AS	F - C - C - C1	#	0.74
292	AS	F - C * C * C - F	#	3.37
293	AS	F - C * C - C - F	#	0.20
293	AS	F - C - C * C - F	#	0.20
294	AS	F - C - C - F	#	0.74
292	AS	F - C * C * C - I	#	3.37
293	AS	F - C * C - C - I	#	0.20
293	AS	F - C - C * C - I	#	0.20
294	AS	F - C - C - I	#	0.74
295	AS	F C C C N	#	5.58
296	AS	F - C * C * C * N	#	1.36
297	AS	F - C * C * C - N	#	1.96
298	AS	F - C * C - C - N	#	1.26
299	AS	F - C - C - N	#	0.37
302	AS	F C C C N As	#	0.44
302	AS	F C C C N B	#	0.44
302	AS	F C C C N N	#	0.84
301	AS	F C C C N O	#	0.55
302	AS	F C C C N P	#	0.44
302	AS	F C C C N S	#	0.55
302	AS AS	F C C C N Se	#	0.44
302	AS	F C C C N Si	#	0.44
302	AS	F C C C N Te	#	0.44
302	AS	F C C C O	#	5.10
303	AS	F - C * C * C * O	#	0.64
305	AS	F - C * C * C - O	#	1.72
305	AS	F - C * C - C - O	#	1.72
307	AS AS	F - C - C - C - O		0.86
			#	
310	AS		#	2.38
310	AS	F C C C O B	#	2.38
256	AS	F C C C O C	#	3.02
308	AS	F C C C O N	#	0.26
309	AS	F C C C O O	#	0.37
310	AS	F C C C O P	#	2.38
309	AS	F C C C O S	#	0.37
310	AS	F C C C O Se	#	2.38
310	AS	F C C C O Si	#	2.38
310	AS	F C C C O Te	#	2.38
311	AS	F C C C P	#	1.14
303	AS	F C C C S	#	5.10

Screen Number		Fragment Definition	Fr	equency Percent
304	AS	F - C * C * C * S	#	0.64
305	AS	F - C * C * C - S	#	1.72
306	AS	F - C * C - C - S	#	1.61
307	AS	F - C - C - C - S	#	0.86
310	AS	F C C C S As	#	2.38
310	AS	F C C C S B	#	2.38
256	AS	F C C C S C	#	3.02
308	AS	F C C C S N	#	0.26
309	AS	F C C C S O	#	0.37
310	AS	F C C C S P	#	2.38
309	AS	F C C C S S	#	0.37
310	AS	F C C C S Se	#	2.38
310	AS	F C C C S Si	#	2.38
310	AS	F C C C S Te	#	2.38
311	AS	F C C C Se	#	1.14
311	AS	F C C C Si	#	1.14
311	AS	F C C C Te	#	1.14
312	AS	F - C * C - Cl	#	2.00
313	AS	F - C - C - Cl	#	0.90
312	AS	F - C * C - F	#	2.00
313	AS	F - C - C - F	#	0.90
312	AS	F - C * C - I	#	2.00
313	AS	F - C - C - I	#	0.90
314	AS	F - C * C * N	#	1.48
315	AS	F - C * C - N	#	2.34
316	AS	F - C - C * N	#	0.64
317	AS	F - C - C - N	#	1.12
302	AS	F C C N As	#	0.44
302	AS	F C C N B	#	0.44
212	AS	F C C N C	#	4.26
21	AS	r c c n c c	#	1.70
102	AS		#	0.92
318 319	AS AS	F C C N C N F C C N C O	# #	1.48 1.84
320	AS AS	F - C * C - N - C - O	#	0.72
319	AS AS	F C C N C S	#	1.84
320	AS		#	0.72
321	AS	F - C * C - N - C - S F C C N N	#	0.82
322	AS	F C C N O	#	0.39
302	AS	F C C N P	#	0.44
322	AS	F C C N S	#	0.39
302	AS	F C C N Se	#	0.44
302	AS	F C C N Si	#	0.44
302	AS	F C C N Te	#	0.44
323	AS	F - C * C * O	#	0.61
324	AS	F - C * C - O	#	2.95
325	AS	F - C - C * O	#	0.45
326	AS	F - C - C - O	#	2.53
310	AS	F C C O As	#	2.38
310	AS	F C C O B	#	2.38
265	AS	F - C * C - O - C	#	1.77
186	AS	F C C O C C	#	2.66
21	AS	F - C * C - O - C * C	#	1.70
126	AS	F - C * C - O - C * C	#	2.20
327	AS	F C C O C N	#	0.27

Screen Number		Fragment Definition	Fr	equency Percent
328	AS	F C C O C O	#	0.64
328	AS	F C C O C S	#	0.64
329	AS	F C C O N	#	0.30
330	AS	F C C O O	#	0.43
310	AS	F C C O P	#	2.38
330	AS	F C C O S	#	0.43
310	AS	F C C O Se	#	2.38
310	AS	F C C O Si	#	2.38
310	AS	F C C O Te	#	2.38
331	AS	F C C P	#	1.39
323	AS	F - C * C * S	#	0.61
324	AS	F - C * C - S	#	2.95
325	AS	F - C - C * S	#	0.45
326	AS	F - C - C - S	#	2.53
310	AS	F C C S As	#	2.38
310	AS	F C C S B	#	2.38
265	AS	F - C * C - S - C	#	1.77
186	AS	F C C S C C	#	2.66
21	AS	F - C * C - S - C * C	#	1.70
126	AS	F - C * C - S - C * C	#	2.20
327	AS	F C C S C N	#	0.27
328	AS	F C C S C O	#	0.64
328	AS	F C C S C S	#	0.64
329	AS	F C C S N	#	0.30
330	AS	F C C S O	#	0.43
310	AS	F C C S P	#	2.38
330	AS	F C C S S	#	0.43
310	AS	F C C S Se	#	2.38
310	AS	F C C S Si	#	2.38
310	AS	F C C S Te	#	2.38
331	AS	F C C Se	#	1.39
331	AS	F C C Si	#	1.39
331	AS	F C C Te	#	1.39
332	AS	F C N C Br	#	0.12
332	AS	F C N C Cl	#	0.12
332	AS	F C N C F	#	0.12
332	AS	F C N C I	#	0.12
333	AS	F C N C N	#	0.53
334	AS	F C N C O	#	0.18
334	AS	F C N C S	#	0.18
335	AS	F C N O	#	0.09
335	AS	F C N S	#	0.09
336	AS	F C O O	#	0.37
336	AS	F C O S	#	0.37
336	AS	F C S O	#	0.37
336	AS	F C S S	#	0.37
196	AS	F O C C	#	0.10
196	AS	F S C C	#	0.10
331	AS	I C C As	#	1.39
331	AS	I C C B	#	1.39
312	AS	I - C * C - Br	#	2.00
313	AS	I - C - C - Br	#	0.90
88	AS	I - C * C - C	#	4.80
87	AS	I - C - C * C	#	3.30
89	AS	I - C - C - C	#	2.86

Screen Number		Fragment Definition	Fr	equency Percent
311	AS	I C C C As	#	1.14
311	AS	I C C C B	#	1.14
292	AS	I - C * C * C - Br	#	3.37
293	AS	I - C * C - C - Br	#	0.20
293	AS	I - C - C * C - Br	#	0.20
294	AS	I - C - C - C - Br	#	0.74
49	AS	I - C * C * C - C	#	4.52
6	AS	I - C * C - C * C	#	7.08
21	AS	I - C * C - C * C	#	1.70
50	AS	I - C * C - C - C	#	1.14
48	AS	I - C - C - C * C	#	0.77
51	AS	I - C - C - C - C	#	1.49
291	AS	I C C C C As	#	0.79
291	AS	I	#	0.79
283 284	AS AS	I - C * C * C * C - Br I - C - C - C - C - Br	# #	1.11 0.36
22	AS AS	I - C * C * C * C - C	#	5.91
14	AS	I - C * C - C - C * C	#	3.46
21	AS	I - C * C - C - C * C	#	1.70
23	AS	I - C - C - C - C	#	0.96
283	AS	I - C * C * C * C - Cl	#	1.11
284	AS	I - C - C - C - Cl	#	0.36
283	AS	I - C * C * C * C - F	#	1.11
284	AS	I - C - C - C - F	#	0.36
283	AS	I - C * C * C * C - I	#	1.11
284	AS	I - C - C - C - I	#	0.36
285	AS	I C C C C N	#	7.02
286	AS	I - C * C * C * C - N	#	2.55
287	AS	I - C * C * C - C - N	#	1.22
288	AS	I C C C C O	#	6.39
289	AS	I - C * C * C * C - O	#	3.00
290	AS	I - C * C * C - C - O	#	1.30
291	AS	I C C C C P	#	0.79
288	AS	I C C C C S	#	6.39
289	AS	I - C * C * C * C - S	#	3.00
290	AS	I - C * C * C - C - S	#	1.30
291	AS	I C C C Se	#	0.79
291	AS	I C C C C Si I C C C C Te	#	0.79 0.79
291 292	AS AS	I	#	3.37
293	AS	I - C * C - C - Cl	#	0.20
293	AS	I - C - C * C - Cl	#	0.20
294	AS	I - C - C - C1	#	0.74
292	AS	I - C * C * C - F	#	3.37
293	AS	I - C * C - C - F	#	0.20
293	AS	I - C - C * C - F	#	0.20
294	AS	I - C - C - C - F	#	0.74
292	AS	I - C * C * C - I	#	3.37
293	AS	I - C * C - C - I	#	0.20
293	AS	I - C - C * C - I	#	0.20
294	AS	I - C - C - C - I	#	0.74
295	AS	I C C C N	#	5.58
296	AS	I - C * C * C * N	#	1.36
297	AS	I - C * C * C - N	#	1.96
298	AS	I - C * C - C - N	#	1.26

Screen Number		Fragment Definition	Fr	equency Percent
299	AS	I - C - C - C - N	#	0.37
302	AS	I C C C N As	#	0.44
302	AS	I C C C N B	#	0.44
300	AS	I C C C N N	#	0.84
301	AS	I C C C N O	#	0.55
302	AS	I C C C N P	#	0.44
301	AS	I C C C N S	#	0.55
302	AS	I C C C N Se	#	0.44
302	AS	I C C C N Si	#	0.44
302	AS	I C C C N Te	#	0.44
303	AS	I C C C O	#	5.10
304	AS	I - C * C * C * O	#	0.64
305	AS	I - C * C * C - O	#	1.72
306	AS	I - C * C - C - O	#	1.61
307	AS	<u>I - C - C - C - O</u>	#	0.86
310	AS	I C C C O As	#	2.38
310	AS	I C C C O B	#	2.38
256	AS		#	
308 309	AS	ICCCON ICCCOO	#	0.26 0.37
310	AS AS	I C C C O O I C C C O P	# #	2.38
309	AS AS		#	0.37
310	AS	I C C C O Se	#	2.38
310	AS	I C C C O Si	#	2.38
310	AS	I C C C O Te	#	2.38
311	AS	I C C C P	#	1.14
303	AS	I C C C S	#	5.10
304	AS	I - C * C * C * S	#	0.64
305	AS	I - C * C * C - S	#	1.72
306	AS	I - C * C - C - S	#	1.61
307	AS	I - C - C - C - S	#	0.86
310	AS	I C C C S As	#	2.38
310	AS	I C C C S B	#	2.38
256	AS	I C C C S C	#	3.02
308	AS	I C C C S N	#	0.26
309	AS	I C C C S O	#	0.37
310	AS	I C C C S P	#	2.38
309	AS	I C C C S S	#	0.37
310	AS	I C C C S Se	#	2.38
310	AS	I C C C S Si	#	2.38
310	AS	I C C C S Te	#	2.38
311	AS	I C C C Se	#	1.14
311	AS	I C C C Si	#	1.14
311	AS	I C C C Te	#	1.14
312	AS	I - C * C - Cl	#	2.00
313	AS	I - C - C - Cl	#	0.90
312	AS	I - C * C - F	#	2.00
313	AS	I - C - C - F I - C * C - I	#	0.90
312 313	AS		#	2.00
313	AS AS	I - C - C - I I - C * C * N	# #	1.48
314	AS AS	I - C * C - N	#	2.34
316	AS AS	I - C - C * N	#	0.64
317	AS AS	I - C - C - N	#	1.12
302	AS	I C C N As	#	0.44
502	110	1 0 0 11 110	ıT	J. 11

Screen Number		Fragment Definition		equency Percent
302	AS	I C C N B	#	0.44
212	AS	I C C N C	#	4.26
21	AS	I - C * C - N - C * C	#	1.70
102	AS	I - C * C - N - C * C	#	0.92
318	AS	I C C N C N	#	1.48
319	AS	I C C N C O	#	1.84
320	AS	I - C * C - N - C - O	#	0.72
319	AS	I C C N C S	#	1.84
320	AS	I - C * C - N - C - S	#	0.72
321	AS	I C C N N	#	0.82
322 302	AS	I C C N O I C C N P	#	0.39 0.44
302	AS AS	I C C N S	# #	0.44
302	AS AS	I C C N Se	#	0.39
302	AS AS	I C C N Si	#	0.44
302	AS	I C C N Te	#	0.44
323	AS	I - C * C * O	#	0.61
324	AS	I - C * C - O	#	2.95
325	AS	I - C - C * O	#	0.45
326	AS	I - C - C - O	#	2.53
310	AS	I C C O As	#	2.38
310	AS	I C C O B	#	2.38
265	AS	I - C * C - O - C	#	1.77
186	AS	I C C O C C	#	2.66
21	AS	I - C * C - O - C * C	#	1.70
126	AS	I - C * C - O - C * C	#	2.20
327	AS	I C C O C N	#	0.27
328	AS	I C C O C O	#	0.64
328	AS	I C C O C S	#	0.64
329	AS	I C C O N	#	0.30
330	AS	I C C O O	#	0.43
310	AS	I C C O P	#	2.38
330 310	AS AS	I C C O S I C C O Se	#	0.43
310	AS AS	I C C O Se I C C O Si	# #	2.38
310	AS	I C C O Te	#	2.38
331	AS	I C C P	#	1.39
323	AS	I - C * C * S	#	0.61
324	AS	I - C * C - S	#	2.95
325	AS	I - C - C * S	#	0.45
326	AS	I - C - C - S	#	2.53
310	AS	I C C S As	#	2.38
310	AS	I C C S B	#	2.38
265	AS	I - C * C - S - C	#	1.77
186	AS	I C C S C C	#	2.66
21	AS	I - C * C - S - C * C	#	1.70
126	AS	I - C * C - S - C * C	#	2.20
327	AS	I C C S C N	#	0.27
328	AS	I C C S C O	#	0.64
328	AS	I C C S C S	#	0.64
329	AS	I C C S N	#	0.30
330	AS	I C C S O	#	0.43
310	AS	I C C S P	#	2.38
330 310	AS	I C C S S I C C S Se	#	0.43
210	AS	I C C S Se	#	2.38

Screen Number		Fragment Definition	F	requency Percent
310	AS	I C C S Si	#	2.38
310	AS	I C C S Te	#	2.38
331	AS	I C C Se	#	1.39
331	AS	I C C Si	#	1.39
331	AS	I C C Te	#	1.39
332	AS	I C N C Br	#	0.12
332	AS	I C N C Cl	#	0.12
332	AS	I C N C F	#	0.12
332	AS	I C N C I	#	0.12
333	AS	I C N C N	#	0.53
334	AS	I C N C O	#	0.18
334	AS	I C N C S	#	0.18
335	AS	I C N O	#	0.09
335	AS	I C N S	#	0.09
336	AS	I C O O	#	0.37
336	AS	I C O S	#	0.37
336	AS	I C S O	#	0.37
336	AS	I C S S	#	0.37
196 196	AS AS	I O C C I S C C	# #	0.10 0.10
331	AS AS	N C C As	#	1.39
331	AS AS	N C C B	#	1.39
314	AS	N * C * C - Br	#	1.48
316	AS	N * C - C - Br	#	0.64
315	AS	N - C * C - Br	#	2.34
317	AS	N - C - C - Br	#	1.12
2080	AS	N C C C	"	67.06
92	AS	N * C * C - C		16.85
90	AS	N * C - C * C		8.61
94	AS	N * C - C - C		6.85
93	AS	N - C * C - C		6.37
91	AS	N - C - C * C		22.25
95	AS	N - C - C - C		24.66
311	AS	N C C C As	#	1.14
311	AS	N C C C B	#	1.14
295	AS	N C C C Br	#	5.58
296	AS	N * C * C * C - Br	#	1.36
297	AS	N - C * C * C - Br	#	1.96
298	AS	N - C - C * C - Br	#	1.26
299	AS	N - C - C - C - Br	#	0.37
52	AS	N * C * C * C * C		31.81
56	AS	N * C * C * C - C		13.91
53	AS	N * C * C - C * C		2.97
59	AS	N * C * C - C - C		7.01
54	AS	N * C - C - C * C		1.62
57	AS	N - C * C * C - C N - C * C - C * C	щ	6.09
6 26	AS AS		# #	7.08 1.63
26 60	AS AS	N - C * C - C * C N - C * C - C - C	#	1.63 1.24
58	AS AS	N - C - C * C - C		2.87
55	AS AS	N - C - C - C * C		8.56
61	AS	N - C - C - C - C		14.08
291	AS	N C C C C As	#	0.79
291	AS	N C C C C B	#	0.79
285	AS	N C C C C Br	#	7.02
			••	

Screen Number		Fragment Definition	F	requency Percent
286	AS	N - C * C * C * C - Br	#	2.55
287	AS	N - C - C * C * C - Br	#	1.22
24	AS	N * C * C * C * C * C		27.22
28	AS	N * C * C * C * C - C		11.69
25	AS	N * C * C * C - C * C		4.17
29	AS	N - C * C * C * C - C		8.40
32	AS	N - C * C * C - C - C		0.92
14	AS	N - C * C - C - C * C	#	3.46
26	AS	N - C * C - C - C * C	#	1.63
30	AS	N - C - C * C * C - C		2.36
33	AS	N - C - C * C - C - C		0.34
31	AS	N - C - C - C * C - C		0.41
27	AS	N - C - C - C - C * C		5.29
34	AS	N - C - C - C - C		7.98
285	AS	N C C C Cl	#	7.02
286	AS	N - C * C * C * C - Cl	#	2.55
287	AS	N - C - C * C * C - Cl	#	1.22
285	AS	N C C C F	#	7.02
286	AS	N - C * C * C * C - F	#	2.55
287	AS	N - C - C * C * C - F	#	1.22
285	AS	N C C C I	#	7.02
286	AS	N - C * C * C * C - I	#	2.55
287	AS	N - C - C * C * C - I	#	1.22
337	AS	N C C C N		14.57
338	AS	N * C * C * C - N		2.18
339	AS	N * C * C * C - C * N		0.58
340	AS	N * C * C * C - C - N		1.89
341	AS	N * C * C - C * C * N		0.18
339	AS	N * C - C * C * C * N		0.58
338	AS	N - C * C * C * C * N		2.18
342	AS	N - C * C * C * C - N		2.33
343	AS	N - C * C * C - C - N		1.25
340	AS	N - C - C * C * C * N		1.89
343	AS	N - C - C * C * C - N		1.25
344	AS	N - C - C - C - N		3.17
345	AS	N C C C C O	#	25.91
346	AS	N * C * C * C * C - O	#	5.92
347	AS	N - C * C * C * C * O	#	2.82
348	AS	N - C * C * C * C - O	#	5.24
349	AS	N - C * C * C - C - O	#	1.64
350	AS	N - C - C * C * C - O	#	1.95
351	AS	N - C - C * C - C - O	#	0.50
352	AS	N - C - C - C * C - O	#	0.41
353	AS	N - C - C - C - C - O	#	4.12
291	AS	N C C C P	#	0.79
345	AS	N C C C C S	#	25.91
346	AS	N * C * C * C * C - S	#	5.92
347	AS	N - C * C * C * C * S	#	2.82
348	AS	N - C * C * C * C - S	#	5.24
349	AS	N - C * C * C - C - S	#	1.64
350	AS	N - C - C * C * C - S	#	1.95
351	AS	N - C - C * C - C - S	#	0.50
352	AS	N - C - C - C * C - S	#	0.41
353	AS	N - C - C - C - S	#	4.12
291	AS	N C C C Se	#	0.79

Screen Number		Fragment Definition	F	requency Percent
291	AS	N C C C C Si	#	0.79
291	AS	N C C C Te	#	0.79
295	AS	N C C C Cl	#	5.58
296	AS	N * C * C * C - Cl	#	1.36
297	AS	N - C * C * C - Cl	#	1.96
298	AS	N - C - C * C - Cl	#	1.26
299	AS	N - C - C - C - Cl	#	0.37
295	AS	N C C C F	#	5.58
296	AS	N * C * C * C - F	#	1.36
297	AS	N - C * C * C - F	#	1.96
298	AS	N - C - C * C - F	#	1.26
299	AS	N - C - C - C - F	#	0.37
295	AS	N C C C I	#	5.58
296	AS	N * C * C * C - I	#	1.36
297	AS	N - C * C * C - I	#	1.96
298	AS	N - C - C * C - I	#	1.26
299	AS	N - C - C - C - I	#	0.37
2098	AS	N C C C N	#	22.43
354	AS	N * C * C * C * N		11.18
355	AS	N * C * C * C - N		4.85
356	AS	N * C * C - C * N		0.63
357	AS	N * C * C - C - N		3.16
356	AS	N * C - C * C * N		0.63
358	AS	N * C - C * C - N		0.16
359	AS	N * C - C - C * N		0.19
360	AS	N * C - C - C - N		1.65
355	AS	N - C * C * C * N		4.85
361	AS	N - C * C * C - N		1.84
358	AS	N - C * C - C * N		0.16
362	AS	N - C * C - C - N		1.32
357	AS	N - C - C * C * N		3.16
362	AS	N - C - C * C - N		1.32
360	AS	N - C - C - C * N		1.65
363	AS	N - C - C - C - N		3.46
302	AS	N C C C N As	#	0.44
302	AS	N C C C N B	#	0.44
204	AS	N * C * C * C - N * C		0.75
207	AS	N - C * C * C - N - C		0.82
206	AS	N - C - C * C * N - C		1.01
205	AS	N - C - C - C - N * C		0.86
364	AS	N C C C N N		3.16
365	AS	N C C C N O	#	2.43
366	AS	N * C * C * C - N - O	#	0.35
367	AS	N - C * C * C - N - O	#	1.02
302	AS	N C C C N P	#	0.44
365	AS	N C C C N S	#	2.43
366	AS	N * C * C * C - N - S	#	0.35
367	AS	N - C * C * C - N - S	#	1.02
302	AS	N C C C N Se	#	0.44
302	AS	N C C C N Si	#	0.44
302	AS	N C C C N Te	#	0.44
368	AS	N * C * C * C * O	#	4.16
369	AS	N * C * C * C - O	#	9.05
370	AS	N * C * C - C * O	#	2.56
371	AS	N * C * C - C - O	#	4.73

Screen Number		Fragment Definition	Fi	requency Percent
370	AS	N * C - C * C * O	#	2.56
372	AS	N * C - C * C - O	#	0.73
370	AS	N * C - C - C * O	#	2.56
373	AS	N * C - C - C - O	#	1.07
374	AS	N - C * C * C * O	#	1.65
375	AS	N - C * C * C - O	#	4.45
370	AS	N - C * C - C * O	#	2.56
376	AS	N - C * C - C - O	#	1.92
370	AS	N - C - C * C * O	#	2.56
377	AS	N - C - C * C - O	#	2.93
370	AS	N - C - C - C * O	#	2.56
378	AS	N - C - C - C - O	#	7.21
310	AS	N C C C O As	#	2.38
310	AS	N C C C O B	#	2.38
257	AS	N - C * C * C - O - C	#	1.86
259	AS	N C C C C C	#	0.72 1.12
258	AS		# #	2.88
260 379	AS AS		#	0.80
380	AS AS	N C C C O N N C C C O O	#	1.74
381	AS AS	N - C * C * C - O - O	<u>#</u> #	0.76
310	AS	N C C C O P	#	2.38
380	AS	N C C C O S	#	1.74
381	AS	N - C * C * C - O - S	#	0.76
310	AS	N C C C O Se	#	2.38
310	AS	N C C C O Si	#	2.38
310	AS	N C C C O Te	#	2.38
311	AS	N C C C P	#	1.14
368	AS	N * C * C * C * S	#	4.16
369	AS	N * C * C * C - S	#	9.05
370	AS	N * C * C - C * S	#	2.56
371	AS	N * C * C - C - S	#	4.73
370	AS	N * C - C * C * S	#	2.56
372	AS	N * C - C * C - S	#	0.73
370	AS	N * C - C - C * S	#	2.56
373	AS	N * C - C - C - S	#	1.07
374	AS	N - C * C * C * S	#	1.65
375	AS	N - C * C * C - S	#	4.45
370	AS	N - C * C - C * S	#	2.56
376	AS	N - C * C - C - S	#	1.92
370	AS	N - C - C * C * S	#	2.56
377	AS	N - C - C * C - S	#	2.93
370	AS	N - C - C - C * S	#	2.56
378	AS	N - C - C - C - S	#	7.21
310	AS	N C C C S As	#	2.38
310	AS	N C C C S B	#	2.38
257 259	AS	N - C * C * C - S - C N - C * C - C - S - C	#	1.86
259 258	AS AS		# #	0.72 1.12
260	AS AS	N - C - C * C - S - C N - C - C - C - S - C	#	2.88
379	AS	N C C C S N	#	0.80
380	AS AS	N C C C S N	#	1.74
381	AS AS	N - C * C * C - S - O	#	0.76
310	AS	N C C C S P	#	2.38
380	AS	N C C C S S	#	1.74
550	110	-: C C C D D	п	±•/±

381 AS N - C + C + C + C - S - S # 0.76 310 AS N C C C C S SE # 2.38 310 AS N C C C C S SE # 2.38 311 AS N C C C C S TE # 2.38 311 AS N C C C C SE # 1.14 311 AS N C C C C SI # 1.14 311 AS N C C C C TE # 1.14 311 AS N C C C C TE # 1.14 314 AS N C C C C TE # 1.48 316 AS N C C C C TE # 1.48 316 AS N C C C C TE # 2.34 317 AS N C C C C TE # 1.48 316 AS N C C C TE # 1.48 316 AS N C C C TE # 1.48 316 AS N C C C TE # 2.34 317 AS N C C C TE # 1.48 316 AS N C C C TE # 1.48 316 AS N C C C TE # 1.12 314 AS N C C C TE # 1.11	Screen Number		Fragment Definition	F	requency Percent
310 AS	381	AS	N - C * C * C - S - S	#	0.76
310	310	AS	N C C C S Se	#	2.38
311 AS	310	AS	N C C C S Si	#	2.38
311 AS	310	AS	N C C C S Te		
311 AS	311	AS	N C C C Se	#	
314 AS N * C * C - Cl # 1.48 316 AS N * C - C - Cl # 0.64 315 AS N - C * C - Cl # 2.34 317 AS N - C - C - C - Cl # 1.12 314 AS N * C * C - F # 0.64 315 AS N - C * C - F # 2.34 317 AS N - C * C - F # 1.12 314 AS N * C * C - F # 1.12 314 AS N * C * C - I # 1.48 316 AS N - C * C - I # 1.12 314 AS N * C * C - I # 1.12 314 AS N * C - C - I # 1.48 315 AS N - C * C - I # 2.34 317 AS N - C * C - I # 1.12 2089 AS N C C C N 23.97 382 AS N * C * C * N 23.97 382 AS N * C * C * N 4.10 384 AS N * C * C * N 4.10 385 AS N * C - C * N 4.56	311	AS	N C C C Si		
314 AS N * C * C - Cl # 1.48 316 AS N * C - C - Cl # 0.64 315 AS N - C * C - Cl # 2.34 317 AS N - C - C - C - Cl # 1.12 314 AS N * C * C - F # 0.64 315 AS N - C * C - F # 2.34 317 AS N - C * C - F # 1.12 314 AS N * C * C - F # 1.12 314 AS N * C * C - I # 1.48 316 AS N - C * C - I # 1.12 314 AS N * C * C - I # 1.12 314 AS N * C - C - I # 1.48 315 AS N - C * C - I # 2.34 317 AS N - C * C - I # 1.12 2089 AS N C C C N 23.97 382 AS N * C * C * N 23.97 382 AS N * C * C * N 4.10 384 AS N * C * C * N 4.10 385 AS N * C - C * N 4.56	311	AS	N C C C Te	#	1.14
315 AS	314	AS	N * C * C - Cl		1.48
317	316	AS	N * C - C - Cl	#	0.64
314 AS N * C * C - F # 0.64 315 AS N * C - C - F # 0.64 317 AS N - C * C - F # 2.34 317 AS N - C - C - F # 1.12 314 AS N * C * C - I # 1.48 316 AS N * C - C - I # 1.48 315 AS N - C * C - I # 2.34 317 AS N - C - C - C - I # 2.34 317 AS N - C - C - C - I # 2.34 317 AS N - C - C - C - I # 1.12 2089 AS N C C C N 23.97 382 AS N * C - C - N 12.36 383 AS N * C - C - N 4.10 384 AS N * C - C - N 4.50 385 AS N * C - C - N 4.56 387 AS N - C - C - C N 4.56 387 AS N - C - C - C N 4.56 387 AS N - C - C - C N 4.56 387 AS N - C - C - C N 6.81	315	AS	N - C * C - C1	#	2.34
316 AS N * C - C - F # 0.64 315 AS N - C * C - F # 2.34 317 AS N - C - C - F # 1.12 314 AS N * C * C - I # 1.48 316 AS N * C - C - I # 0.64 315 AS N - C * C - I # 2.34 317 AS N - C * C - I # 1.12 2089 AS N - C - C - I # 1.12 2089 AS N C C N 23.97 382 AS N * C * C * N 12.36 383 AS N * C * C - N 4.10 384 AS N * C * C * N 0.52 385 AS N * C - C * N 4.56 383 AS N - C * C * N 4.10 386 AS N - C * C * N 4.10 386 AS N - C * C * N 4.56 387 AS N - C - C * N 4.56 387 AS N - C - C * N 8.72 302 AS N C C C N B # 0.44 213 <td>317</td> <td>AS</td> <td>N - C - C - Cl</td> <td>#</td> <td>1.12</td>	317	AS	N - C - C - Cl	#	1.12
315 AS N - C * C - F # 2.34 317 AS N - C - C - F # 1.12 314 AS N * C * C - I # 1.48 316 AS N - C - C - I # 0.64 315 AS N - C * C - I # 2.34 317 AS N - C - C - I # 1.12 2089 AS N C C O N 23.97 382 AS N * C * C - N 23.97 383 AS N * C * C - N 4.10 384 AS N * C - C - N 4.10 385 AS N * C - C - N 4.56 383 AS N - C * C - N 4.56 383 AS N - C * C - N 4.56 384 AS N - C * C - N 4.56 385 AS N - C * C - N 4.56 387 AS N - C - C - N 4.56 3885 AS N - C - C - N 4.56 387 AS N - C - C - N 4.56 387 AS N - C - C - N 6.81 215	314	AS	N * C * C - F	#	1.48
317 AS N - C - C - F # 1.12 314 AS N * C * C - I # 1.48 316 AS N * C - C - I # 0.64 315 AS N - C * C - I # 2.34 317 AS N - C - C - I # 1.12 2089 AS N C C N 23.97 382 AS N * C * C * N 12.36 383 AS N * C * C * N 4.10 384 AS N * C * C * N 4.10 385 AS N * C - C * N 4.56 383 AS N - C * C * N 4.56 385 AS N - C * C * N 4.56 385 AS N - C * C * N 4.56 387 AS N - C * C * N 4.56 387 AS N - C * C * N 4.56 387 AS N - C * C * N 8.72 302 AS N C C N AS # 0.44 215 AS N * C * C * N + C 0.3	316	AS	N * C - C - F	#	0.64
314 AS N * C * C - I # 1.48 316 AS N * C - C - I # 0.64 315 AS N - C * C - I # 2.34 317 AS N - C - C - I # 1.12 2089 AS N C C N 23.97 382 AS N * C * C * N 12.36 383 AS N * C - C * N 4.10 384 AS N * C - C * N 4.56 383 AS N * C - C * N 4.56 383 AS N - C * C * C * N 4.56 385 AS N - C * C * C * N 4.56 385 AS N - C * C * C * N 4.56 385 AS N - C * C * C * N 4.56 387 AS N - C * C * C * N 4.56 387 AS N - C * C * C * N 4.56 387 AS N - C * C * C * N 4.56 387 AS N - C * C * C * N 4.72 302 AS N C * C * C * N 6.81 215 AS N * C * C * N * C 6.81 </td <td>315</td> <td>AS</td> <td>N - C * C - F</td> <td>#</td> <td>2.34</td>	315	AS	N - C * C - F	#	2.34
316 AS N * C - C - I # 0.64 315 AS N - C * C - I # 2.34 317 AS N - C - C - I # 1.12 2089 AS N * C * C * N 23.97 382 AS N * C * C - N 4.10 384 AS N * C - C * N 0.52 385 AS N * C - C * N 4.56 383 AS N - C * C - N 4.56 383 AS N - C * C - N 4.56 383 AS N - C * C - N 4.56 384 AS N - C * C - N 4.56 385 AS N - C * C - N 4.56 387 AS N - C - C * N 4.56 387 AS N - C - C - N 4.56 387 AS N - C - C - N 4.56 387 AS N - C - C - N 4.56 387 AS N - C - C - N 4.56 387 AS N - C - C - N C 302 AS N C - C - N - B # 0.44 215	317	AS	N - C - C - F	#	1.12
315 AS N - C + C - I # 2.34 317 AS N - C - C - I # 1.12 2089 AS N C C N 23.97 382 AS N * C * C + N 12.36 383 AS N * C - C - N 4.10 384 AS N * C - C - C + N 0.52 385 AS N * C - C - C - N 4.56 383 AS N - C * C * N 4.10 386 AS N - C * C - N 4.56 387 AS N - C * C - N 4.56 387 AS N - C - C - C * N 4.56 387 AS N - C - C - C * N 4.56 387 AS N - C - C - C * N 4.72 302 AS N C C C N B # 0.44 215 AS N C C C N B # 0.44 215 AS N C C C N B # 0.44 215 AS N C C C N C N C 0.36 216 AS N - C C C N C N C 0.85 217 AS N - C C C N C C N C 7.91 <t< td=""><td>314</td><td>AS</td><td>N * C * C - I</td><td>#</td><td></td></t<>	314	AS	N * C * C - I	#	
317 AS N - C - C - I # 1.12 2089 AS N C C N 23.97 382 AS N * C * C * N 12.36 383 AS N * C * C - N 4.10 384 AS N * C - C * N 0.52 385 AS N * C - C * N 4.56 383 AS N - C * C * N 4.10 386 AS N - C * C * N 4.56 387 AS N - C * C * N 4.56 387 AS N - C * C * N 4.56 387 AS N - C * C * N 4.56 387 AS N - C * C * N 4.56 387 AS N - C * C * N 8.72 302 AS N C C C N B # 0.44 302 AS N C C C N B # 0.44 215 AS N * C * C * N * C 0.36 216 AS N * C * C * N * C 0.36 213 AS N * C * C * N * C 3.24 214 AS N - C * C * N * C 7.91	316	AS	N * C - C - I	#	0.64
2089 AS	315	AS	N - C * C - I	#	2.34
382 AS N * C * C * N 12.36 383 AS N * C * C - N 4.10 384 AS N * C - C * N 0.52 385 AS N * C - C - N 4.56 383 AS N - C * C * N 4.10 386 AS N - C * C - C * N 4.10 385 AS N - C - C * N 4.56 387 AS N - C - C * N 4.56 387 AS N - C - C * N 4.56 387 AS N - C - C * N 4.56 387 AS N - C - C * N 4.56 387 AS N - C - C * N 4.56 387 AS N - C * C * N 8.72 302 AS N C & C N B # 0.44 215 AS N * C * C * N * C 0.36 216 AS N * C * C * N * C 0.36 216 AS N - C * C * N * C 0.85 217 AS N - C * C * C * N * C 2.43 214 AS N * C * C * N * C * C 4.53	317	AS	N - C - C - I	#	1.12
383 AS N * C * C - N 4.10 384 AS N * C - C * N 0.52 385 AS N * C - C - N 4.56 383 AS N - C * C * C * N 4.10 386 AS N - C * C - C * N 4.56 387 AS N - C - C - C * N 4.56 387 AS N - C - C - C * N 8.72 302 AS N C C N AS # 0.44 215 AS N * C * C * N - C 6.81 215 AS N * C * C * N - C 0.36 216 AS N - C * C * C * N - C 1.18 218 AS N - C * C * N - C 1.18 218 AS N - C * C * N - C 2.43 217 AS N - C * C * N - C 2.43 214 AS N - C * C * N - C 3.24 219 AS N - C * C * C * N * C * C 7.91 146 AS N - C * C * C * N * C * C # 0.92 147 AS N - C * C * N * C * C * C * C * C * C * C *	2089	AS	N C C N		23.97
384 AS N * C - C * N 0.52 385 AS N * C - C - N 4.56 383 AS N - C * C * N 4.10 386 AS N - C * C - N 1.42 385 AS N - C - C * N 4.56 387 AS N - C - C * N 8.72 302 AS N C C C N AS # 0.44 215 AS N * C * C * N - C 6.81 213 AS N * C * C * N - C 0.36 216 AS N - C * C * N - C 1.18 218 AS N - C * C * N - C 1.18 218 AS N - C * C * N - C 2.43 214 AS N - C * C * N - C 2.43 214 AS N - C * C * N - C 2.43 214 AS N - C * C * N - C 4.63 217 AS N - C * C * N - C 4.54 219 AS N - C * C * N - C 4.54 219 AS N - C * C * N * C * C 6.79 26 AS N - C * C * N * C * C 4.6	382	AS	N * C * C * N		
385 AS N * C - C - N 4.56 383 AS N - C * C * N 4.10 386 AS N - C * C - N 1.42 385 AS N - C - C * N 4.56 387 AS N - C - C - N 8.72 302 AS N C C N AS # 0.44 302 AS N C C N B # 0.44 215 AS N * C * C * N - C 6.81 213 AS N * C * C * N - C 0.36 216 AS N - C * C * N - C 0.36 216 AS N - C * C * N - C 0.85 217 AS N - C * C * N - C 0.85 217 AS N - C * C - N - C 3.24 219 AS N - C - C - C * N - C 3.24 219 AS N - C - C - C - N - C 7.91 146 AS N - C - C - N - C * C # 1.63 102 AS N - C * C - N - C * C # 0.92 147 AS N - C - C - C - N - C * C # 0.92 147 AS N - C - C - N - C	383	AS	N * C * C - N		4.10
383 AS N - C * C * N 4.10 386 AS N - C * C - N 1.42 385 AS N - C - C * N 4.56 387 AS N - C - C - N 8.72 302 AS N C C N AS # 0.44 302 AS N C C C N B # 0.44 215 AS N * C * C * N - C 6.81 213 AS N C C C N C N C 0.36 216 AS N - C * C - N + C 0.36 216 AS N - C * C - N - C 1.18 218 AS N - C * C - N - C 1.18 218 AS N - C * C - N - C 2.43 214 AS N - C - C - N - C 2.43 214 AS N - C - C - N - C 7.91 146 AS N - C - C - N - C 7.91 146 AS N - C * C - N - C * C # 0.92 147 AS N - C * C - N - C * C # 0.92 147 AS N - C *	384	AS	N * C - C * N		0.52
386 AS N - C * C - N 1.42 385 AS N - C - C * N 4.56 387 AS N - C - C - N 8.72 302 AS N C C N AS # 0.44 302 AS N C C N B # 0.44 215 AS N * C * C * N - C 6.81 213 AS N * C * C - N * C 0.36 216 AS N - C * C * N - C 1.18 218 AS N - C * C * N - C 2.43 217 AS N - C * C - N - C 2.43 214 AS N - C - C - N - C 2.43 214 AS N - C - C - N - C 2.43 214 AS N - C - C - N - C 7.91 146 AS N * C * C * N * C * C 6.79 26 AS N - C * C - N - C * C # 1.63 102 AS N - C * C - N - C * C # 0.92 147 AS N - C * C - N - C * C # 0.92 147 AS N - C * C - N - C * C # 1.84 388 AS N C C N C N	385	AS	N * C - C - N		4.56
385 AS N - C - C - C + N 4.56 387 AS N - C - C - N 8.72 302 AS N C C N B # 0.44 302 AS N C C N B # 0.44 215 AS N * C * C * N - C 6.81 213 AS N * C * C - N * C 0.36 216 AS N - C * C * N - C 1.18 218 AS N - C * C * N - C 0.85 217 AS N - C * C - N - C 2.43 214 AS N - C - C - N + C 3.24 219 AS N - C - C - N - C 7.91 146 AS N * C * C * N * C * C 6.79 26 AS N - C * C - N - C * C # 1.63 102 AS N - C * C - N - C * C # 0.92 147 AS N - C * C - N - C * C # 0.92 147 AS N - C * C - N - C * C # 0.92 147 AS N - C * C - N - C * C # 0.42 389 AS N C C N C N C N C N C N C N C N C N C N	383	AS			4.10
387 AS N - C - C - N 8.72 302 AS N C C N B # 0.44 302 AS N C C N B # 0.44 215 AS N * C * C N C N C N C C N C C C N C C C C					
302 AS N C C N AS # 0.44 302 AS N C C N B # 0.44 215 AS N C C N B # 0.44 215 AS N C C N B # 0.44 213 AS N C C N C 0.36 216 AS N C C N C 0.36 216 AS N C C N C 0.36 216 AS N C C N C 0.85 217 AS N C C N C 0.85 217 AS N C C N C 2.43 214 AS N C C N C 7.91 146 AS N C C N C C 7.91 <					
302 AS N C C N B # 0.44 215 AS N C C N B # 0.44 213 AS N C C N C 0.36 216 AS N C C N C 0.36 216 AS N C C N C 0.36 216 AS N C C N C 0.36 218 AS N C C N C 0.85 217 AS N C C N C 2.43 214 AS N C C N C 3.24 219 AS N C C N C 6.79 26 AS N C C N C C # 1.63 1					
215 AS N * C * C * N - C 6.81 213 AS N * C * C - N * C 0.36 216 AS N - C * C * N - C 1.18 218 AS N - C * C - N - C 0.85 217 AS N - C - C * N - C 2.43 214 AS N - C - C - N * C 3.24 219 AS N - C - C - N - C 7.91 146 AS N * C * C * N * C * C 6.79 26 AS N - C * C - N - C * C # 1.63 102 AS N - C * C - N - C * C # 0.92 147 AS N - C * C - N - C * C # 0.92 147 AS N - C - C - N - C * C # 1.84 388 AS N C C N C N C N 5.86 389 AS N C C N C N C N 5.86 389 AS N C C C N C N C N # 1.34 391 AS N - C * C - N - C - O H C N C N # 5.48 389 AS N C C C N C S # 1.34 390 AS N C C C N C S # 1.34 391 AS N C C C N					
213 AS N * C * C - N * C 0.36 216 AS N - C * C * N - C 1.18 218 AS N - C * C - N - C 0.85 217 AS N - C - C * N - C 2.43 214 AS N - C - C - N * C 3.24 219 AS N - C - C - N - C 7.91 146 AS N * C * C * N * C * C 6.79 26 AS N - C * C - N - C * C # 1.63 102 AS N - C * C - N - C * C # 0.92 147 AS N - C - C - C - N - C * C 1.84 388 AS N C C N C N C N 5.86 389 AS N C C N C N C N 5.86 390 AS N * C * C * N - C - O # 1.34 391 AS N - C - C - N - C - O # 5.48 389 AS N - C - C - N - C - O # 5.48 389 AS N - C - C - N - C - O # 1.34 391 AS N - C - C - N - C - O # 1.34 390 AS N - C - C - N - C - S # 1.34 391 AS N - C - C - N - C - S # 1.34 <tr< td=""><td></td><td></td><td></td><td>#</td><td></td></tr<>				#	
216 AS N - C * C * N - C 1.18 218 AS N - C * C - N - C 0.85 217 AS N - C - C * N - C 2.43 214 AS N - C - C - N * C 3.24 219 AS N - C - C - N - C 7.91 146 AS N * C * C * N * C * C # 1.63 102 AS N - C * C - N - C * C # 0.92 147 AS N - C - C - N - C * C # 0.92 147 AS N - C - C - N - C * C 1.84 388 AS N C C N C N C N 5.86 389 AS N C C N C N C N 5.86 390 AS N * C * C * N - C - O # 1.34 391 AS N - C * C - N - C - O # 0.42 392 AS N - C - C - N - C - S # 1.34 390 AS N * C * C * N - C - S # 1.34 391 AS N - C - C - N - C - S # 1.34 391 AS N - C - C - N - C - S # 1.34 391 AS N - C - C - N - C - S # 1.34 392 AS N - C - C - N - C - S # 1.34 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
218 AS N - C * C - N - C 0.85 217 AS N - C - C * N - C 2.43 214 AS N - C - C - N * C 3.24 219 AS N - C - C - N - C 7.91 146 AS N * C * C * N * C * C 6.79 26 AS N - C * C - N - C * C # 1.63 102 AS N - C * C - N - C * C # 0.92 147 AS N - C - C - N - C * C # 0.92 147 AS N - C - C - N - C * C 1.84 388 AS N C C N C N C N 5.86 389 AS N C C N C N C N # 12.87 390 AS N * C * C * N - C - O H C O H C N # 1.34 391 AS N - C * C - N - C - O H C O H C N C N C N C N C N C N C N C N C N C					
217 AS N - C - C * N - C 2.43 214 AS N - C - C - N * C 3.24 219 AS N - C - C - N - C 7.91 146 AS N * C * C * N * C * C 6.79 26 AS N - C * C - N - C * C # 1.63 102 AS N - C * C - N - C * C # 0.92 147 AS N - C - C - N - C * C 1.84 388 AS N C C N C N 5.86 389 AS N C C N C N 5.86 390 AS N * C * C * N - C - O # 12.87 390 AS N - C * C - N - C - O # 0.42 392 AS N - C - C - N - C - O # 5.48 389 AS N - C - C - N - C - S # 12.87 390 AS N * C * C * N - C - S # 12.87 390 AS N - C - C - N - C - S # 12.87 390 AS N - C - C - N - C - S # 12.87 390 AS N - C - C - N - C - S # 12.87 390 AS N - C - C - N - C - S # 12.87					
214 AS N - C - C - N * C 3.24 219 AS N - C - C - N - C 7.91 146 AS N * C * C * N * C * C 6.79 26 AS N - C * C - N - C * C # 1.63 102 AS N - C * C - N - C * C # 0.92 147 AS N - C - C - N - C * C 1.84 388 AS N C C N C N 5.86 389 AS N C C N C N 5.86 390 AS N * C * C * N - C - O # 12.87 390 AS N - C * C - N - C - O # 0.42 392 AS N - C * C - N - C - O # 5.48 389 AS N C C N C S # 12.87 390 AS N C C N C S # 12.87 390 AS N C C N C S # 12.87 391 AS N C C N C S # 12.87 390 AS N C C N C S # 12.87 391 AS N C C N C S # 1.34 391 AS N C C C N C S # 1.34 391 AS N C C C N C					
219 AS N - C - C - N - C 7.91 146 AS N * C * C * N * C * C 6.79 26 AS N - C * C - N - C * C # 1.63 102 AS N - C * C - N - C * C # 0.92 147 AS N - C - C - N - C * C 1.84 388 AS N C C N C N 5.86 389 AS N C C N C N C N 5.86 390 AS N * C * C * N - C - O # 12.87 391 AS N - C * C - N - C - O # 0.42 392 AS N - C - C - N - C - O # 5.48 389 AS N C C N C S # 12.87 390 AS N - C - C - N - C - S # 1.34 391 AS N - C * C - N - C - S # 0.42 392 AS N - C * C - N - C - S # 0.42 391 AS N - C * C - N - C - S # 0.42 392 AS N - C - C - N - C - S # 0.42 392 AS N - C - C - N - C - S # 0.42 392 AS N - C - C - N - C - S # 0.42 392 AS N - C - C - N - C - S # 0.42 393 AS N - C - C -					
146 AS N * C * C * N * C * C 6.79 26 AS N - C * C - N - C * C # 1.63 102 AS N - C * C - N - C * C # 0.92 147 AS N - C - C - N - C * C 1.84 388 AS N C C N C N 5.86 389 AS N C C N C O # 12.87 390 AS N * C * C * N - C - O # 1.34 391 AS N - C * C - N - C - O # 0.42 392 AS N - C - C - N - C - O # 5.48 389 AS N C C N C S # 12.87 390 AS N - C - C - N - C - S # 1.34 391 AS N - C - C - N - C - S # 1.34 391 AS N - C - C - N - C - S # 0.42 392 AS N - C - C - N - C - S # 5.48 393 AS N - C - C - N - C - S # 5.48 393 AS N - C - C - N - C - S # 5.48					
26 AS N - C * C - N - C * C # 1.63 102 AS N - C * C - N - C * C # 0.92 147 AS N - C - C - N - C * C 1.84 388 AS N C C N C N 5.86 389 AS N C C N C O # 12.87 390 AS N * C * C * N - C - O # 1.34 391 AS N - C * C - N - C - O # 0.42 392 AS N - C - C - N - C - O # 5.48 389 AS N C C N C S # 12.87 390 AS N C C N C S # 1.34 391 AS N C C C N C S # 1.34 391 AS N C C C N C S # 1.34 391 AS N C C C N C S # 1.34 392 AS N C C C N C S # 1.34 391 AS N C C C N C S # 1.34 392 AS N C C C N C S # 1.34					
102 AS N - C * C - N - C * C # 0.92 147 AS N - C - C - N - C * C 1.84 388 AS N C C N C N 5.86 389 AS N C C N C O # 12.87 390 AS N * C * C * N - C - O # 1.34 391 AS N - C * C - N - C - O # 0.42 392 AS N - C - C - N - C - O # 5.48 389 AS N C C N C S # 12.87 390 AS N * C * C * N - C - S # 1.34 391 AS N - C - C - N - C - S # 0.42 392 AS N - C * C - N - C - S # 0.42 393 AS N - C - C - N - C - S # 5.48 393 AS N - C - C - N - C - S # 5.48			2. 0 0 1. 0 0	±	
147 AS N - C - C - N - C * C 1.84 388 AS N C C N C N 5.86 389 AS N C C N C O # 12.87 390 AS N * C * C * N - C - O # 1.34 391 AS N - C * C - N - C - O # 0.42 392 AS N - C - C - N - C - O # 5.48 389 AS N C C N C S # 12.87 390 AS N * C * C * N - C - S # 1.34 391 AS N - C * C - N - C - S # 0.42 392 AS N - C * C - N - C - S # 0.42 391 AS N - C - C - N - C - S # 5.48 392 AS N - C - C - N - C - S # 5.48 393 AS N C C N N 3.65					
388 AS N C C N C N 5.86 389 AS N C C N C O # 12.87 390 AS N C C N C O # 1.34 391 AS N C C N C O # 5.48 389 AS N C C N C S # 12.87 390 AS N C C N C S # 1.34 391 AS N C C N C S # 1.34 392 AS N C C N C S # 0.42 392 AS N C C N C S # 5.48 393 AS N C C N N 3.65				- "	
389 AS N C C N C O # 12.87 390 AS N C C N C O # 1.34 391 AS N C C N C O # 0.42 392 AS N C C N C S # 12.87 390 AS N C C N C S # 12.87 391 AS N C C N C S # 1.34 391 AS N C C N C S # 0.42 392 AS N C C N N 3.65					
390 AS N * C * C * N - C - O # 1.34 391 AS N - C * C - N - C - O # 0.42 392 AS N - C - C - N - C - O # 5.48 389 AS N C C N C S # 12.87 390 AS N * C * C * N - C - S # 1.34 391 AS N - C * C - N - C - S # 0.42 392 AS N - C - C - N - C - S # 5.48 393 AS N C C N N N 3.65				#	
391 AS N - C * C - N - C - O # 0.42 392 AS N - C - C - N - C - O # 5.48 389 AS N C C N C S # 12.87 390 AS N * C * C * N - C - S # 1.34 391 AS N - C * C - N - C - S # 0.42 392 AS N - C - C - N - C - S # 5.48 393 AS N C C N N N					
392 AS N - C - C - N - C - O # 5.48 389 AS N C C N C S # 12.87 390 AS N * C * C * N - C - S # 1.34 391 AS N - C * C - N - C - S # 0.42 392 AS N - C - C - N - C - S # 5.48 393 AS N C C N N 3.65					
389 AS N C C N C S # 12.87 390 AS N C C N C S # 1.34 391 AS N C C N C S # 0.42 392 AS N C C N N 3.65					
390 AS N * C * C * N - C - S # 1.34 391 AS N - C * C - N - C - S # 0.42 392 AS N - C - C - N - C - S # 5.48 393 AS N C C N N 3.65					
391 AS N - C * C - N - C - S # 0.42 392 AS N - C - C - N - C - S # 5.48 393 AS N C C N N 3.65					
392 AS N - C - C - N - C - S # 5.48 393 AS N C C N N 3.65					
393 AS N C C N N 3.65					
			N C C N O	#	
395 AS N * C * C - N - O # 0.48	395	AS	N * C * C - N - O		
396 AS N - C * C - N - O # 0.72	396	AS	N - C * C - N - O	#	0.72
397 AS $N - C - C - N - O$ # 0.82	397	AS	N - C - C - N - O	#	0.82

Screen Number		Fragment Definition	F	requency Percent
302	AS	N C C N P	#	0.44
394	AS	N C C N S	#	3.00
395	AS	N * C * C - N - S	#	0.48
396	AS	N - C * C - N - S	#	0.72
397	AS	N - C - C - N - S	#	0.82
302	AS	N C C N Se	#	0.44
302	AS	N C C N Si	#	0.44
302	AS	N C C N Te	#	0.44
2090	AS	N C C O	#	35.39
398	AS	N * C * C * O	#	8.97
399	AS	N * C * C - O	#	5.41
400	AS	N * C - C * O	#	0.73
401	AS	N * C - C - O	#	6.21
402	AS	N - C * C * O	#	1.91
403	AS	N - C * C - O	#	6.11
404	AS	N - C - C * O	#	2.34
405	AS	N - C - C - O	#	16.92
310	AS	N C C O As	#	2.38
310	AS	N C C O B	#	2.38
266	AS	N * C * C - O - C	#	1.56
268	AS	N * C - C - O - C	#	1.79
267	AS	N - C * C - O - C	#	2.37
269	AS	N - C - C - O - C	#	6.99
26	AS	N - C * C - O - C * C	#	1.63
126	AS	N - C * C - O - C * C	#	2.20
406	AS	N C C O C N	#	4.07
407	AS	N - C - C - O - C - N	#	0.13
408	AS	N C C O C O	#	4.14
409	AS	N - C * C - O - C - O	#	0.36
410	AS	N - C - C - O - C - O	#	1.42
408	AS	N C C O C S	#	4.14
409	AS	N - C * C - O - C - S	#	0.36
410	AS	N - C - C - O - C - S	#	1.42
411	AS	N C C O N	#	0.75
412	AS	N C C O O	#	1.53
413	AS	N * C * C - O - O	#	0.27
414	AS	N - C * C - O - O	#	0.52
310	AS	N C C O P	#	2.38
412	AS	N C C O S	#	1.53
413	AS	N * C * C - O - S	#	0.27
414	AS	N - C * C - O - S	#	0.52
310	AS	N C C O Se	#	2.38
310	AS	N C C O Si	#	2.38
310	AS	N C C O Te	#	2.38
331	AS	N C C P	#	1.39
2090	AS	N C C S N * C * C * S	#	35.39
398 399	AS		#	8.97
399 400	AS		#	5.41 0.73
400	AS AS	N * C - C * S N * C - C - S	#	0.73 6.21
401	AS AS	N - C + C + S	# #	1.91
402		N - C * C - S	#	6.11
403	AS AS	N - C - C + S	#	2.34
404	AS AS	N - C - C - S N - C - C - S	#	2.34 16.92
310	AS AS	N - C - C - S N C C S As	#	2.38
310	AD	IV C C B AS	#	4.30

Screen Number		Fragment Definition	F	requency Percent
310	AS	N C C S B	#	2.38
266	AS	N * C * C - S - C	#	1.56
268	AS	N * C - C - S - C	#	1.79
267	AS	N - C * C - S - C	#	2.37
269	AS	N - C - C - S - C	#	6.99
26	AS	N - C * C - S - C * C	#	1.63
126	AS	N - C * C - S - C * C	#	2.20
406	AS	N C C S C N	#	4.07
407	AS	N - C - C - S - C - N	#	0.13
408	AS	N C C S C O	#	4.14
409	AS	N - C * C - S - C - O	#	0.36
410	AS	N - C - C - S - C - O	#	1.42
408	AS	N C C S C S	#	4.14
409	AS	N - C * C - S - C - S	#	0.36
410	AS	N - C - C - S - C - S	#	1.42
411	AS	N C C S N	#	0.75
412	AS	N C C S O	#	1.53
413	AS	N * C * C - S - O	#	0.27
414	AS	N - C * C - S - O	#	0.52
310	AS	N C C S P	#	2.38
412	AS	N C C S S	#	1.53
413	AS	N * C * C - S - S	#	0.27
414	AS	N - C * C - S - S	#	0.52
310	AS	N C C S Se	#	2.38
310	AS	N C C S Si	#	2.38
310	AS	N C C S Te	#	2.38
331	AS	N C C Se	#	1.39
331	AS	N C C Si	#	1.39
331	AS	N C C Te	#	1.39
2086	AS	N C N C	#	30.95
233	AS	N * C * N - C		7.12
231	AS	N * C - N * C		1.29
234	AS	N * C - N - C		4.77
232	AS	N - C - N * C		0.93
235	AS	N - C - N - C		5.46
333	AS	N C N C Br	#	0.53
150	AS	N * C * N * C * C		12.29
153	AS	N * C * N * C - C		5.44
151	AS	N * C - N - C * C		1.72
154	AS	N - C * N * C - C		2.20
152	AS	N - C - N - C * C		2.36
155	AS	N - C - N - C - C		3.79
318	AS	N C N C C Br	#	1.48
103	AS	N * C * N * C * C * C		9.30
105	AS	N - C - N - C * C - C		0.37
104	AS	N - C - N - C - C * C		0.88
318	AS	N C N C C Cl	#	1.48
318	AS	N C N C C F N C N C C I	#	1.48
318 388	AS		#	1.48 5.86
415	AS AS	N C N C C N C C O	#	7.06
415	AS AS	N * C * N * C * C - O	#	1.32
417	AS AS	N * C * N * C - C - O	#	0.56
417	AS AS	N - C - N - C * C - O	#	0.36
419	AS AS	N - C - N - C - C - O	#	0.23
エエン	AD	14 C 14 C C O	#	0.42

Screen Number		Fragment Definition	Frequency Percent
415	AS	N C N C C S	# 7.06
416	AS	N * C * N * C * C - S	# 1.32
417	AS	N * C * N * C - C - S	# 0.56
418	AS	N - C - N - C * C - S	# 0.25
419	AS	N - C - N - C - C - S	# 0.42
333	AS	N C N C Cl	# 0.53
333	AS	N C N C F	# 0.53
333	AS	N C N C I	# 0.53
420	AS	N C N C N	6.57
421	AS	N * C * N * C - N	3.26
422	AS	N * C - N - C * N	0.08
421	AS	N - C * N * C * N	3.26
423	AS	N - C * N * C - N	0.98
424	AS	N - C - N - C - N	0.19
238	AS	N * C * N * C * N * C	2.92
425	AS	N C N C O	# 9.70
426	AS	N * C * N * C - O	# 5.47
427	AS	N * C * N - C - O	# 0.50
428	AS	N * C - N - C - O	# 1.59
429	AS	N - C * N * C - O	# 1.44
430	AS	N - C - N - C - O	# 0.75
425	AS	N C N C S	# 9.70
426	AS	N * C * N * C - S	# 5.47
427	AS	N * C * N - C - S	# 0.50
428	AS	N * C - N - C - S	# 1.59
429	AS	N - C * N * C - S	# 1.44
430	AS	N - C - N - C - S	# 0.75
431 2092	AS AS	N C N N N C N N	3.67 # 13.08
432	AS AS	N * C * N * N	3.24
433	AS AS	N * C - N - N	0.55
434	AS	N - C * N * N	1.27
435	AS	N - C - N - N	0.73
436	AS	N C N N C N	0.65
437	AS	N C N O	# 1.66
438	AS	N * C * N * O	# 0.48
439	AS	N * C - N - O	# 0.35
440	AS	N - C - N - O	# 0.51
437	AS	N C N S	# 1.66
438	AS	N * C * N * S	# 0.48
439	AS	N * C - N - S	# 0.35
440	AS	N - C - N - S	# 0.51
2086	AS	N C O C	# 30.95
2093	AS	N C O C	# 24.67
274	AS	N * C - O - C	# 3.68
275	AS	N - C - O - C	# 4.54
190	AS	N * C * O * C - C	# 2.79
188	AS	N * C - O - C * C	# 0.61
191	AS	N - C * O * C - C	# 2.04
189	AS	N - C - O - C * C	# 0.58
327	AS	N C O C C Br	# 0.27
327	AS	N C O C C Cl	# 0.27
327	AS	N C O C C F	# 0.27
327	AS	N C O C C I N C O C C N	# 0.27
406	AS	N C O C C N	# 4.07

Screen Number		Fragment Definition	F	requency Percent
407	AS	N - C - O - C - C - N	#	0.13
441	AS	N C O C C O	#	4.35
441	AS	N C O C C S	#	4.35
442	AS	N C O C N	#	1.12
443	AS	N C O C O	#	0.95
443	AS	N C O C S	#	0.95
2092	AS	N C O N	#	13.08
444	AS	N * C * O * N	#	0.42
445	AS	N - C - O - N	#	0.06
446	AS	N C O O	#	0.48
446	AS	N C O S	#	0.48
2086	AS	N C S C	#	30.95
2093	AS	N C S C	#	24.67
274	AS	N * C - S - C	#	3.68
275	AS	N - C - S - C	#	4.54
190	AS	N * C * S * C - C	#	2.79
188	AS	N * C - S - C * C	#	0.61
191	AS	N - C * S * C - C N - C - S - C * C	#	2.04
189	AS	17 6 5 6 6	#	0.58
<u>327</u> 327	AS AS	N C S C C Br N C S C C Cl	# #	0.27
327	AS AS	N C S C C F	#	0.27
327	AS AS	N C S C C I	#	0.27
406	AS AS	N C S C C N	#	4.07
407	AS	N - C - S - C - C - N	#	0.13
441	AS	N C S C C O	#	4.35
441	AS	N C S C C S	#	4.35
442	AS	N C S C N	#	1.12
443	AS	N C S C O	#	0.95
443	AS	N C S C S	#	0.95
2092	AS	N C S N	#	13.08
444	AS	N * C * S * N	#	0.42
445	AS	N - C - S - N	#	0.06
446	AS	N C S O	#	0.48
446	AS	N C S S	#	0.48
2085	AS	N N C C	#	26.07
168	AS	N * N * C - C		4.81
166	AS	N * N - C * C		1.79
167	AS	N - N - C * C		2.67
169	AS	N - N - C - C		3.78
321	AS	N N C C Br	#	0.82
110	AS	N * N * C * C * C		4.61
112	AS	N - N - C * C - C		0.55
111	AS	N - N - C - C * C		2.65
113	AS	N - N - C - C - C	ш	$\frac{1.14}{0.04}$
300 67	AS	N N C C C Br N * N * C * C * C * C	#	0.84 2.26
69	AS AS	N * N * C * C * C * C N - N - C * C * C - C		0.49
68	AS AS	N - N - C - C - C * C		0.49
300	AS AS	N N C C C Cl	#	0.23
300	AS	N N C C C F	#	0.84
300	AS	N N C C C I	#	0.84
364	AS	N N C C C N	"	3.16
447	AS	N N C C C O	#	3.35
448	AS	N - N - C * C * C - O	#	0.33

Screen Number		Fragment Definition	F	requency Percent
447	AS	N N C C C S	#	3.35
448	AS	N - N - C * C * C - S	#	0.33
321	AS	N N C C Cl	#	0.82
321	AS	N N C C F	#	0.82
321	AS	N N C C I	#	0.82
393	AS	N N C C N		3.65
221	AS	N N C C N C		2.85
449	AS	N N C C N N		0.42
450	AS	N N C C N O	#	0.51
450	AS	N N C C N S	#	0.51
451	AS	N N C C O	#	4.22
452	AS	N * N * C * C - O	#	0.46
453	AS	N * N * C - C - O	#	0.74
454	AS	N - N - C * C - O	#	0.91
455	AS	N - N - C - C - O	#	0.80
270	AS	N N C C O C	#	2.19
456	AS	N N C C O O	#	0.36
456	AS	N N C C O S	#	0.36
451	AS	N N C C S	#	4.22
452	AS	N * N * C * C - S	#	0.46
453	AS	N * N * C - C - S	#	0.74
454	AS	N - N - C * C - S	#	0.91
455	AS	N - N - C - C - S	#	0.80
270	AS	N N C C S C	#	2.19
456	AS	N N C C S O	#	0.36
456	AS	N N C C S S	#	0.36
431	AS	N N C N		3.67
2092	AS	N N C N	#	13.08
432	AS	N * N * C * N		3.24
434	AS	N * N * C - N		1.27
433	AS	N - N - C * N		0.55
435	AS	N - N - C - N		0.73
457	AS	N N C N N		1.08
458	AS	N N C N O	#	0.17
458	AS	N N C N S	#	0.17
459	AS	N N C O	#	6.66
460	AS	N * N * C * O	#	1.19
461	AS	N * N * C - O	#	2.61
462	AS	N * N - C - O	#	0.41
463	AS	N - N - C - O	#	2.57
276	AS	N * N * C - O - C	#	1.23
459	AS	N N C S	#	6.66
460	AS	N * N * C * S	#	1.19
461	AS	N * N * C - S	#	2.61
462	AS	N * N - C - S	#	0.41
463	AS	N - N - C - S	#	2.57
276	AS	N * N * C - S - C	#	1.23
250	AS	N N C		1.47
464	AS	N N N		0.60
465	AS	N N O O	#	0.17
465	AS	N N O S	#	0.17
465	AS	N N S O	#	0.17
465	AS	N N S S	#	0.17
2085	AS	N O C C	#	26.07
198	AS	N * O * C - C	#	0.77

Screen Number		Fragment Definition	F	requency Percent
197	AS	N - O - C * C	#	3.51
199	AS	N - O - C - C	#	1.12
329	AS	N O C C Br	#	0.30
130	AS	N - O - C * C - C	#	0.32
129	AS	N - O - C - C * C	#	0.35
308	AS	N O C C C Br	#	0.26
85	AS	N - O - C * C * C - C	#	0.42
308	AS	N O C C C Cl	#	0.26
308	AS	N O C C F	#	0.26
308	AS	N O C C C I	#	0.26
379	AS	N O C C C N	#	0.80
466 466	AS AS	NOCCCO NOCCCS	# #	0.71 0.71
329	AS AS	N O C C Cl	#	0.71
329	AS AS	N O C C F	#	0.30
329	AS	N O C C I	#	0.30
411	AS	N O C C N	#	0.75
467	AS	N O C C O	#	0.63
467	AS	N O C C S	#	0.63
2092	AS	N O C N	#	13.08
444	AS	N * O * C * N	#	0.42
445	AS	N - O - C - N	#	0.06
468	AS	N O C O	#	0.58
468	AS	N O C S	#	0.58
281	AS	N O O C	#	0.09
281	AS	N O S C	#	0.09
2085	AS	N S C C	#	26.07
198	AS	N * S * C - C	#	0.77
197	AS	N - S - C * C	#	3.51
<u>199</u> 329	AS AS	N - S - C - C N S C C Br	# #	$\frac{1.12}{0.30}$
130	AS AS	N - S - C * C - C	#	0.30
129	AS	N - S - C - C * C	#	0.32
308	AS	N S C C C Br	#	0.26
85	AS	N - S - C * C * C - C	#	0.42
308	AS	N S C C Cl	#	0.26
308	AS	N S C C C F	#	0.26
308	AS	N S C C C I	#	0.26
379	AS	N S C C C N	#	0.80
466	AS	N S C C C O	#	0.71
466	AS	N S C C C S	#	0.71
329	AS	N S C C Cl	#	0.30
329	AS	N S C C F	#	0.30
329	AS	N S C C I	#	0.30
411	AS	N S C C N	#	0.75
467	AS	N S C C O	#	0.63
467 2092	AS AS	N S C C S N S C N	# #	0.63 13.08
2092 444	AS AS	N	#	0.42
445	AS AS	N - S - C - N	#	0.42
468	AS	N S C O	#	0.58
468	AS	N S C S	#	0.58
281	AS	N S O C	#	0.09
281	AS	N S S C	#	0.09
331	AS	O C C As	#	1.39

Screen Number		Fragment Definition	F	requency Percent
331	AS	ОССВ	#	1.39
323	AS	0 * C * C - Br	#	0.61
325	AS	0 * C - C - Br	#	0.45
324	AS	0 - C * C - Br	#	2.95
326	AS	0 - C - C - Br	#	2.53
2081	AS	0 C C C	#	76.51
118	AS	0 * C * C - C	#	9.42
116	AS	0 * C - C * C	#	4.30
120	AS	0 * C - C - C 0 - C * C - C	#	5.21
119 117	AS AS	0 - C * C - C 0 - C - C * C	#	18.18 33.04
121	AS AS	0 - C - C - C	#	32.90
311	AS AS	O C C C As	#	1.14
311	AS	O C C C B	#	1.14
303	AS	O C C C Br	#	5.10
304	AS	0 * C * C * C - Br	#	0.64
305	AS	0 - C * C * C - Br	#	1.72
306	AS	0 - C - C * C - Br	#	1.61
307	AS	0 - C - C - Br	#	0.86
72	AS	0 * C * C * C * C	#	19.48
76	AS	O * C * C * C - C	#	7.10
73	AS	O * C * C - C * C	#	2.01
74	AS	O * C - C - C * C	#	1.34
77	AS	O - C * C * C - C	#	14.59
6	AS	0 - C * C - C * C	#	7.08
38	AS	O - C * C - C * C	#	5.99
79	AS	0 - C * C - C - C	#	6.96
78 75	AS		# #	6.22 6.25
75 80	AS AS	0 - C - C - C * C 0 - C - C - C - C	#	21.57
291	AS AS	0 C C C C As	#	0.79
291	AS	0 C C C C B	#	0.79
288	AS	O C C C C Br	#	6.39
289	AS	0 - C * C * C * C - Br	#	3.00
290	AS	0 - C - C * C * C - Br	#	1.30
35	AS	O * C * C * C * C	#	14.10
40	AS	O * C * C * C * C - C	#	9.53
36	AS	O * C * C * C - C * C	#	1.56
41	AS	O - C * C * C * C - C	#	19.86
37	AS	0 - C * C * C - C * C	#	2.60
44	AS	0 - C * C * C - C - C	#	4.16
14	AS	0 - C * C - C - C * C	#	3.46
38	AS	0 - C * C - C - C * C 0 - C - C * C * C - C	#	5.99
42 45	AS AS	0 - C - C * C * C - C 0 - C - C * C - C - C	# #	4.15 1.26
43	AS AS	0 - C - C - C * C - C	#	1.01
39	AS AS	0 - C - C - C - C * C	#	7.78
46	AS	0 - C - C - C - C	#	12.64
288	AS	0 C C C C Cl	#	6.39
289	AS	O - C * C * C * C - Cl	#	3.00
290	AS	0 - C - C * C * C - Cl	#	1.30
288	AS	O C C C F	#	6.39
289	AS	O - C * C * C * C - F	#	3.00
290	AS	O - C - C * C * C - F	#	1.30
288	AS	O C C C I	#	6.39

Screen Number		Fragment Definition	F	requency Percent
289	AS	O - C * C * C * C - I	#	3.00
290	AS	O - C - C * C * C - I	#	1.30
345	AS	O C C C N	#	25.91
347	AS	O * C * C * C * C - N	#	2.82
346	AS	O - C * C * C * C * N	#	5.92
348	AS	O - C * C * C * C - N	#	5.24
350	AS	O - C * C * C - C - N	#	1.95
352	AS	O - C * C - C - N	#	0.41
349	AS	O - C - C * C * C - N	#	1.64
351	AS	O - C - C * C - C - N	#	0.50
353	AS	0 - C - C - C - N	#	4.12
469	AS	0 * C * C * C * C - 0	#	5.73
469	AS	0 - C * C * C * C * 0	#	5.73
470	AS	0 - C * C * C * C - 0	#	7.27
471 472	AS	0 - C * C * C - C - O 0 - C * C - C * C - O	#	<u>4.77</u> 0.22
472	AS AS	0 - C * C - C * C - 0 0 - C * C - C - C - 0	# #	0.22
473 471	AS AS	0 - C - C * C * C - 0	#	4.77
474	AS AS	0 - C - C * C - C - 0	#	1.17
473	AS AS	0 - C - C - C * C - 0	#	0.86
475	AS AS	0 - C - C - C - C - 0	#	4.56
291	AS	0 C C C P	#	0.79
469	AS	0 * C * C * C * C - S	#	5.73
469	AS	0 - C * C * C * S	#	5.73
470	AS	0 - C * C * C * C - S	#	7.27
471	AS	0 - C * C * C - C - S	#	4.77
472	AS	0 - C * C - C * C - S	#	0.22
473	AS	0 - C * C - C - C - S	#	0.86
471	AS	0 - C - C * C * C - S	#	4.77
474	AS	0 - C - C * C - C - S	#	1.17
473	AS	0 - C - C - C * C - S	#	0.86
475	AS	0 - C - C - C - S	#	4.56
291	AS	O C C C Se	#	0.79
291	AS	O C C C C Si	#	0.79
291	AS	O C C C Te	#	0.79
303	AS	o c c c cl	#	5.10
304	AS	0 * C * C * C - Cl	#	0.64
305	AS	0 - C * C * C - Cl	#	1.72
306	AS	0 - C - C * C - Cl	#	1.61
307	AS	0 - C - C - Cl	#	0.86
303	AS	O C C C F	#	5.10
304	AS	0 * C * C * C - F	#	0.64
305 306	AS	O - C * C * C - F O - C - C * C - F	#	1.72
300	AS AS	O - C - C * C - F O - C - C - C - F	# #	1.61 0.86
307	AS AS	0 C C C I	#	5.10
304	AS AS	0 * C * C * C - I	#	0.64
304	AS AS	O - C * C * C - I	#	1.72
306	AS	0 - C - C * C - I	#	1.61
307	AS	0 - C - C - C - I	#	0.86
368	AS	O * C * C * C * N	#	4.16
374	AS	O * C * C * C - N	#	1.65
370	AS	O * C * C - C * N	#	2.56
370	AS	O * C * C - C - N	#	2.56
370	AS	O * C - C * C * N	#	2.56

Screen Number		Fragment Definition	F	requency Percent
370	AS	O * C - C * C - N	#	2.56
370	AS	O * C - C - C * N	#	2.56
370	AS	O * C - C - N	#	2.56
369	AS	O - C * C * C * N	#	9.05
375	AS	O - C * C * C - N	#	4.45
372	AS	O - C * C - C * N	#	0.73
377	AS	O - C * C - C - N	#	2.93
371	AS	O - C - C * C * N	#	4.73
376	AS	O - C - C * C - N	#	1.92
373	AS	O - C - C - C * N	#	1.07
378	AS	O - C - C - C - N	#	7.21
302	AS	O C C C N As	#	0.44
302	AS	O C C C N B	#	0.44
208	AS	O - C * C * C * N - C	#	3.76
209	AS	O - C * C * C - N - C	#	2.16
211	AS	O - C * C - C - N - C	#	1.57
210	AS	O - C - C * C - N - C	#	1.11
447	AS	O C C C N N	#	3.35
448	AS	O - C * C * C - N - N	#	0.33
476	AS	O C C C N O	#	2.08
477	AS	O - C * C * C - N - O	#	0.52
302	AS	O C C C N P	#	0.44
476	AS	O C C C N S	#	2.08
477	AS	O - C * C * C - N - S	#	0.52
302	AS	O C C C N Se	#	0.44
302	AS	O C C C N Si	#	0.44
302	AS	O C C C N Te	#	0.44
2096	AS	0 C C C 0	#	20.23
478	AS	O * C * C * C * O	#	2.29
479	AS	O * C * C * C - O	#	7.38
480	AS	O * C * C - C - O	#	3.12
481	AS	O * C - C - C * O	#	0.19
479	AS	O - C * C * C * O	#	7.38
482	AS	O - C * C * C - O	#	6.67
483	AS	0 - C * C - C - O	#	6.12
480	AS	0 - C - C * C * 0	#	3.12
483	AS	0 - C - C * C - 0	#	6.12
484	AS	O - C - C - C - O	#	6.65
310	AS	O C C C O As	#	2.38
310	AS	0 C C C 0 B	#	2.38
261	AS	0 - C * C * C - O - C	#	4.46
263	AS	O - C * C - C - O - C	#	2.05
262	AS	O - C - C * C - O - C	#	2.33
264	AS	0 - C - C - C - C	#	3.09
466	AS	O C C C O N	#	0.71
485	AS	0 C C C 0 0	#	1.62
310	AS	0 C C C O P	#	2.38
485	AS	0 C C C O S	#	1.62
310	AS	O C C C O Se	#	2.38
310	AS	O C C C O Si	#	2.38
310	AS	O C C C O Te	#	2.38
311	AS	O C C C P	#	1.14
478	AS	0 * C * C * C * S	#	2.29
479	AS	0 * C * C * C - S	#	7.38
480	AS	0 * C * C - C - S	#	3.12

Screen Number		Fragment Definition	F	requency Percent
481	AS	0 * C - C - C * S	#	0.19
479	AS	0 - C * C * C * S	#	7.38
482	AS	O - C * C * C - S	#	6.67
483	AS	O - C * C - C - S	#	6.12
480	AS	0 - C - C * C * S	#	3.12
483	AS	0 - C - C * C - S	#	6.12
484	AS	0 - C - C - C - S	#	6.65
310	AS	O C C C S As	#	2.38
310	AS	O C C C S B	#	2.38
261	AS	0 - C * C * C - S - C	#	4.46
263	AS	0 - C * C - C - S - C	#	2.05
262 264	AS AS	0 - C - C * C - S - C 0 - C - C - C - S - C	# #	2.33
466	AS AS	0	#	0.71
485	AS AS	0 C C C S 0	#	1.62
310	AS AS	O C C C S P	#	2.38
485	AS	0 C C C S S	#	1.62
310	AS	O C C C S Se	#	2.38
310	AS	O C C C S Si	#	2.38
310	AS	O C C C S Te	#	2.38
311	AS	O C C C Se	#	1.14
311	AS	O C C C Si	#	1.14
311	AS	O C C C Te	#	1.14
323	AS	O * C * C - Cl	#	0.61
325	AS	0 * C - C - Cl	#	0.45
324	AS	O - C * C - Cl	#	2.95
326	AS	0 - C - C - Cl	#	2.53
323	AS	O * C * C - F	#	0.61
325	AS	0 * C - C - F	#	0.45
324	AS	0 - C * C - F 0 - C - C - F	#	2.95
326 323	AS		#	2.53 0.61
323 325	AS AS	O * C * C - I O * C - C - I	# #	0.45
323	AS AS	0 - C * C - I	#	2.95
324	AS	0 - C - C - I	#	2.53
2090	AS	O C C N	#	35.39
398	AS	O * C * C * N	#	8.97
402	AS	O * C * C - N	#	1.91
400	AS	O * C - C * N	#	0.73
404	AS	O * C - C - N	#	2.34
399	AS	O - C * C * N	#	5.41
403	AS	O - C * C - N	#	6.11
401	AS	O - C - C * N	#	6.21
405	AS	O - C - C - N	#	16.92
302	AS	O C C N As	#	0.44
302	AS	O C C N B	#	0.44
225	AS	0 * C * C * N - C	#	3.33
226	AS	O - C * C * N - C	#	1.88
223	AS	O - C * C - N * C O - C * C - N - C	#	0.96
<u>228</u> 227	AS AS	O - C * C - N - C O - C - C * N - C	#	3.06
227	AS AS	0 - C - C - N - C	#	2.89
229	AS AS	0 - C - C - N - C	#	12.06
148	AS	O * C * C * N * C * C	#	3.85
38	AS	O - C * C - N - C * C	#	5.99
-	*	-		-

Screen Number		Fragment Definition	Frequency Percent
102	AS	O - C * C - N - C * C	# 0.92
149	AS	O - C - C - N - C * C	# 2.49
415	AS	O C C N C N	# 7.06
416	AS	O - C * C * N * C * N	# 1.32
418	AS	O - C * C - N - C - N	# 0.25
417	AS	O - C - C * N * C * N	# 0.56
419	AS	O - C - C - N - C - N	# 0.42
486	AS	O C C N C O	# 14.96
487	AS	O - C * C - N - C - O	# 2.07
488	AS	0 - C - C - N - C - O	# 7.07
486	AS	O C C N C S	# 14.96
487	AS	0 - C * C - N - C - S	# 2.07
488	AS	0 - C - C - N - C - S	# 7.07 # 4.22
451 452	AS AS	O C C N N O-C*C*N*N	# 4.22 # 0.46
454	AS AS	O - C * C - N - N	# 0.40
453	AS	O - C - C * N * N	# 0.74
455	AS	O - C - C - N - N	# 0.80
489	AS	O C C N O	# 2.88
490	AS	O - C * C - N - O	# 0.94
491	AS	O - C - C - N - O	# 1.05
302	AS	O C C N P	# 0.44
489	AS	O C C N S	# 2.88
490	AS	O - C * C - N - S	# 0.94
491	AS	O - C - C - N - S	# 1.05
302	AS	O C C N Se	# 0.44
302	AS	O C C N Si	# 0.44
302	AS	O C C N Te	# 0.44
2091	AS	0 C C 0	# 24.29
492	AS	0 * C * C * 0	# 4.00
493	AS	0 * C * C - O	# 6.17
494	AS	0 * C - C * 0	# 0.42
495	AS	0 * C - C - 0 0 - C * C * 0	# 5.40
493 496	AS		# 6.17
495	AS AS	0 - C * C - 0 0 - C - C * 0	# 7.98 # 5.40
497	AS	0 - C - C - 0	# 9.90
310	AS AS	0 C C O As	# 2.38
310	AS	0 C C 0 B	# 2.38
272	AS	O - C * C - O - C	# 6.16
273	AS	0 - C - C - O - C	# 8.01
38	AS	O - C * C - O - C * C	# 5.99
126	AS	0 - C * C - 0 - C * C	# 2.20
187	AS	0 - C - C - 0 - C * C	# 3.29
441	AS	O C C O C N	# 4.35
498	AS	0 C C 0 C 0	# 7.30
498	AS	O C C O C S	# 7.30
467	AS	O C C O N	# 0.63
499	AS	0 C C 0 0	# 1.31
310	AS	0 C C 0 P	# 2.38
499	AS	0 C C O S	# 1.31
310	AS	O C C O Se	# 2.38
310	AS	O C C O Si	# 2.38
310	AS	O C C O Te	# 2.38
331	AS	O C C P	# 1.39

Screen Number		Fragment Definition	F	requency Percent
2091	AS	O C C S	#	24.29
492	AS	0 * C * C * S	#	4.00
493	AS	0 * C * C - S	#	6.17
494	AS	0 * C - C * S	#	0.42
495	AS	0 * C - C - S	#	5.40
493	AS	0 - C * C * S	#	6.17
496	AS	0 - C * C - S	#	7.98
495	AS	0 - C - C * S	#	5.40
497	AS	0 - C - C - S	#	9.90
310 310	AS AS	O C C S As O C C S B	#	2.38
272	AS AS	0 - C * C - S - C	#	2.38 6.16
272	AS AS	0 - C - C - S - C	#	8.01
38	AS	0 - C * C - S - C * C	#	5.99
126	AS	0 - C * C - S - C * C	#	2.20
187	AS	0 - C - C - S - C * C	#	3.29
441	AS	O C C S C N	#	4.35
498	AS	0 C C S C 0	#	7.30
498	AS	O C C S C S	#	7.30
467	AS	O C C S N	#	0.63
499	AS	0 C C S 0	#	1.31
310	AS	O C C S P	#	2.38
499	AS	O C C S S	#	1.31
310	AS	O C C S Se	#	2.38
310	AS	O C C S Si	#	2.38
310	AS	O C C S Te	#	2.38
331	AS	O C C Se	#	1.39
331 331	AS AS	O C C Si O C C Te	# #	1.39 1.39
2087	AS AS	OCCTEOCO	#	39.80
241	AS AS	O * C * N - C	#	1.96
239	AS	O * C - N * C	#	1.30
242	AS	O - C * N - C	#	8.74
240	AS	O - C - N * C	#	5.80
243	AS	O - C - N - C	#	23.15
334	AS	O C N C Br	#	0.18
157	AS	O * C * N * C * C	#	6.29
161	AS	O * C * N * C - C	#	3.21
159	AS	O * C - N - C * C	#	0.71
162	AS	O - C * N * C - C	#	4.84
158	AS	0 - C * N - C * C	#	3.59
163	AS	O - C - N * C - C	#	2.74
160	AS	O - C - N - C * C	#	11.07
164 319	AS AS	O - C - N - C - C O C N C C Br	# #	13.37 1.84
320	AS AS	0 - C - N - C * C - Br	#	0.72
106	AS	O * C * N * C * C * C	#	2.79
107	AS	O - C * N - C - C * C	#	1.02
109	AS	O - C - N - C * C - C	#	2.05
108	AS	O - C - N - C - C * C	#	3.00
319	AS	O C N C C Cl	#	1.84
320	AS	O - C - N - C * C - Cl	#	0.72
319	AS	O C N C C F	#	1.84
320	AS	O - C - N - C * C - F	#	0.72
319	AS	O C N C C I	#	1.84

Screen Number		Fragment Definition	F	requency Percent
320	AS	O - C - N - C * C - I	#	0.72
389	AS	O C N C C N	#	12.87
390	AS	O - C - N * C * C * N	#	1.34
391	AS	O - C - N - C * C - N	#	0.42
392	AS	O - C - N - C - C - N	#	5.48
486	AS	O C N C C O	#	14.96
487	AS	O - C - N - C * C - O	#	2.07
488	AS	O - C - N - C - C - O	#	7.07
486	AS	O C N C C S	#	14.96
487	AS	O - C - N - C * C - S	#	2.07
488	AS	O - C - N - C - C - S	#	7.07
334	AS	O C N C Cl	#	0.18
334	AS	O C N C F	#	0.18
334	AS	O C N C I	#	0.18
425	AS	O C N C N	#	9.70
426	AS	O - C * N * C * N	#	5.47
429	AS	O - C * N * C - N	#	1.44
427	AS	O - C - N * C * N	#	0.50
428	AS	O - C - N - C * N	#	1.59
430	AS	O - C - N - C - N	#	0.75
500	AS	O C N C O	#	8.18
501	AS	O - C * N * C - O	#	4.24
502	AS	O - C * N - C - O	#	0.50
502	AS	O - C - N * C - O	#	0.50
503	AS AS	0 - C - N - C - 0	#	0.77
500	AS	O C N C S	#	8.18
501	AS		#	4.24
502 502	AS AS	O - C * N - C - S O - C - N * C - S	# #	0.50 0.50
502	AS AS	O - C - N - C - S	#	0.30
459	AS AS	O C N N	#	6.66
460	AS	O * C * N * N	#	1.19
461	AS	O - C * N * N	#	2.61
462	AS	O - C - N * N	#	0.41
463	AS	O - C - N - N	#	2.57
249	AS	O - C * N * N - C	#	0.35
504	AS	O C N N C O	#	1.09
504	AS	O C N N C S	#	1.09
505	AS	O C N O	#	1.66
2092	AS	O C N O	#	13.08
506	AS	O * C * N * O	#	0.08
507	AS	O * C - N - O	#	0.24
508	AS	O - C * N * O	#	0.24
509	AS	O - C - N - O	#	0.83
505	AS	O C N S	#	1.66
2092	AS	O C N S	#	13.08
506	AS	0 * C * N * S	#	0.08
507	AS	0 * C - N - S	#	0.24
508	AS	0 - C * N * S	#	0.24
509	AS	O - C - N - S	#	0.83
2088	AS	0 C 0 C	#	27.26
2094	AS	0	#	27.26
277 192	AS		#	2.86
194	AS AS	0 * C - O - C * C O - C * O * C - C	# #	1.20 3.38
エシュ	AD	0 0 0 - 0	#	٥٠,٥٥

Screen Number		Fragment Definition	F	requency Percent
193	AS	0 - C - 0 - C * C	#	4.71
195	AS	O - C - O - C - C	#	13.48
328	AS	O C O C Br	#	0.64
128	AS	O - C - O - C - C * C	#	3.28
328	AS	0 C 0 C C Cl	#	0.64
328	AS	O C O C C F	#	0.64
328	AS	O C O C C I	#	0.64
408	AS	O C O C C N	#	4.14
409	AS	O - C - O - C * C - N	#	0.36
410	AS	0 - C - O - C - C - N	#	1.42
498 498	AS AS	0	#	7.30 7.30
498	AS AS	0 C 0 C C S 0 C 0 C N	#	0.95
510	AS AS	0 C 0 C N	#	1.46
510	AS AS	0 C 0 C S	#	1.46
468	AS	O C O N	#	0.58
511	AS	0 C 0 0	#	0.48
511	AS	0 C 0 S	#	0.48
2088	AS	O C S C	#	27.26
2094	AS	O C S C	#	27.26
277	AS	0 * C - S - C	#	2.86
192	AS	O * C - S - C * C	#	1.20
194	AS	O - C * S * C - C	#	3.38
193	AS	0 - C - S - C * C	#	4.71
195	AS	0 - C - S - C - C	#	13.48
328	AS	O C S C C Br	#	0.64
128	AS	0 - C - S - C - C * C	#	3.28
328	AS	o c s c c cl	#	0.64
328	AS	O C S C C F O C S C C I	#	0.64
328 408	AS AS	O C S C C I O C S C C N	# #	$\frac{0.64}{4.14}$
408	AS AS	0 - C - S - C * C - N	#	0.36
410	AS AS	0 - C - S - C - C - N	#	1.42
498	AS	0 C S C C 0	#	7.30
498	AS	0 C S C C S	#	7.30
443	AS	O C S C N	#	0.95
510	AS	0 C S C 0	#	1.46
510	AS	O C S C S	#	1.46
468	AS	O C S N	#	0.58
511	AS	0 C S 0	#	0.48
511	AS	O C S S	#	0.48
335	AS	O N C Br	#	0.09
2085	AS	O N C C	#	26.07
173	AS	O * N * C * C	#	1.32
175	AS	0 - N * C - C	#	0.56
174	AS	O - N - C * C	#	6.36
176	AS	O - N - C - C	#	3.06
322	AS	O N C C Br O-N-C*C-C	#	0.39
115 114	AS AS	O - N - C * C - C O - N - C - C * C	# #	0.94 1.22
301	AS AS	0 N C C C Br	#	0.55
71	AS	0 - N - C * C * C - C	#	1.36
70	AS	O - N - C - C - C * C	#	0.32
301	AS	O N C C C Cl	#	0.55
301	AS	O N C C F	#	0.55

Screen Number		Fragment Definition	F	requency Percent
301	AS	O N C C C I	#	0.55
365	AS	O N C C C N	#	2.43
366	AS	O - N - C * C * C * N	#	0.35
367	AS	O - N - C * C * C - N	#	1.02
476	AS	O N C C C O	#	2.08
477	AS	O - N - C * C * C - O	#	0.52
476	AS	O N C C C S	#	2.08
477	AS	0 - N - C * C * C - S	#	0.52
322	AS	O N C C Cl	#	0.39
322	AS	O N C C F	#	0.39
322	AS	O N C C I	#	0.39
394	AS	O N C C N O-N-C*C*N	#	3.00
395 396	AS AS		#	0.48 0.72
396	AS AS	O - N - C * C - N O - N - C - C - N	# #	0.72
222	AS AS	O - N - C - C - N - C	#	0.32
450	AS	O N C C N N	#	0.52
512	AS	O N C C N O	#	0.31
512	AS	O N C C N S	#	0.33
489	AS	O N C C O	#	2.88
490	AS	O - N - C * C - O	#	0.94
491	AS	O - N - C - C - O	#	1.05
271	AS	O - N - C * C - O - C	#	0.42
489	AS	O N C C S	#	2.88
490	AS	O - N - C * C - S	#	0.94
491	AS	O - N - C - C - S	#	1.05
271	AS	O - N - C * C - S - C	#	0.42
335	AS	O N C Cl	#	0.09
335	AS	O N C F	#	0.09
335	AS	O N C I	#	0.09
437	AS	O N C N	#	1.66
438	AS	O * N * C * N	#	0.48
439	AS	O - N - C * N	#	0.35
440	AS	O - N - C - N	#	0.51
<u>458</u> 505	AS AS	O N C N N O N C O	#	0.17 1.66
2092	AS AS		#	13.08
506	AS AS	O N C O O * N * C * O		0.08
508	AS	O * N * C - O	#	0.24
507	AS	O - N - C * O	#	0.24
509	AS	O - N - C - O	#	0.83
505	AS	O N C S	#	1.66
506	AS	0 * N * C * S	#	0.08
508	AS	0 * N * C - S	#	0.24
507	AS	O - N - C * S	#	0.24
509	AS	0 - N - C - S	#	0.83
279	AS	O N O C	#	0.17
279	AS	O N S C	#	0.17
336	AS	O O C Br	#	0.37
2085	AS	0 0 C C	#	26.07
201	AS	O - O - C * C	#	6.11
202	AS	0 - 0 - C - C	#	2.21
330	AS	O O C C Br	#	0.43
132	AS	0 - 0 - C * C - C	#	0.71
131	AS	0 - 0 - C - C * C	#	0.48

Screen Number		Fragment Definition	F	requency Percent
133	AS	0 - 0 - C - C - C	#	1.20
309	AS	O O C C Br	#	0.37
86	AS	O - O - C * C * C - C	#	0.75
309	AS	0 0 C C C Cl	#	0.37
309	AS	0 0 C C F	#	0.37
309	AS	0 0 C C C I	#	0.37
380	AS	0 0 C C N	#	1.74
381	AS	O - O - C * C * C - N	#	0.76
485 485	AS	0 0 C C C 0 0 0 C C C S	# #	1.62
330	AS AS	0 0 C C C S 0 0 C C Cl	#	$\frac{1.62}{0.43}$
330	AS	0 0 C C F	#	0.43
330	AS	0 0 C C I	#	0.43
412	AS	O O C C N	#	1.53
413	AS	O - O - C * C * N	#	0.27
414	AS	O - O - C * C - N	#	0.52
456	AS	O O C C N N	#	0.36
499	AS	0 0 C C 0	#	1.31
499	AS	0 0 C C S	#	1.31
336	AS	0 0 C Cl	#	0.37
336	AS	0 0 C F	#	0.37 0.37
336 446	AS AS	O O C I O O C N	# #	0.37
511	AS AS	0 0 C N	#	0.48
511	AS	0 0 C S	#	0.48
2092	AS	O O N C	#	13.08
254	AS	O * O - N - C	#	0.00
253	AS	O - O - N * C	#	0.97
255	AS	O - O - N - C	#	2.96
179	AS	O - O - N - C * C	#	1.31
465	AS	O O N N	#	0.17
282	AS	0 0 0 C	#	1.03
282 336	AS	O O S C O S C Br	# #	1.03 0.37
2085	AS AS	OSCBr OSCC	#	26.07
2003	AS	0 - S - C * C	#	6.11
202	AS	0 - S - C - C	#	2.21
330	AS	O S C C Br	#	0.43
132	AS	0 - S - C * C - C	#	0.71
131	AS	O - S - C - C * C	#	0.48
133	AS	0 - S - C - C - C	#	1.20
309	AS	O S C C C Br	#	0.37
86	AS	0 - S - C * C * C - C	#	0.75
309	AS	o s c c c cl	#	0.37
309	AS	O S C C C F O S C C C I	#	0.37
309 380	AS AS	OSCCCI OSCCCN	#	0.37 1.74
381	AS	O - S - C * C * C - N	#	0.76
485	AS	0 S C C C 0	#	1.62
485	AS	0 8 C C C S	#	1.62
330	AS	O S C C Cl	#	0.43
330	AS	O S C C F	#	0.43
330	AS	O S C C I	#	0.43
412	AS	O S C C N	#	1.53
413	AS	O - S - C * C * N	#	0.27

Screen Number		Fragment Definition	Frequency Percent
414	AS	O - S - C * C - N	# 0.52
456	AS	O S C C N	N # 0.36
499	AS	0 S C C 0	# 1.31
499	AS	O S C C S	# 1.31
336	AS	o s c cl	# 0.37
336	AS	O S C F	# 0.37
336	AS	O S C I	# 0.37
446	AS	O S C N	# 0.48
511	AS	0 S C 0	# 0.48
511	AS	O S C S	# 0.48
2092	AS	O S N C	# 13.08
254	AS	O * S - N - C	# 0.00
253	AS	O - S - N * C	# 0.97
255	AS	O - S - N - C	# 2.96
179	AS	O - S - N - C * C O S N N	# 1.31
465	AS		# 0.17 # 1.03
282 282	AS AS	0 S O C 0 S S C	# 1.03 # 1.03
331			# 1.03
331	AS AS	P C C As P C C B	# 1.39 # 1.39
331	AS AS	P C C Br	# 1.39
134	AS	P C C C	# 4.57
311	AS	P C C C As	# 1.14
311	AS	P C C C B	# 1.14
311	AS	P C C C Br	# 1.14_
291	AS	P C C C C	As # 0.79
291	AS	P C C C	В # 0.79
291	AS	P C C C C	Br # 0.79
47	AS	P C C C	C # 3.83
291	AS	P C C C	Cl # 0.79
291	AS	P C C C	F # 0.79
291	AS	P C C C	I # 0.79
291	AS	P C C C	N # 0.79
291	AS	P C C C	0 # 0.79
291	AS	P C C C	P # 0.79
291	AS	P C C C	S # 0.79
291	AS	P C C C	Se # 0.79
291	AS	P C C C	Si # 0.79
291	AS	P C C C C	Te # 0.79
311	AS	P C C C Cl	# 1.14
311	AS	P C C C F	# 1.14
311	AS	P C C C I	# 1.14
311	AS	P C C C N	# 1.14
302	AS	P C C C N	As # 0.44
302	AS	P C C C N	B # 0.44
302 302	AS	P C C C N P C C C N	P # 0.44 Se # 0.44
302	AS AS	P C C C N P C C C N	Se # 0.44 Si # 0.44
302	AS AS	P C C C N	Te # 0.44
311	AS AS	P C C C O	# 1.14
310	AS	P C C C O	As # 2.38
310	AS	P C C C O	B # 2.38
310	AS	P C C C O	P # 2.38
310	AS	P C C C O	Se # 2.38
310	AS	P C C C O	Si # 2.38
			**

Screen Number				Fr De	ragmen efinitio	t n			Frequ Pe	ency rcent
310	AS	Р	С	С	С	0	Te	‡	‡ 2	.38
311	AS	P	С	C	С	P		#		.14
311	AS	P	С	C	С	S		‡	‡ 1	.14
310	AS	P	С	С	С	S	As	‡	‡ 2	.38
310	AS	P	С	С	С	S	В	‡		.38
310	AS	P	С	С	С	S	P	‡	‡ 2	.38
310	AS	P	C	C	C	S	Se	‡		.38
310	AS	P	С	С	C	S	Si	#	‡ 2	.38
310	AS	P	С	С	C	S	Te	#	‡ 2	.38
311	AS	P	С	С	С	Se		#		.14
311	AS	P	С	C	С	Si		‡		.14
311	AS	P	С	C	C	Te		#		.14
331	AS	P	С	С	Cl			‡		.39
331	AS	P	С	С	F			‡		.39
331	AS	P	C	C	I			#		.39
331	AS	P	C	C	N	_		‡		.39
302	AS	P	C	C	N	As		‡		.44
302	AS	P	C	C	N	В		‡		.44
302	AS	P	C	C	N	Р		#		.44
302	AS	P	C C	C	N	Se Si		<u></u>		.44
302	AS	P P	C	C	N			1 ‡		.44
302	AS AS	P	C	C	N	Te		+		.39
310	AS AS	P	C	C	0	As		+		.39
310	AS AS	P	C	C	0	AS B		+ +		.38
310	AS AS	P	C		0	<u>Б</u> Р		 ‡		.38
310	AS	P	C	C	0	Se		+ +		.38
310	AS	P	C	C	0	Si		+ +		.38
310	AS	P	C	C	0	Te		, , , , , , , , , , , , , , , , , , ,		.38
331	AS	P	C	C	P	10		†		.39
331	AS	P			S			<u> </u>		.39
310	AS	P	C	C	S	As		‡		.38
310	AS	P	C	C	S	В		‡		.38
310	AS	Р	C	C	S	P		‡		.38
310	AS	Р	С	С	S	Se		#		.38
310	AS	Р	С	С	S	Si		#		.38
310	AS	Р	С	С	S	Te		‡		.38
331	AS	P	С	С	Se			‡	‡ 1	.39
331	AS	P	С	C	Si			‡		.39
331	AS	P	С	C	Te			‡	‡ 1	.39
302	AS	P	N	С	С	As		#	‡ 0	.44
302	AS	P	N	C	C	В		‡	‡ O	.44
302	AS	P	N	C	C	Br		‡	‡ O	.44
302	AS	P	N	C	C	C	As	#		.44
302	AS	P	N	С	С	С	В	#	† 0	.44
302	AS	P	N	C	C	С	Br	‡		.44
302	AS	P	N	C	С	C	Cl	#		.44
302	AS	P	N	C	С	C	F	‡		.44
302	AS	P	N	C	C	C	I	‡		.44
302	AS	P	N	C	C	C	N	#		.44
302	AS	P	N	C	C	C	0	‡		.44
302	AS	P	N	C	C	C	P	‡		.44
302	AS	P	N	C	C	C	S	#		.44
302	AS	P	N	C	C	C	Se	#		.44
302	AS	Р	N	С	С	С	Si	‡	ŧ U	.44

Screen Number				Fr De	agmen efinitio	nt n			Fre	equency Percent
302	AS	Р	N	С	С	С	Te	:	#	0.44
302	AS	P	N	С	С	Cl			#	0.44
302	AS	P	N	C	С	F		=	#	0.44
302	AS	P	N	C	С	I		=	#	0.44
302	AS	P	N	С	С	N			#	0.44
302	AS	P	N	С	С	0		;	#	0.44
302	AS	P	N	C	С	P			#	0.44
302	AS	P	N	C	С	S			#	0.44
302	AS	P	N	С	С	Se			#	0.44
302	AS	P	N	C	C	Si			<u>#</u>	0.44
302	AS	P	N	C	C	Te			#	0.44
310	AS	P	0	C	C	As			#	2.38
310 310	AS AS	P P	0	C C	C C	B			#	2.38
310	AS AS	P	0	C	C	Br C	As		# #	2.38
310	AS AS	P	0	C	C	C	B		<u>"</u> #	2.38
310	AS	P	0	C	C	C	Br		π #	2.38
310	AS	P	0	C	C	C	Cl		#	2.38
310	AS	P	0	C	C	C	F		#	2.38
310	AS	P	0	C	C	C	I		 #	2.38
310	AS	P	0	С	С	С	N		#	2.38
310	AS	P	0	C	С	С	0	=	#	2.38
310	AS	P	0	C	С	С	P	=	#	2.38
310	AS	P	0	C	С	С	S	‡	#	2.38
310	AS	P	0	С	С	С	Se		#	2.38
310	AS	P	0	C	С	С	Si		#	2.38
310	AS	P	0	С	С	С	Te		#	2.38
310	AS	Р	0	C	С	Cl			#	2.38
310	AS	P	0	C	C	F			#	2.38
310	AS	P	0	C	C	I			#	2.38
310 310	AS AS	P P	0	C	C	N O			#	2.38
310	AS AS	P	0	C	C	P			# #	2.38
310	AS AS	P	0	C	C	S			# #	2.38
310	AS	P	0	C	C	Se			#	2.38
310	AS	P	0	C		Si			<u>''</u> #	2.38
310	AS	P	0	C	C	Te			 #	2.38
310	AS	P	S	C	C	As			 #	2.38
310	AS	P	S	C	С	В			#	2.38
310	AS	P	S	C	С	Br			#	2.38
310	AS	P	S	С	С	С	As	;	#	2.38
310	AS	P	S	C	С	С	В	‡	#	2.38
310	AS	P	S	C	С	С	Br		#	2.38
310	AS	P	S	С	С	С	Cl		#	2.38
310	AS	P	S	C	С	С	F		#	2.38
310	AS	P	S	C	C	C	I		#	2.38
310	AS	P	S	С	C	С	N		#	2.38
310	AS	P	S	C	C	C	0		# #	2.38
310 310	AS AS	P P	S S	C C	C C	C C	P S		# #	2.38
310	AS AS	P P	S	C	C	C	Se		# #	2.38
310	AS AS	P	s S	C	C	C	Si		# #	2.38
310	AS	P	S	C	C	C	Te		# #	2.38
310	AS	P	S	C	C	Cl	-0		#	2.38
310	AS	P	S	C	C	F			#	2.38
			_	-	-			'		-

Screen Number		Fragment Definition	F	requency Percent
310	AS	P S C C I	#	2.38
310	AS	P S C C N	#	2.38
310	AS	P S C C O	#	2.38
310	AS	P S C C P	#	2.38
310	AS	P S C C S	#	2.38
310	AS	P S C C Se	#	2.38
310	AS	P S C C Si	#	2.38
310	AS	P S C C Te	#	2.38
331	AS	S C C As	#	1.39
331	AS	S C C B	#	1.39
323	AS	S * C * C - Br	#	0.61
325	AS	S * C - C - Br	#	0.45
324	AS	S - C * C - Br	#	2.95
326	AS	S - C - C - Br	#	2.53
2081	AS	S C C C	#	76.51
118	AS	S * C * C - C	#	9.42
116	AS	S * C - C * C	#	4.30
120	AS	S * C - C - C	#	5.21
119	AS	S - C * C - C	#	18.18
117	AS	S - C - C * C	#	33.04
121	AS	S - C - C - C	#	32.90
311	AS	S C C C As	#	1.14
311	AS	S C C C B	#	1.14
303	AS	S C C C Br	#	5.10
304	AS	S * C * C * C - Br	#	0.64
305	AS	S - C * C * C - Br	#	1.72
306	AS	S - C - C * C - Br	#	1.61
307	AS	S - C - C - C - Br	#	0.86
72	AS	S * C * C * C * C	#	19.48
76	AS	S * C * C * C - C	#	7.10
73	AS	b	#	2.01
74 77	AS	5 6 6 6	#	1.34
6	AS AS	S - C * C * C - C S - C * C - C * C	# #	14.59 7.08
38	AS AS	S - C * C - C * C	#	5.99
	AS	S - C * C - C - C	#	6.96
78	AS	S - C - C * C - C	#	6.22
75	AS	S - C - C - C * C	#	6.25
80	AS	S - C - C - C	#	21.57
291	AS	S C C C As	#	0.79
291	AS	S C C C B	#	0.79
288	AS	S C C C Br	#	6.39
289	AS	S - C * C * C * C - Br	#	3.00
290	AS	S - C - C * C * C - Br	#	1.30
35	AS	S * C * C * C * C * C	#	14.10
40	AS	S * C * C * C * C - C	#	9.53
36	AS	S * C * C * C - C * C	#	1.56
41	AS	S - C * C * C * C - C	#	19.86
37	AS	S - C * C * C - C * C	#	2.60
44	AS	S - C * C * C - C - C	#	4.16
14	AS	S - C * C - C - C * C	#	3.46
38	AS	S - C * C - C - C * C	#	5.99
42	AS	S - C - C * C * C - C	#	4.15
45	AS	S - C - C * C - C - C	#	1.26
43	AS	S - C - C - C * C - C	#	1.01

Screen Number		Fragment Definition	F	requency Percent
39	AS	S - C - C - C - C * C	#	7.78
46	AS	S - C - C - C - C	#	12.64
288	AS	S C C C Cl	#	6.39
289	AS	S - C * C * C * C - Cl	#	3.00
290	AS	S - C - C * C * C - Cl	#	1.30
288	AS	S C C C F	#	6.39
289	AS	S - C * C * C * C - F	#	3.00
290	AS	S - C - C * C * C - F	#	1.30
288	AS	S C C C C I	#	6.39
289	AS	S - C * C * C * C - I	#	3.00
290	AS	S - C - C * C * C - I	#	1.30
345	AS	S C C C N	#	25.91
347	AS	S * C * C * C * C - N	#	2.82
346	AS	S - C * C * C * C * N	#	5.92
348	AS	S - C * C * C * C - N	#	5.24
350 352	AS		#	1.95
	AS		#	0.41
349 351	AS AS	B C C C C IV	# #	1.64 0.50
353	AS AS	S - C - C * C - C - N S - C - C - C - C - N	#	4.12
469	AS AS	S * C * C * C * C - O	#	5.73
469	AS	S - C * C * C * C * O	#	5.73
470	AS	S - C * C * C * C - O	#	7.27
471	AS	S - C * C * C - C - O	#	4.77
472	AS	S - C * C - C * C - O	#	0.22
473	AS	S - C * C - C - C - O	#	0.86
471	AS	S - C - C * C * C - O	#	4.77
474	AS	S - C - C * C - C - O	#	1.17
473	AS	S - C - C - C * C - O	#	0.86
475	AS	S - C - C - C - C - O	#	4.56
291	AS	S C C C C P	#	0.79
469	AS	S * C * C * C * C - S	#	5.73
469	AS	S - C * C * C * C * S	#	5.73
470	AS	S - C * C * C * C - S	#	7.27
471	AS	S - C * C * C - C - S	#	4.77
472	AS	S - C * C - C * C - S	#	0.22
473	AS	S - C * C - C - C - S	#	0.86
471	AS	S - C - C * C * C - S	#	4.77
474	AS	S - C - C * C - C - S	#	1.17
473	AS	S - C - C - C * C - S	#	0.86
475	AS	S - C - C - C - S	#	4.56
291	AS	S C C C Se	#	0.79
291	AS	S C C C C Si	#	0.79
291	AS	S C C C Te	#	0.79
303	AS	S C C C Cl	#	5.10
304	AS	S * C * C * C - Cl	#	0.64
305	AS	S - C * C * C - Cl	#	1.72
306 307	AS	S - C - C * C - Cl S - C - C - C - Cl	#	1.61
307	AS		#	0.86
303	AS		#	5.10
304 305	AS	S * C * C * C - F S - C * C * C - F	#	0.64 1.72
305	AS AS	S - C ^ C ^ C - F S - C - C * C - F	#	1.72
307	AS AS	S - C - C - F S - C - C - F	#	0.86
307	AS AS	S C C C I	#	5.10
505	AD	5 6 6 1	Ħ	J. ± 0

Screen Number		Fragment Definition	Fr	equency Percent
304	AS	S * C * C * C - I	#	0.64
305	AS	S - C * C * C - I	#	1.72
306	AS	S - C - C * C - I	#	1.61
307	AS	S - C - C - I	#	0.86
368	AS	S * C * C * C * N	#	4.16
374	AS	S * C * C * C - N	#	1.65
370	AS	S * C * C - C * N	#	2.56
370	AS	S * C * C - C - N	#	2.56
370	AS	S * C - C * C * N	#	2.56
370	AS	S * C - C * C - N	#	2.56
370	AS	S * C - C - C * N	#	2.56
370	AS	S * C - C - C - N	#	2.56
369	AS	S - C * C * C * N	#	9.05
375	AS	S - C * C * C - N	#	4.45
372	AS	S - C * C - C * N	#	0.73
377	AS	S - C * C - C - N	#	2.93
371	AS	S - C - C * C * N	#	4.73
376	AS	S - C - C * C - N	#	1.92
373	AS	S - C - C - C * N	#	1.07
378	AS	S - C - C - C - N	#	7.21
302	AS	S C C C N As	#	0.44
302	AS	S C C C N B	#	0.44
208	AS	S - C * C * C * N - C	#	3.76
209	AS	S - C * C * C - N - C	#	2.16
211	AS	S - C * C - C - N - C	#	1.57
210	AS	S - C - C * C - N - C	#	1.11
447	AS	S C C C N N	#	3.35
448	AS	S - C * C * C - N - N	#	0.33
476	AS	S C C C N O	#	2.08
477	AS	S - C * C * C - N - O	#	0.52
302	AS	S C C C N P	#	0.44
476	AS	S C C C N S	#	2.08
477	AS	S - C * C * C - N - S	#	0.52
302	AS	S C C C N Se	#	0.44
302	AS	S C C C N Si	#	0.44
302	AS	S C C C N Te	#	0.44
478	AS	S * C * C * C * O	#	2.29
479	AS	S * C * C * C - O	#	7.38
480	AS	S * C * C - C - O	#	3.12
481	AS	S * C - C - C * O	#	0.19
479	AS	S - C * C * C * O	#	7.38
482	AS	S - C * C * C - O	#	6.67
483	AS	S - C * C - C - O	#	6.12
480	AS	S - C - C * C * O	#	3.12
483	AS	S - C - C * C - O	#	6.12
484	AS	S - C - C - C - O	#	6.65
310	AS	S C C C O As	#	2.38
310	AS	S C C C O B	#	2.38
261	AS	S - C * C * C - O - C	#	4.46
263	AS	S - C * C - C - O - C	#	2.05
262	AS	S - C - C * C - O - C	#	2.33
264	AS	S - C - C - C - O - C	#	3.09
466	AS	S C C C O N	#	0.71
485	AS	S C C C O O	#	1.62
310	AS	S C C C O P	#	2.38

Screen Number		Fragment Definition	F	requency Percent
485	AS	S C C C O S	#	1.62
310	AS	S C C C O Se	#	2.38
310	AS	s c c c o si	#	2.38
310	AS	S C C C O Te	#	2.38
311	AS	S C C C P	#	1.14
2096	AS	S C C C S	#	20.23
478	AS	S * C * C * C * S	#	2.29
479	AS	S * C * C * C - S	#	7.38
480	AS	S * C * C - C - S	#	3.12
481	AS	S * C - C - C * S	#	0.19
479	AS	S - C * C * C * S	#	7.38
482	AS	S - C * C * C - S	#	6.67
483	AS	S - C * C - C - S	#	6.12
480	AS	S - C - C * C * S	#	3.12
483	AS	S - C - C * C - S	#	6.12
484	AS	S - C - C - C - S	#	6.65
310	AS	S C C C S As	#	2.38
310	AS	S C C C S B	#	2.38
261	AS	S - C * C * C - S - C S - C * C - C - S - C	#	4.46
<u>263</u> 262	AS AS	S - C * C - C - S - C S - C - C * C - S - C	# #	2.05
262	AS AS	S - C - C - C - S - C	#	3.09
466	AS AS	S C C C S N	#	0.71
485	AS AS	SCCCSN	#	1.62
310	AS AS	S C C C S P	#	2.38
485	AS	S C C C S S	#	1.62
310	AS	S C C C S Se	#	2.38
310	AS	S C C C S Si	#	2.38
310	AS	S C C C S Te	#	2.38
311	AS	S C C C Se	#	1.14
311	AS	S C C C Si	#	1.14
311	AS	S C C C Te	#	1.14
323	AS	S * C * C - Cl	#	0.61
325	AS	S * C - C - Cl	#	0.45
324	AS	S - C * C - Cl	#	2.95
326	AS	S - C - C - Cl	#	2.53
323	AS	S * C * C - F	#	0.61
325	AS	S * C - C - F	#	0.45
324	AS	S - C * C - F	#	2.95
326	AS	S - C - C - F	#	2.53
323	AS	S * C * C - I	#	0.61
325	AS	S * C - C - I	#	0.45
324	AS	S - C * C - I	#	2.95
326	AS	S - C - C - I	#	2.53
2090	AS	S C C N	#	35.39
398	AS	S * C * C * N	#	8.97
402	AS	S * C * C - N	#	1.91
400	AS	S * C - C * N	#	0.73
404 399	AS	S * C - C - N S - C * C * N	#	2.34
403	AS AS	S - C * C * N S - C * C - N	# #	5.41 6.11
403	AS AS	S - C - C * N	#	6.21
401	AS AS	S - C - C - N	#	16.92
302	AS	S C C N As	#	0.44
302	AS	S C C N B	#	0.44
502	110		π	J. 11

Screen Number		Fragment Definition	F	requency Percent
225	AS	S * C * C * N - C	#	3.33
226	AS	S - C * C * N - C	#	1.88
223	AS	S - C * C - N * C	#	0.96
228	AS	S - C * C - N - C	#	3.06
227	AS	S - C - C * N - C	#	2.68
224	AS	S - C - C - N * C	#	2.89
229	AS	S - C - C - N - C	#	12.06
148	AS	S * C * C * N * C * C	#	3.85
38	AS	S - C * C - N - C * C	#	5.99
102	AS	S - C * C - N - C * C	#	0.92
149	AS	S - C - C - N - C * C	#	2.49
415	AS	S C C N C N S - C * C * N * C * N	#	7.06
416	AS		#	1.32
418 417	AS		# #	0.25 0.56
417	AS AS	S - C - C * N * C * N S - C - C - N - C - N	#	0.42
486	AS	S C C N C O	#	14.96
487	AS	S - C * C - N - C - O	#	2.07
488	AS	S - C - C - N - C - O	#	7.07
486	AS	S C C N C S	#	14.96
487	AS	S - C * C - N - C - S	#	2.07
488	AS	S - C - C - N - C - S	#	7.07
451	AS	S C C N N	#	4.22
452	AS	S - C * C * N * N	#	0.46
454	AS	S - C * C - N - N	#	0.91
453	AS	S - C - C * N * N	#	0.74
455	AS	S - C - C - N - N	#	0.80
489	AS	S C C N O	#	2.88
490	AS	S - C * C - N - O	#	0.94
491	AS	S - C - C - N - O	#	1.05
302	AS	S C C N P	#	0.44
489	AS	S C C N S	#	2.88
490	AS	S - C * C - N - S	#	0.94
491	AS	S - C - C - N - S	#	1.05
302 302	AS	S C C N Se S C C N Si	#	0.44
302	AS AS	S C C N Te	#	0.44
2091	AS AS	S C C O	#	24.29
492	AS	S * C * C * O	#	4.00
493	AS	S * C * C - O	#	6.17
494	AS	S * C - C * O	#	0.42
495	AS	S * C - C - O	#	5.40
493	AS	S - C * C * O	#	6.17
496	AS	S - C * C - O	#	7.98
495	AS	S - C - C * O	#	5.40
497	AS	S - C - C - O	#	9.90
310	AS	S C C O As	#	2.38
310	AS	S C C O B	#	2.38
272	AS	S - C * C - O - C	#	6.16
273	AS	S - C - C - O - C	#	8.01
38	AS	S - C * C - O - C * C	#	5.99
126	AS	S - C * C - O - C * C	#	2.20
187	AS	S - C - C - O - C * C	#	3.29
441	AS	S C C O C N	#	4.35
498	AS	S C C O C O	#	7.30

Screen Number		Fragment Definition	F	requency Percent
498	AS	S C C O C S	#	7.30
467	AS	S C C O N	#	0.63
499	AS	S C C O O	#	1.31
310	AS	S C C O P	#	2.38
499	AS	S C C O S	#	1.31
310	AS	S C C O Se	#	2.38
310	AS	S C C O Si	#	2.38
310	AS	S C C O Te	#	2.38
331	AS	S C C P	#	1.39
2091	AS	S C C S	#	24.29
492	AS	S * C * C * S	#	4.00
493	AS	S * C * C - S	#	6.17
494	AS	S * C - C * S	#	0.42
495	AS	S * C - C - S	#	5.40
493	AS	S - C * C * S	#	6.17 7.98
496	AS	5 6 6 5	#	
495 497	AS AS	5 6 6 5	#	5.40 9.90
310	AS AS		# #	2.38
310	AS AS	S C C S As S C C S B	#	2.38
$\frac{310}{272}$	AS AS	S - C * C - S - C	<u>#</u> #	6.16
272	AS	S - C - C - S - C	#	8.01
38	AS	S - C * C - S - C * C	#	5.99
126	AS	S - C * C - S - C * C	#	2.20
187	AS	S - C - C - S - C * C	#	3.29
441	AS	S C C S C N	#	4.35
498	AS	S C C S C O	#	7.30
498	AS	S C C S C S	#	7.30
467	AS	S C C S N	#	0.63
499	AS	S C C S O	#	1.31
310	AS	S C C S P	#	2.38
499	AS	S C C S S	#	1.31
310	AS	S C C S Se	#	2.38
310	AS	S C C S Si	#	2.38
310	AS	S C C S Te	#	2.38
331	AS	S C C Se	#	1.39
331	AS	S C C Si	#	1.39
331	AS	S C C Te	#	1.39
2087	AS	S C N C	#	39.80
241	AS	S * C * N - C	#	1.96
239	AS	S * C - N * C	#	1.30
242	AS	S - C * N - C	#	8.74
240	AS	S - C - N * C	#	5.80
243 334	AS	S-C-N-C S-C-N-C-Br	#	23.15
<u>334</u> 157	AS AS	S C N C Br S * C * N * C * C	# #	0.18
161	AS AS	S * C * N * C - C	#	3.21
159	AS AS	S * C - N - C * C	#	0.71
162	AS	S - C * N * C - C	#	4.84
158	AS	S - C * N - C * C	#	3.59
163	AS	S - C - N * C - C	#	2.74
160	AS	S - C - N - C * C	#	11.07
164	AS	S - C - N - C - C	#	13.37
319	AS	S C N C C Br	#	1.84
320	AS	S - C - N - C * C - Br	#	0.72

Screen Number		Fragment Definition	F	requency Percent
106	AS	S * C * N * C * C * C	#	2.79
107	AS	S - C * N - C - C * C	#	1.02
109	AS	S - C - N - C * C - C	#	2.05
108	AS	S - C - N - C - C * C	#	3.00
319	AS	S C N C C Cl	#	1.84
320	AS	S - C - N - C * C - Cl	#	0.72
319	AS	S C N C C F	#	1.84
320	AS	S - C - N - C * C - F	#	0.72
319	AS	S C N C C I	#	1.84
320	AS	S - C - N - C * C - I	#	0.72
389	AS	S C N C C N S-C-N*C*C*N	#	12.87
390 391	AS AS		# #	1.34 0.42
391	AS AS		#	5.48
392 486	AS AS	S-C-N-C-C-N S-C-N-C-C-O	#	14.96
487	AS	S - C - N - C * C - O	#	2.07
488	AS	S - C - N - C - C - O	#	7.07
486	AS	S C N C C S	#	14.96
487	AS	S - C - N - C * C - S	#	2.07
488	AS	S - C - N - C - C - S	#	7.07
334	AS	S C N C Cl	#	0.18
334	AS	S C N C F	#	0.18
334	AS	S C N C I	#	0.18
425	AS	S C N C N	#	9.70
426	AS	S - C * N * C * N	#	5.47
429	AS	S - C * N * C - N	#	1.44
427	AS	S - C - N * C * N	#	0.50
428	AS	S - C - N - C * N	#	1.59
430	AS	S - C - N - C - N	#	0.75
500	AS	S C N C O	#	8.18
501 502	AS	B C N C C	#	4.24 0.50
502 502	AS AS	S - C * N - C - O S - C - N * C - O	# #	0.50
502	AS AS	S - C - N - C - O	#	0.30
500	AS	S C N C S	#	8.18
501	AS	S - C * N * C - S	#	4.24
502	AS	S - C * N - C - S	#	0.50
502	AS	S - C - N * C - S	#	0.50
503	AS	S - C - N - C - S	#	0.77
459	AS	S C N N	#	6.66
460	AS	S * C * N * N	#	1.19
461	AS	S - C * N * N	#	2.61
462	AS	S - C - N * N	#	0.41
463	AS	S - C - N - N	#	2.57
249	AS	S - C * N * N - C	#	0.35
504	AS	S C N N C O	#	1.09
504	AS	S C N N C S	#	1.09
505 506	AS	S C N O	#	1.66
506 507	AS	S * C * N * O S * C - N - O	#	0.08
507 508	AS AS	S * C - N - O S - C * N * O	# #	$\frac{0.24}{0.24}$
508	AS AS	S - C - N - O	#	0.24
505	AS AS	S C N S	#	1.66
2092	AS	S C N S	#	13.08
506	AS	S * C * N * S	#	0.08
		·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·		

Screen Number		Fragment Definition	F	requency Percent
507	AS	S * C - N - S	#	0.24
508	AS	S - C * N * S	#	0.24
509	AS	S - C - N - S	#	0.83
2088	AS	S C O C	#	27.26
2094	AS	S C O C	#	27.26
277	AS	S * C - O - C	#	2.86
192	AS	S * C - O - C * C	#	1.20
194	AS	S - C * O * C - C	#	3.38
193	AS	S - C - O - C * C	#	4.71
195	AS	S - C - O - C - C	#	13.48
328 128	AS AS	S	#	0.64 3.28
328	AS AS	S - C - O - C - C * C S C O C C Cl	# #	0.64
328	AS AS	S C O C C F	#	0.64
328	AS	S C O C C I	#	0.64
408	AS	S C O C C N	#	4.14
409	AS	S - C - O - C * C - N	#	0.36
410	AS	S - C - O - C - C - N	#	1.42
498	AS	S C O C C O	#	7.30
498	AS	S C O C C S	#	7.30
443	AS	S C O C N	#	0.95
510	AS	S C O C O	#	1.46
510	AS	S C O C S	#	1.46
468	AS	S C O N	#	0.58
511	AS	S C O O	#	0.48
511	AS	S C O S	#	0.48
2088	AS	S C S C	#	27.26
2094	AS	S C S C	#	27.26
277	AS	S * C - S - C S * C - S - C * C	#	2.86
<u> 192</u> 194	AS AS	S * C - S - C * C S - C * S * C - C	#	1.20
194	AS AS	S - C - S - C + C	#	3.30 4.71
195	AS AS	S - C - S - C - C	#	13.48
328	AS	S C S C C Br	#	0.64
128	AS	S - C - S - C - C * C	#	3.28
328	AS	S C S C C Cl	#	0.64
328	AS	S C S C C F	#	0.64
328	AS	S C S C C I	#	0.64
408	AS	S C S C C N	#	4.14
409	AS	S - C - S - C * C - N	#	0.36
410	AS	S - C - S - C - C - N	#	1.42
498	AS	S C S C C O	#	7.30
498	AS	S C S C C S	#	7.30
443	AS	S C S C N	#	0.95
510	AS	S C S C O	#	1.46
510	AS	S C S C S	#	1.46
468	AS	S C S N	#	0.58
511 511	AS AS	S C S O S C S S	# #	0.48
335	AS AS	S N C Br	#	0.48 0.09
2085	AS	S N C BI	#	26.07
173	AS	S * N * C * C	#	1.32
175	AS	S - N * C - C	#	0.56
174	AS	S - N - C * C	#	6.36
176	AS	S - N - C - C	#	3.06

Screen Number		Fragment Definition	Fi	requency Percent
322	AS	S N C C Br	#	0.39
115	AS	S - N - C * C - C	#	0.94
114	AS	S - N - C - C * C	#	1.22
301	AS	S N C C C Br	#	0.55
71	AS	S - N - C * C * C - C	#	1.36
70	AS	S - N - C - C - C * C	#	0.32
301	AS	S N C C C Cl	#	0.55
301	AS	S N C C C F	#	0.55
301	AS	S N C C C I	#	0.55
365	AS	S N C C C N S - N - C * C * C * N	#	2.43
366 367	AS AS	S - N - C ^ C ^ C ^ N S - N - C * C * C - N	#	0.35 1.02
476	AS AS	S N C C C O	#	2.08
477	AS	S - N - C * C * C - O	#	0.52
476	AS	S N C C C S	#	2.08
477	AS	S - N - C * C * C - S	#	0.52
322	AS	S N C C Cl	#	0.39
322	AS	S N C C F	#	0.39
322	AS	S N C C I	#	0.39
394	AS	S N C C N	#	3.00
395	AS	S - N - C * C * N	#	0.48
396	AS	S - N - C * C - N	#	0.72
397	AS	S - N - C - C - N	#	0.82
222	AS	S - N - C * C - N - C	#	0.32
450	AS	S N C C N N	#	0.51
512	AS	S N C C N O	#	0.33
512	AS	S N C C N S	#	0.33
489	AS	S N C C O	#	2.88
490 491	AS AS	S - N - C * C - O S - N - C - C - O	# #	0.94 1.05
271	AS AS	S - N - C - C - O - C	#	0.42
489	AS	S N C C S	#	2.88
490	AS	S - N - C * C - S	#	0.94
491	AS	S - N - C - C - S	#	1.05
271	AS	S - N - C * C - S - C	#	0.42
335	AS	S N C Cl	#	0.09
335	AS	S N C F	#	0.09
335	AS	S N C I	#	0.09
437	AS	S N C N	#	1.66
438	AS	S * N * C * N	#	0.48
439	AS	S - N - C * N	#	0.35
440	AS	S - N - C - N	#	0.51
458	AS	S N C N N	#	0.17
505 2092	AS AS	S N C O S N C O	# #	1.66 13.08
506	AS	S * N * C * O	#	0.08
508	AS	S * N * C - O	#	0.24
507	AS	S - N - C * O	#	0.24
509	AS	S - N - C - O	#	0.83
505	AS	S N C S	#	1.66
2092	AS	S N C S	#	13.08
506	AS	S * N * C * S	#	0.08
508	AS	S * N * C - S	#	0.24
507	AS	S - N - C * S	#	0.24
509	AS	S - N - C - S	#	0.83

Screen Number		Fragment Definition	Frequency Percent
279	AS	S N O C	# 0.17
279	AS	S N S C	# 0.17
336	AS	S O C Br	# 0.37
2085	AS	S O C C	# 26.07
201	AS	S - O - C * C	# 6.11
202	AS	S - O - C - C	# 2.21
330	AS	S O C C Br	# 0.43
132	AS	S - O - C * C - C	# 0.71
131	AS	S - O - C - C * C	# 0.48
133	AS	S - O - C - C - C S O C C Br	# 1.20
309 86	AS AS		# 0.37 # 0.75
309	AS AS	S - O - C * C * C - C S O C C C Cl	# 0.75 # 0.37
309	AS AS	S O C C C F	# 0.37
309	AS	SOCCCI	# 0.37
380	AS	S O C C C N	# 1.74
381	AS	S - O - C * C * C - N	# 0.76
485	AS	S O C C C O	# 1.62
485	AS	S O C C C S	# 1.62
330	AS	S O C C Cl	# 0.43
330	AS	S O C C F	# 0.43
330	AS	S O C C I	# 0.43
412	AS	S O C C N	# 1.53
413	AS	S - O - C * C * N	# 0.27
414	AS	S - O - C * C - N	# 0.52
456	AS	S O C C N N	# 0.36
499	AS	S O C C O	# 1.31
499	AS	S O C C S	# 1.31
336	AS	s o c cl	# 0.37
336 336	AS	S O C F S O C I	# 0.37
336 446	AS AS	S O C N	# 0.37
511	AS AS	S O C O	# 0.48
511	AS	S O C S	# 0.48
2092	AS	S O N C	# 13.08
254	AS	S * O - N - C	# 0.00
253	AS	S - O - N * C	# 0.97
255	AS	S - O - N - C	# 2.96
179	AS	S - O - N - C * C	# 1.31
465	AS	S O N N	# 0.17
282	AS	S O O C	# 1.03
282	AS	S O S C	# 1.03
336	AS	S S C Br	# 0.37
2085	AS	S S C C	# 26.07
201	AS	S - S - C * C	# 6.11
202	AS	S - S - C - C	# 2.21
330	AS	S S C C Br	# 0.43
132	AS	S - S - C * C - C S - S - C - C * C	# 0.71
131 133	AS AS	S - S - C - C * C S - S - C - C - C	# 0.48 # 1.20
309	AS	S S C C C Br	# 1.20
86	AS AS	S - S - C * C * C - C	# 0.37
309	AS	S S C C C Cl	# 0.73
309	AS	S S C C C F	# 0.37
309	AS	S S C C C I	# 0.37

Screen Number		Fragment Definition	F	requency Percent
380	AS	S S C C C N	#	1.74
381	AS	S - S - C * C * C - N	#	0.76
485	AS	S S C C C O	#	1.62
485	AS	S S C C C S	#	1.62
330	AS	S S C C Cl	#	0.43
330	AS	S S C C F	#	0.43
330	AS	S S C C I	#	0.43
412	AS	S S C C N	#	1.53
413	AS	S - S - C * C * N	#	0.27
414	AS	S - S - C * C - N	#	0.52
456	AS	S S C C N N	#	0.36
499	AS	S S C C O	#	1.31
499	AS	S S C C S	#	1.31
336	AS	S S C Cl	#	0.37 0.37
<u>336</u> 336	AS AS	S S C F S S C I	# #	0.37
446	AS AS	S S C N	#	0.37
511	AS AS	S S C O	#	0.48
511	AS	S S C S	#	0.48
2092	AS	S S N C	#	13.08
254	AS	S * S - N - C	#	0.00
253	AS	S - S - N * C	#	0.97
255	AS	S - S - N - C	#	2.96
179	AS	S - S - N - C * C	#	1.31
465	AS	S S N N	#	0.17
282	AS	S S O C	#	1.03
282	AS	S S S C	#	1.03
331	AS	Se C C As	#	1.39
331	AS	Se C C B	#	1.39
331	AS	Se C C Br	#	1.39
134	AS	Se C C C	#	4.57
311	AS	Se C C C As	#	1.14
311	AS	Se C C C B	#	1.14
311	AS	Se C C C Br	#	1.14
291	AS	Se C C C As	#	0.79
291	AS	Se C C C B	#	0.79
291	AS	Se C C C Br	#	0.79
47	AS	Se C C C C	#	3.83
291 291	AS AS	Se C C C Cl Se C C C F	# #	0.79 0.79
291	AS	Se C C C C I	#	0.79
291	AS	Se C C C N	#	0.79
291	AS	Se C C C C O	#	0.79
291	AS	Se C C C P	#	0.79
291	AS	Se C C C S	#	0.79
291	AS	Se C C C Se	#	0.79
291	AS	Se C C C C Si	#	0.79
291	AS	Se C C C Te	#	0.79
311	AS	Se C C Cl	#	1.14
311	AS	Se C C F	#	1.14
311	AS	Se C C C I	#	1.14
311	AS	Se C C C N	#	1.14
302	AS	Se C C C N As	#	0.44
302	AS	Se C C C N B	#	0.44
302	AS	Se C C C N P	#	0.44

Screen Number				Fra De	igment finition				Frequency Percent
302	AS	Se	С	С	С	N	Se	#	0.44
302	AS	Se	С	С	C	N	Si	#	
302	AS	Se	C	С	C	N	Te	#	0.44
311	AS	Se	C	C	C	0		#	1.14
310	AS	Se	С	С	С	0	As	#	
310	AS	Se	С	С	С	0	В	#	
310	AS	Se	C	С	C	0	P	#	
310	AS	Se	С	С	C	0	Se	#	
310	AS	Se	С	С	C	0	Si	#	
310	AS	Se	C	C	C	0	Te	#	
311	AS	Se	C	С	C	P		#	
311	AS	Se	C C	C	C	S	7. ~	#	
310 310	AS AS	Se Se	C	C C	C C	S S	As	#	
310	AS AS	Se Se	C	C	C	s S	B P	#	
310	AS AS	Se	C	C	C	S	Se	#	
310	AS	Se	C	C	C	S	Si	#	
310	AS	Se	C	C	C	S	Te	#	
311	AS	Se	C	C	C	Se	- 0	#	
311	AS	Se	C	C	C	Si		#	
311	AS	Se	С	С	С	Te		#	
331	AS	Se	С	С	Cl			#	1.39
331	AS	Se	C	C	F			#	1.39
331	AS	Se	С	С	I			#	1.39
331	AS	Se	С	С	N			#	
302	AS	Se	С	С	N	As		#	
302	AS	Se	С	С	N	В		#	
302	AS	Se	C	C	N	Р		#	
302	AS	Se	C	C	N	Se		#	
302	AS	Se	C	C C	N	Si		#	
302	AS AS	Se Se	C	C	N	Te		#	
310	AS AS	Se Se	C	C	0	As		#	
310	AS AS	Se	C	C	0	AS B		#	
310	AS	Se	C	C	0	P		#	
310	AS	Se	C	C	0	Se		#	
310	AS	Se	C	C	0	Si		#	
310	AS	Se	C	C	0	Te		#	
331	AS	Se	С	С	P			#	
331	AS	Se	C	C	S			#	
310	AS	Se	С	С	S	As		#	2.38
310	AS	Se	С	С	S	В		#	
310	AS	Se	С	С	S	Р		#	
310	AS	Se	С	С	S	Se		#	
310	AS	Se	C	C	S	Si		#	
310	AS	Se	C	C	S	Te		#	
331	AS	Se	С	C	Se			#	
331	AS	Se	C	C	Si			#	
331 302	AS AS	Se Se	C N	C C	Te C	7 ~		#	
302	AS	Se Se	N	C	C	As B		# #	
302	AS AS	Se	N	C	C	Вr		#	
302	AS	Se	N	C	C	С	As	#	
302	AS	Se	N	C	C	C	В	#	
302	AS	Se	N	C	C	C	Br	#	

Screen Number				Fra De	agmen finition	t 1		Frequency Percent
302	AS	Se	N	С	С	С	Cl	# 0.44
302	AS	Se	N	C	C	C	F	# 0.44
302	AS	Se	N	C	C	C	I	# 0.44
302	AS	Se	N	C	C	C	N	# 0.44
302	AS	Se	N	С	С	С	0	# 0.44
302	AS	Se	N	C	C	C	P	# 0.44
302	AS	Se	N	C	C	C	S	# 0.44
302	AS	Se	N	C	C	C	Se	# 0.44
302	AS	Se	N	C	C	C	Si	# 0.44
302	AS	Se	N	C	С	C	Te	# 0.44
302	AS	Se	N	C	C	Cl		# 0.44
302	AS	Se	N	C	C	F		# 0.44
302	AS	Se	N	C	C	I		# 0.44
302 302	AS	Se	N N	C C	C	N O		# 0.44 # 0.44
302	AS AS	Se Se	N	C		 		# 0.44
302	AS AS	Se	N	C	C	S		# 0.44
302	AS	Se	N	C	C	Se		# 0.44
302	AS	Se	N	C	C	Si		# 0.44
302	AS	Se	N	C	C	Te		# 0.44
310	AS	Se	0	C	C	As		# 2.38
310	AS	Se	0	C	С	В		# 2.38
310	AS	Se	0	C	C	Br		# 2.38
310	AS	Se	0	С	С	С	As	# 2.38
310	AS	Se	0	С	С	С	В	# 2.38
310	AS	Se	0	С	С	С	Br	# 2.38
310	AS	Se	0	C	C	C	Cl	# 2.38
310	AS	Se	0	C	C	C	F	# 2.38
310	AS	Se	0	C	C	C	I	# 2.38
310	AS	Se	0	С	С	С	N	# 2.38
310	AS	Se	0	C	С	С	0	# 2.38
310	AS	Se	0	C	C	C	P	# 2.38
310	AS	Se	0	C	С	C	S	# 2.38
310	AS	Se	0	C	C	C	Se	# 2.38
310 310	AS	Se Se	0	C	C	C C	Si Te	# 2.38 # 2.38
310	AS AS	Se	0	C	C	Cl	re	# 2.38
310	AS AS	Se	0	C	C	F		# 2.38
310	AS	Se	0	C	C	I		# 2.38
310	AS	Se	0	C	C	N		# 2.38
310	AS	Se	0			0		# 2.38
310	AS	Se	0	C	C	P		# 2.38
310	AS	Se	0	C	C	S		# 2.38
310	AS	Se	0	С	C	Se		# 2.38
310	AS	Se	0	C	C	Si		# 2.38
310	AS	Se	0	С	С	Te		# 2.38
310	AS	Se	S	C	C	As		# 2.38
310	AS	Se	S	C	C	В		# 2.38
310	AS	Se	S	C	C	Br		# 2.38
310	AS	Se	S	С	С	С	As	# 2.38
310	AS	Se	S	C	C	C	В	# 2.38
310	AS	Se	S	C	C	C	Br	# 2.38
310	AS	Se	S	C	C	C	Cl	# 2.38
310	AS	Se	S	C	C	C	F	# 2.38
310	AS	Se	S	С	С	С	I	# 2.38

Screen Number				Fra De	ngment finition					quency Percent
310	AS	Se	S	С	С	С	N	‡	‡	2.38
310	AS	Se	S	С	С	C	0	#	‡	2.38
310	AS	Se	S	С	С	C	P	‡	‡	2.38
310	AS	Se	S	С	С	C	S	‡	‡	2.38
310	AS	Se	S	С	С	С	Se	#	‡	2.38
310	AS	Se	S	С	С	С	Si		‡	2.38
310	AS	Se	S	С	C	C	Te	‡	‡	2.38
310	AS	Se	S	С	C	Cl		‡	‡	2.38
310	AS	Se	S	С	C	F		‡	‡	2.38
310	AS	Se	S	С	С	I			‡	2.38
310	AS	Se	S	С	C	N			‡	2.38
310	AS	Se	S	С	C	0			‡	2.38
310	AS	Se	S	С	C	P			‡	2.38
310	AS	Se	S	С	C	S			‡	2.38
310	AS	Se	S	C	C	Se			‡	2.38
310	AS	Se	S	С	C	Si			‡	2.38
310	AS	Se	S	С	C	Te			‡	2.38
331	AS	Si	С	С	As				‡	1.39
331	AS	Si	С	С	В				‡	1.39
331	AS	Si	C	C	Br				<u>‡</u>	1.39
134	AS	Si	C	C	C	_			‡	4.57
311	AS	Si	C	C	C	As			‡	1.14
311	AS	Si	C	C	C	В			‡	1.14
311	AS	Si	C	C	C	Br	7		‡	1.14
291	AS AS	Si	<u>C</u>		C	C	As		‡	0.79
291	AS	Si	C	C	C	C	В		‡	0.79
291 47	AS AS	Si Si	C C	C C	C C	C C	Br C		‡ ‡	0.79 3.83
291	AS AS	Si	C	C	C	C	Cl		† ‡	0.79
291	AS	Si	C	C	C	C	F		† ‡	0.79
291	AS	Si	C	C	C	C	I		<u>† </u>	0.79
291	AS	Si	C	C	C	C	N		‡	0.79
291	AS	Si	C	C	C	C	0		‡	0.79
291	AS	Si	C	C	C	C	P		‡	0.79
291	AS	Si	C	C	C	C	S		‡	0.79
291	AS	Si	C	C	C	C	Se		<u>. </u>	0.79
291	AS	Si	C	C	C	C	Si		‡	0.79
291	AS	Si	С	C	C	C	Te		‡	0.79
311	AS	Si	С	С	C	Cl			‡	1.14
311	AS	Si	С	С	C	F			‡	1.14
311	AS	Si	С	С	С	I			‡	1.14
311	AS	Si	С	С	C	N		‡	‡	1.14
302	AS	Si	С	С	C	N	As		‡	0.44
302	AS	Si	C	С	C	N	В	‡	‡	0.44
302	AS	Si	С	С	С	N	P	#	‡	0.44
302	AS	Si	С	С	C	N	Se	#	‡	0.44
302	AS	Si	С	С	C	N	Si		‡	0.44
302	AS	Si	C	C	C	N	Te		‡	0.44
311	AS	Si	С	C	C	0			‡	1.14
310	AS	Si	С	С	С	0	As		‡	2.38
310	AS	Si	С	C	C	0	В		‡	2.38
310	AS	Si	С	С	C	0	P		‡	2.38
310	AS	Si	С	С	С	0	Se		‡	2.38
310	AS	Si	C	C	C	0	Si		‡	2.38
310	AS	Si	С	С	С	0	Te	#	‡	2.38

Screen Number				Fra De	agment finition			I	Frequency Percent
311	AS	Si	С	С	С	P		#	1.14
311	AS	Si	С	С	С	S		#	1.14
310	AS	Si	С	C	C	S	As	#	2.38
310	AS	Si	С	C	C	S	В	#	2.38
310	AS	Si	С	С	С	S	P	#	2.38
310	AS	Si	C	C	C	S	Se	#	2.38
310	AS	Si	С	С	C	S	Si	#	2.38
310	AS	Si	С	С	С	S	Te	#	2.38
311	AS	Si	С	С	С	Se		#	1.14
311	AS	Si	C	C	C	Si		#	1.14
311	AS	Si	C	C	C	Te		#	1.14
331 331	AS	Si Si	C C	C C	Cl F			#	1.39 1.39
331	AS	Si	C	C	r I			#	1.39
331	AS AS	Si	C	C	N			#	1.39
302	AS AS	Si	C		N	As		#	0.44
302	AS	Si	C	C	N	В		#	0.44
302	AS	Si	C	C	N	P		#	0.44
302	AS	Si	C	C	N	Se		#	0.44
302	AS	Si	C	C	N	Si		#	0.44
302	AS	Si	С	С	N	Te		#	0.44
331	AS	Si	С	С	0			#	1.39
310	AS	Si	С	C	0	As		#	2.38
310	AS	Si	С	С	0	В		#	2.38
310	AS	Si	С	С	0	Р		#	2.38
310	AS	Si	C	C	0	Se		#	2.38
310	AS	Si	C	С	0	Si		#	2.38
310	AS	Si	С	С	0	Te		#	2.38
331	AS	Si	C	C	P			#	1.39
331	AS	Si	C	C	S			#	1.39
310	AS	Si	C	C	S	As		#	2.38 2.38
310 310	AS	Si Si	C C	C C	S	B P		#	2.38
310	AS AS	Si	C	C	S S	Se		#	2.38
310	AS AS	Si	C	C	S	Si		#	2.38
310	AS	Si	C	C	S	Te		#	2.38
331	AS	Si	C	C	Se	10		#	1.39
331	AS	Si	C	C	Si			#	1.39
331	AS	Si	C	C	Te			#	1.39
302	AS	Si	N	С	С	As		#	0.44
302	AS	Si	N	С	С	В		#	0.44
302	AS	Si	N	С	С	Br		#	0.44
302	AS	Si	N	C	C	C	As	#	0.44
302	AS	Si	N	C	C	C	В	#	0.44
302	AS	Si	N	С	С	С	Br	#	0.44
302	AS	Si	N	С	С	C	Cl	#	0.44
302	AS	Si	N	C	C	C	F	#	0.44
302	AS	Si	N	C	C	C	I	#	0.44
302	AS	Si	N	С	C	C	N	#	0.44
302	AS	Si	N	C	C	C	0	#	0.44
302	AS	Si	N	C	C	C	P	#	0.44
302	AS	Si	N	C C	C C	C C	S	#	0.44 0.44
302 302	AS AS	Si Si	N N	C	C	C	Se Si	#	0.44
302	AS AS	Si	N	C	C	C	Te	#	0.44
J U Z	AD	ŊΤ	TA	C	_	_	16	#	0.11

Screen Number				Fra De	agmen finition	t 1			Fre	equency Percent
302	AS	Si	N	С	С	Cl		:	#	0.44
302	AS	Si	N	С	C	F		:	#	0.44
302	AS	Si	N	C	C	I		:	#	0.44
302	AS	Si	N	C	C	N		:	#	0.44
302	AS	Si	N	С	С	0			#	0.44
302	AS	Si	N	С	C	P			#	0.44
302	AS	Si	N	С	С	S			#	0.44
302	AS	Si	N	С	С	Se			#	0.44
302	AS	Si	N	С	С	Si			#	0.44
302	AS	Si	N	C	C	Te			#	0.44
310	AS	Si	0	C	C	As			#	2.38
310 310	AS	Si Si	0	C C	C C	B			#	2.38
310	AS	Si	0	C	C	Br C	7\ ~		# #	2.38
310	AS AS	Si	0	C	C	C	As B		# #	2.38
310	AS AS	Si	0	C	C	C	Br		" #	2.38
310	AS	Si	0	C	C	C	Cl		π #	2.38
310	AS	Si	0	C	C	C	F		#	2.38
310	AS	Si	0	C	C	C	I		#	2.38
310	AS	Si	0	C	C	C	N		#	2.38
310	AS	Si	0	C	C	C	0		#	2.38
310	AS	Si	0	С	С	С	P		#	2.38
310	AS	Si	0	С	C	C	S		#	2.38
310	AS	Si	0	С	C	С	Se	:	#	2.38
310	AS	Si	0	С	С	С	Si		#	2.38
310	AS	Si	0	С	C	C	Te		#	2.38
310	AS	Si	0	С	C	Cl			#	2.38
310	AS	Si	0	С	С	F			#	2.38
310	AS	Si	0	С	C	Ι			#	2.38
310	AS	Si	0	C	C	N			#	2.38
310	AS	Si	0	C	C	0			#	2.38
310	AS	Si Si	0	C	C	P			#	2.38
310 310	AS	Si Si	0	C C	C C	S Se			#	2.38
310	AS AS	Si	0	C	C	Si			# #	2.38
310	AS AS	Si	0		C	Te			<u>#</u> #	2.38
310	AS	Si	S	C	C	As			#	2.38
310	AS	Si	S	C	C	В			#	2.38
310	AS	Si	S	C	C	Br			#	2.38
310	AS	Si	S	C	C	С	As		#	2.38
310	AS	Si	S	С	С	С	В		#	2.38
310	AS	Si	S	С	C	C	Br		#	2.38
310	AS	Si	S	С	C	С	Cl		#	2.38
310	AS	Si	S	C	C	C	F	:	#	2.38
310	AS	Si	S	С	С	С	I		#	2.38
310	AS	Si	S	C	C	C	N		#	2.38
310	AS	Si	S	С	С	C	0		#	2.38
310	AS	Si	S	C	C	C	P		#	2.38
310	AS	Si	S	C	C	C	S		#	2.38
310	AS	Si	S	C	C	C	Se		#	2.38
310	AS	Si	S	C	C	C	Si		#	2.38
310	AS	Si	S	C	C C	C Cl	Te		# #	2.38 2.38
310 310	AS AS	Si Si	S S	C C	C	F			# #	2.38
310	AS AS	Si	S	C	C	I			# #	2.38
210	AD	DI	D	_	_	_		•	ΤĒ	4.50

Screen Number				Fra De	agment finition	:		Fr	equency Percent
310	AS	Si	S	С	С	N		#	2.38
310	AS	Si	S	С	С	0		#	2.38
310	AS	Si	S	С	С	P		#	2.38
310	AS	Si	S	С	С	S		#	2.38
310	AS	Si	S	С	С	Se		#	2.38
310	AS	Si	S	С	С	Si		#	2.38
310	AS	Si	S	С	С	Te		#	2.38
331	AS	Te	С	С	As			#	1.39
331	AS	Te	С	С	В			#	1.39
331	AS	Te	C	С	Br			#	1.39
134	AS	Te	С	С	С			#	4.57
311	AS	Te	С	С	С	As		#	1.14
311	AS	Te	С	С	С	В		#	1.14
311	AS	Te	C	С	C	Br		#	1.14
291	AS	Te	С	С	С	С	As	#	0.79
291	AS	Te	С	С	С	С	В	#	0.79
291	AS	Te	C	С	C	C	Br	#	0.79
47	AS	Te	C	С	C	C	С	#	3.83
291	AS	Te	C	С	C	C	Cl	#	0.79
291	AS	Te	С	С	С	С	F	#	0.79
291	AS	Te	С	С	С	С	I	#	0.79
291	AS	Te	C	С	C	C	N	#	0.79
291	AS	Te	C	С	C	C	0	#	0.79
291	AS	Te	C	С	C	C	P	#	0.79
291	AS	Te	С	С	С	С	S	#	0.79
291	AS	Te	C	С	С	C	Se	#	0.79
291	AS	Te	C	С	С	С	Si	#	0.79
291	AS	Te	C	С	C	C	Te	#	0.79
311	AS	Te	C	С	C	Cl		#	1.14
311	AS	Te	С	C	С	F		#	1.14
311	AS	Te	С	С	C	Ι		#	1.14
311	AS	Te	C	C	C	N		#	1.14
302	AS	Te	С	C	C	N	As	#	0.44
302	AS	Te	С	С	С	N	В	#	0.44
302	AS	Te	С	C	C	N	P	#	0.44
302	AS	Te	С	С	С	N	Se	#	0.44
302	AS	Te	С	C	C	N	Si	#	0.44
302	AS	Te	С	С	С	N	Te	#	0.44
311	AS	Te	C	C	C	0	_	#	1.14
310	AS	Te	C	C	C	0	As	#	2.38
310	AS	Te	C	C	C	0	В	#	2.38
310	AS	Te	C	C	C	0	P	#	2.38
310	AS	Te	C	C	C	0	Se	#	2.38
310	AS	Te	C	C	C	0	Si	#	2.38
310	AS	Te	C	C	C	0	Te	#	2.38
311	AS	Te	C	C	C	P		#	1.14
311 310	AS	Te	C C	C C	C C	S S	7\ ~	#	1.14
310	AS AS	Te	C	C	C	S S	As R	#	2.38
310	AS AS	Te Te	C	C	C	S S	B P	# #	2.38 2.38
310	AS AS		C	C	C	S	Se	#	2.38
310	AS AS	Te Te	C	C	C	S S	se Si	#	2.38
310	AS AS	Te	C	C	C	s S	Te	#	2.38
311	AS AS	Te	C	C	C	s Se	16	#	$\frac{2.36}{1.14}$
311	AS	Te	C	C	C	Si		#	1.14
J + +	110	10	_	C	C	υ±		п	

Screen Number				Fra De	agment finition			Fr	equency Percent
311	AS	Te	С	С	С	Te		#	1.14
331	AS	Te	C	С	Cl			#	1.39
331	AS	Te	C	C	F			#	1.39
331	AS	Te	C	C	I			#	1.39
331	AS	Te	С	С	N			#	1.39
302	AS	Te	C	C	N	As		#	0.44
302	AS	Te	С	C	N	В		#	0.44
302	AS	Te	С	C	N	Р		#	0.44
302	AS	Te	C	C	N	Se		#	0.44
302	AS	Te	C	C	N	Si		#	0.44
302	AS	Te	C C	C	N	Te		#	0.44
331 310	AS	Te	C	C C	0	7\ ~		# #	1.39 2.38
310	AS AS	Te Te	C	C	0	As B		#	2.38
310	AS AS	Te	C	C	0	Р		#	2.38
310	AS AS	Te	C	C	0	Se		#	2.38
310	AS	Te	C	C	0	Si		#	2.38
310	AS	Te	C	C	0	Te		#	2.38
331	AS	Te	C	C	P			#	1.39
331	AS	Te	C	C	S			#	1.39
310	AS	Te	С	С	S	As		#	2.38
310	AS	Te	С	C	S	В		#	2.38
310	AS	Te	С	C	S	P		#	2.38
310	AS	Te	C	C	S	Se		#	2.38
310	AS	Te	С	С	S	Si		#	2.38
310	AS	Te	С	C	S	Te		#	2.38
331	AS	Te	С	C	Se			#	1.39
331	AS	Te	C	C	Si			#	1.39
331	AS	Te	C	C	Te	_		#	1.39
302	AS	Te	N	C	C	As		#	$\frac{0.44}{0.44}$
302	AS	Te	N	C	C C	В		#	0.44
302	AS AS	Te Te	N N	C	C	Br C	As	# #	0.44
302	AS AS	Te	N	C	C	C	AS B	#	0.44
302	AS	Te	N	C	C	C	Br	#	0.44
302	AS	Te	N		C	C	Cl	#	0.44
302	AS	Te	N	C	C	C	F	#	0.44
302	AS	Te	N	C	C	C	I	#	0.44
302	AS	Te	N	C	C	C	N	#	0.44
302	AS	Te	N	C	C	C	0	#	0.44
302	AS	Te	N	С	С	С	Р	#	0.44
302	AS	Te	N	C	C	C	S	#	0.44
302	AS	Te	N	C	C	C	Se	#	0.44
302	AS	Te	N	С	С	С	Si	#	0.44
302	AS	Te	N	С	C	C	Te	#	0.44
302	AS	Te	N	C	C	Cl		#	0.44
302	AS	Te	N	C	C	F		#	0.44
302 302	AS	Te	N N	C C	C C	I N		# #	0.44 0.44
302	AS AS	Te Te	N	C	C	O		#	0.44
302	AS	Te	N	C	C			#	0.44
302	AS	Te	N	C	C	S		#	0.44
302	AS	Te	N	C	C	Se		#	0.44
302	AS	Te	N	C	C	Si		#	0.44
302	AS	Te	N	C	C	Te		#	0.44

310	Screen Number					agmen finitior			Fr	equency Percent
310	310	AS	Te	0	С	С	As		#	2.38
310	310	AS	Te	0	С	C	В		#	2.38
310	310	AS	Te	0	С	C	Br		#	2.38
310	310	AS	Te	0	C	C	C	As	#	2.38
310	310	AS	Te	0	С	C	C	В	#	2.38
310	310	AS	Te	0	С	С	C	Br	#	2.38
310	310	AS	Te	0	C	C	C	Cl	#	2.38
310	310	AS	Te	0	C	C	C	F	#	2.38
310	310	AS	Te	0	C	C	C	I	#	2.38
310 AS Te O C C C P # 2.38 310 AS Te O C C C S # 2.38 310 AS Te O C C Se # 2.38 310 AS Te O C C C Te # 2.38 310 AS Te O C C C I # 2.38 310 AS Te O C C C I # 2.38 310 AS Te O C C I # 2.38 310 AS Te O C C N # 2.38 310 AS Te O C C S # 2.38 310 AS Te O C C Se #	310	AS	Te	0	С	C	С	N		2.38
310	310	AS	Te	0	_	С	С	0		
310	310	AS	Te	0	C	C	C	P		
310	310	AS	Te	0	C	C	C	S		
310	310	AS	Te	0	C	C	C	Si		
310 AS Te O C C C1 # 2.38 310 AS Te O C C F # 2.38 310 AS Te O C C N # 2.38 310 AS Te O C C N # 2.38 310 AS Te O C C P # 2.38 310 AS Te O C C S # 2.38 310 AS Te O C C Se # 2.38 310 AS Te O C C Si # 2.38 310 AS Te O C C B # 2.38 310 AS Te S C C B # 2.38 310 AS Te		AS	Te	0	С	С	С	Se		
310 AS Te O C C F # 2.38 310 AS Te O C C I # 2.38 310 AS Te O C C N # 2.38 310 AS Te O C C P # 2.38 310 AS Te O C C S # 2.38 310 AS Te O C C Se # 2.38 310 AS Te O C C Se # 2.38 310 AS Te O C C Te # 2.38 310 AS Te O C C Te # 2.38 310 AS Te S C C Br # 2.38 310 AS Te		AS	Te	0				Te		
310 AS Te O C C I # 2.38 310 AS Te O C C N # 2.38 310 AS Te O C C P # 2.38 310 AS Te O C C S # 2.38 310 AS Te O C C Se # 2.38 310 AS Te O C C Se # 2.38 310 AS Te O C C Te # 2.38 310 AS Te S C C As # 2.38 310 AS Te S C C Br # 2.38 310 AS Te S C C Br # 2.38 310 AS Te <td></td> <td></td> <td>Te</td> <td>0</td> <td></td> <td></td> <td>Cl</td> <td></td> <td></td> <td></td>			Te	0			Cl			
310		AS	Te	0			F			
310				0			I			
310 AS Te O C C P # 2.38 310 AS Te O C C S # 2.38 310 AS Te O C C Se # 2.38 310 AS Te O C C Te # 2.38 310 AS Te S C C AS # 2.38 310 AS Te S C C AS # 2.38 310 AS Te S C C B # 2.38 310 AS Te S C C Br # 2.38 310 AS Te S C C Br # 2.38 310 AS Te S C C C Br # 2.38 310 AS <td></td>										
310 AS Te O C C Se # 2.38 310 AS Te O C C Se # 2.38 310 AS Te O C C Si # 2.38 310 AS Te O C C Te # 2.38 310 AS Te S C C AS # 2.38 310 AS Te S C C B # 2.38 310 AS Te S C C Br # 2.38 310 AS Te S C C C AS # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C F # 2.38 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>							_			
310 AS Te O C C Se # 2.38 310 AS Te O C C Si # 2.38 310 AS Te O C C Te # 2.38 310 AS Te S C C Br # 2.38 310 AS Te S C C Br # 2.38 310 AS Te S C C Br # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C C I # 2.38 310 AS Te S C C C T #				_						
310 AS Te O C C Si # 2.38 310 AS Te O C C Te # 2.38 310 AS Te S C C As # 2.38 310 AS Te S C C B # 2.38 310 AS Te S C C Br # 2.38 310 AS Te S C C Br # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C F # 2.38 310 AS Te S C C C N # 2.38				-						
310 AS Te O C C Te # 2.38 310 AS Te S C C AS # 2.38 310 AS Te S C C Br # 2.38 310 AS Te S C C Br # 2.38 310 AS Te S C C C AS # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C C I # 2.38 310 AS Te S C C C F # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C				_						
310 AS Te S C C As # 2.38 310 AS Te S C C B # 2.38 310 AS Te S C C Br # 2.38 310 AS Te S C C C As # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C C T # 2.38 310 AS Te S C C C T # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C										
310 AS Te S C C B # 2.38 310 AS Te S C C Br # 2.38 310 AS Te S C C C AS # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C C I # 2.38 310 AS Te S C C C F # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C C S # 2.38 310 AS Te S										
310 AS Te S C C Br # 2.38 310 AS Te S C C C AS # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C CI # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C C S # 2.38 310 AS Te S C										
310 AS Te S C C C AS # 2.38 310 AS Te S C C C B # 2.38 310 AS Te S C C C C C H 2.38 310 AS Te S C C C F # 2.38 310 AS Te S C C C I # 2.38 310 AS Te S C C C I # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C C P # 2.38 310 AS Te S C C C Se # 2.38 310 AS Te <										
310 AS Te S C C C B # 2.38 310 AS Te S C C C Br # 2.38 310 AS Te S C C C C H 2.38 310 AS Te S C C C F # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C C D # 2.38 310 AS Te S C C C D # 2.38 310 AS Te S C C C S # 2.38 310 AS Te S C C C Si # 2.38 310 AS Te <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7\ ~</td><td></td><td></td></t<>								7\ ~		
310 AS Te S C C C Br # 2.38 310 AS Te S C C C C Te # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C C D # 2.38 310 AS Te S C C C P # 2.38 310 AS Te S C C C Se # 2.38 310 AS Te S C C C Se # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C C Te # 2.38 310 AS										
310 AS Te S C C C C C C F # 2.38 310 AS Te S C C C I # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C C O # 2.38 310 AS Te S C C C P # 2.38 310 AS Te S C C C Se # 2.38 310 AS Te S C C C Se # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C Te # 2.38 310 <					_		_			
310 AS Te S C C C F # 2.38 310 AS Te S C C C I # 2.38 310 AS Te S C C C O # 2.38 310 AS Te S C C C P # 2.38 310 AS Te S C C C Se # 2.38 310 AS Te S C C C Se # 2.38 310 AS Te S C C C Si # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C N # 2.38 310 AS Te S										
310 AS Te S C C C I # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C C P # 2.38 310 AS Te S C C C S # 2.38 310 AS Te S C C C Se # 2.38 310 AS Te S C C C Si # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C F # 2.38 310 AS Te S C C N # 2.38 310 AS Te S C C							_			
310 AS Te S C C C C N # 2.38 310 AS Te S C C C C C P # 2.38 310 AS Te S C C C C P # 2.38 310 AS Te S C C C S # 2.38 310 AS Te S C C C S # 2.38 310 AS Te S C C C S # 2.38 310 AS Te S C C C T E # 2.38 310 AS Te S C C C T E # 2.38 310 AS Te S C C C T E # 2.38 310 AS Te S C C C F # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C C P # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38							-			
310 AS Te S C C C O # 2.38 310 AS Te S C C C P # 2.38 310 AS Te S C C C Se # 2.38 310 AS Te S C C C Si # 2.38 310 AS Te S C C Te # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C I # 2.38 310 AS Te S C C N # 2.38 310 AS Te S C C N # 2.38 310 AS Te S C C P # 2.38 310 AS Te S C C S #										
310 AS Te S C C C P # 2.38 310 AS Te S C C C Se # 2.38 310 AS Te S C C C Si # 2.38 310 AS Te S C C Te # 2.38 310 AS Te S C C Cl Te # 2.38 310 AS Te S C C F # 2.38 310 AS Te S C C N # 2.38 310 AS Te S C C N # 2.38 310 AS Te S C C P # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38										
310 AS Te S C C C S # 2.38 310 AS Te S C C C Se # 2.38 310 AS Te S C C C Si # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C Te F # 2.38 310 AS Te S C C Te F # 2.38 310 AS Te S C C Te F # 2.38 310 AS Te S C C Te F # 2.38 310 AS Te S C C Te F # 2.38 310 AS Te S C C Te F # 2.38 310 AS Te S C C Te F # 2.38 310 AS Te S C C Te F # 2.38 310 AS Te S C C Te F # 2.38 310 AS Te S C C Te S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38							_			
310 AS Te S C C C Se # 2.38 310 AS Te S C C C Si # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C F # 2.38 310 AS Te S C C I # 2.38 310 AS Te S C C N # 2.38 310 AS Te S C C P # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C Se # 2.38 310 AS Te S C C Se # 2.38 310 AS Te S C C Se # 2.38										
310 AS Te S C C C Si # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C C Te # 2.38 310 AS Te S C C F # 2.38 310 AS Te S C C T # 2.38 310 AS Te S C C T I # 2.38 310 AS Te S C C C N # 2.38 310 AS Te S C C C P # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38										
310 AS Te S C C C Te # 2.38 310 AS Te S C C C F # 2.38 310 AS Te S C C F # 2.38 310 AS Te S C C I # 2.38 310 AS Te S C C N # 2.38 310 AS Te S C C D W # 2.38 310 AS Te S C C D W # 2.38 310 AS Te S C C C F # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C S # 2.38										
310 AS Te S C C C Cl # 2.38 310 AS Te S C C F # 2.38 310 AS Te S C C I # 2.38 310 AS Te S C C N # 2.38 310 AS Te S C C O H # 2.38 310 AS Te S C C P H # 2.38 310 AS Te S C C S H 2.38 310 AS Te S C C S H 2.38 310 AS Te S C C S H 2.38 310 AS Te S C C S H 2.38 310 AS Te S C C S H 2.38					С		С			
310 AS Te S C C F # 2.38 310 AS Te S C C I # 2.38 310 AS Te S C C N # 2.38 310 AS Te S C C O H # 2.38 310 AS Te S C C P H # 2.38 310 AS Te S C C S H 2.38 310 AS Te S C C S H 2.38 310 AS Te S C C S H 2.38 310 AS Te S C C S H 2.38 310 AS Te S C C S H 2.38										
310 AS Te S C C I # 2.38 310 AS Te S C C N # 2.38 310 AS Te S C C O # 2.38 310 AS Te S C C P # 2.38 310 AS Te S C C Se # 2.38 310 AS Te S C C Si # 2.38										
310 AS Te S C C N # 2.38 310 AS Te S C C O H # 2.38 310 AS Te S C C P H # 2.38 310 AS Te S C C S H 2.38 310 AS Te S C C S H 2.38 310 AS Te S C C S H 2.38 310 AS Te S C C S H 2.38 310 AS Te S C C S H 2.38										
310 AS Te S C C O # 2.38 310 AS Te S C C P # 2.38 310 AS Te S C C S # 2.38 310 AS Te S C C Se # 2.38 310 AS Te S C C Si # 2.38	310	AS	Te	S	С	С	N			2.38
310 AS Te S C C S # 2.38 310 AS Te S C C Se # 2.38 310 AS Te S C C Si # 2.38	310	AS	Te	S		C	0		#	2.38
310 AS Te S C C Se # 2.38 310 AS Te S C C Si # 2.38		AS	Te							
310 AS Te S C C Si # 2.38		AS	Te	S	C	C	S		#	2.38
		AS	Те							
310 AS Te S C C Te # 2.38		AS	Te				Si			
	310	AS	Te	S	С	С	Te		#	2.38

Bond Sequences

BS Screens

A **bond sequence** (**BS**) screen specifies both type and value for the bonds between the string atoms but uses only dummy "A" element symbols to represent the atoms, as in:

BS 1 A *1 A *1 A *1 A -2 A

These screens are descriptions of linear sequences of 3, 4, or 5 bonds, always specifying the bond types and often the bond values.

BS Screen Definitions

path in that substance.

Note: bond sequence definitions are exact and do not imply alternative bond specifications. Where tautomer or alternating bonds exist, *4 and -4 bond symbols must be used in BS descriptions, not the usual "fixed" *1 and -1 single and *2 and -2 double bond symbols. Thus, for example, the BS Screen BS A *2 A *1 A *2 A -1 A would Be used to describe the indicated bond Path (a - b) in the structure containing a cyclohexadiene ring but not in the structure (c - d) containing the benzene ring; the screen BS A *4 A *4 A *4 A -1 A would have to be used to describe the

Bond Sequences

Screen Number		Fragment Definition	F	requency Percent
795	BS	A * A - A * A		24.19
803	BS	A * A - A * A * A - A		16.99
804	BS	A * A - A * A - A		15.25
805	BS	A * A - A * A - A * A		1.90
811	BS	A * A - A - A * A		20.58
820	BS	A * A - A - A * A - A		11.11
833	BS	A * A - A - A - A * A		16.30
846	BS	A * A - A - A - A		49.89
734	BS	A *1A *1A *1A		46.26
744	BS	A *1A *1A *1A *1A		32.33
745	BS	A *1A *1A *1A *2A		11.68
735 736	BS	A *1A *1A *2A A *1A *1A *4A		18.26 15.85
736 763	BS	A *1A *1A *1A -1A		43.32
703 774	BS BS	A *1A *1A *1A -1A A *1A *1A *1A -1A		31.09
775	BS	A *1A *1A -1A -1A -2A	#	15.47
775	BS	A *1A *1A *1A -1A -4A	#	15.47
764	BS	A *1A *1A *1A -2A	#	16.95
764	BS	A *1A *1A *1A -4A	#	16.95
728	BS	A *1A *1A *2A	"	33.57
746	BS	A *1A *1A *2A *1A *1A		12.39
765	BS	A *1A *1A *2A -1A	#	24.92
729	BS	A *1A *1A *4A		25.91
737	BS	A *1A *1A *4A *1A		23.12
747	BS	A *1A *1A *4A *1A *1A		8.65
765	BS	A *1A *1A *4A -1A	#	24.92
765	BS	A *1A *1A *4A -4A	#	24.92
784	BS	A *1A *1A -1A -1A		38.04
785	BS	A *1A *1A -1A -2A	#	19.91
785	BS	A *1A *1A -1A -4A	#	19.91
786	BS	A *1A *1A -2A -1A	#	4.41
786	BS	A *1A *1A -4A -1A	#	4.41
730 737	BS	A *1A *4A *1A A *1A *4A *1A *1A		23.66 23.12
737	BS BS	A *1A *4A *1A *1A A *1A *4A *1A *4A		3.11
766	BS	A *1A *4A *1A -1A	#	15.89
766	BS	A *1A *4A *1A -2A	#	15.89
766	BS	A *1A *4A *1A -4A	#	15.89
739	BS	A *1A *4A *4A *1A	"	5.55
748	BS	A *1A *4A *4A *1A		1.67
753	BS	A *1A *4A *4A *4A -1A	#	11.30
753	BS	A *1A *4A *4A *4A -4A	#	11.30
767	BS	A *1A *4A *4A -1A	#	14.13
776	BS	A *1A *4A *4A -1A -2A	#	3.05
776	BS	A *1A *4A *4A -1A -4A	#	3.05
767	BS	A *1A *4A *4A -4A	#	14.13
787	BS	A *1A *4A -1A -1A		2.71
788	BS	A *1A *4A -1A -2A	#	0.92
788	BS	A *1A *4A -1A -4A	#	0.92
796	BS	A *1A -1A *1A		4.83
797	BS	A *1A -1A *2A		2.29
798	BS	A *1A -1A *4A		17.07
812 813	BS	A *1A -1A -1A *1A		3.71
813 814	BS BS	A *1A -1A -1A *2A A *1A -1A -1A *4A		1.34 8.26
014	Ca	A IA -IA -IA "AA		0.40

Screen Number		Fragment Definition	Fi	equency Percent
821	BS	A *1A -1A -1A -1A	#	29.59
834	BS	A *1A -1A -1A -1A *1A	#	9.08
835	BS	A *1A -1A -1A -1A *1A	#	2.29
834	BS	A *1A -1A -1A -1A *2A	#	9.08
836	BS	A *1A -1A -1A -1A *2A	#	1.05
834	BS	A *1A -1A -1A -1A *4A	#	9.08
837	BS	A *1A -1A -1A -1A *4A	#	7.61
847	BS	A *1A -1A -1A -1A	#	19.15
848	BS	A *1A -1A -1A -1A -2A	#	7.95
849	BS	A *1A -1A -1A -1A -3A	#	1.26
848	BS	A *1A -1A -1A -4A	#	7.95
822	BS	A *1A -1A -1A -2A	#	6.54
835	BS	A *1A -1A -1A -2A *1A	#	2.29
838	BS	A *1A -1A -1A -2A *1A	#	0.72
850	BS	A *1A -1A -1A -2A -1A	#	6.05
824	BS	A *1A -1A -1A -3A	#	1.16
823	BS	A *1A -1A -1A -4A	#	3.08
835	BS	A *1A -1A -1A -4A *1A	#	2.29
838	BS	A *1A -1A -1A -4A *1A	#	0.72
838	BS	A *1A -1A -1A -4A *4A	#	0.72
850	BS	A *1A -1A -1A -4A -1A	#	6.05
851	BS	A *1A -1A -1A -4A -4A	#	4.86
815	BS	A *1A -1A -2A *1A	#	1.79
825	BS	A *1A -1A -2A -1A	#	9.84
835	BS	A *1A -1A -2A -1A *1A	#	2.29
839	BS	A *1A -1A -2A -1A *1A	#	3.00
836	BS	A *1A -1A -2A -1A *2A	#	1.05
839	BS	A *1A -1A -2A -1A *2A	#	3.00
837	BS	A *1A -1A -2A -1A *4A	#	7.61
839	BS	A *1A -1A -2A -1A *4A	#	3.00
852	BS	A *1A -1A -2A -1A -1A	#	9.56
853	BS	A *1A -1A -2A -1A -2A	#	3.89
849	BS	A *1A -1A -2A -1A -3A	#	1.26
853	BS	A *1A -1A -2A -1A -4A	#	3.89
806	BS	A *1A -1A -3A	#	3.87
849	BS	A *1A -1A -3A -1A -3A	#	1.26
815	BS	A *1A -1A -4A *1A	#	1.79
815	BS	A *1A -1A -4A *4A	#	1.79
825	BS	A *1A -1A -4A -1A	#	9.84
835	BS	A *1A -1A -4A -1A *1A	#	2.29
840	BS	A *1A -1A -4A -1A *1A	#	3.51
836	BS	A *1A -1A -4A -1A *2A	#	1.05
840	BS	A *1A -1A -4A -1A *2A	#	3.51
837	BS	A *1A -1A -4A -1A *4A	#	7.61
840	BS	A *1A -1A -4A -1A *4A	#	3.51
854	BS	A *1A -1A -4A -1A -1A	#	5.30
855	BS	A *1A -1A -4A -1A -2A	#	1.69
849	BS	A *1A -1A -4A -1A -3A	#	1.26
855	BS	A *1A -1A -4A -1A -4A	#	1.69
826	BS	A *1A -1A -4A -4A	#	3.47
835	BS	A *1A -1A -4A -4A *1A	#	2.29
841	BS	A *1A -1A -4A -4A *1A	#	0.60
837	BS	A *1A -1A -4A -4A *4A	#	7.61
841	BS	A *1A -1A -4A -4A *4A	#	0.60
851	BS	A *1A -1A -4A -4A -1A	#	4.86

Screen Number		Fragment Definition	Fr	equency Percent
851	BS	A *1A -1A -4A -4A -4A	#	4.86
799	BS	A *1A -2A *1A		0.27
815	BS	A *1A -2A -1A *1A	#	1.79
816	BS	A *1A -2A -1A *2A	#	2.34
816	BS	A *1A -2A -1A *4A	#	2.34
835	BS	A *1A -2A -1A -1A *1A	#	2.29
838	BS	A *1A -2A -1A -1A *1A	#	0.72
836	BS	A *1A -2A -1A -1A *2A	#	1.05
838	BS	A *1A -2A -1A -1A *2A	#	0.72
837	BS	A *1A -2A -1A -1A *4A	#	7.61
838	BS	A *1A -2A -1A -1A *4A	#	0.72
854	BS	A *1A -2A -1A -1A -1A	#	5.30
856	BS	A *1A -2A -1A -1A -2A	#	0.24
849	BS	A *1A -2A -1A -1A -3A	#	1.26
856	BS	A *1A -2A -1A -1A -4A	#	0.24
835	BS	A *1A -2A -1A -2A *1A	#	2.29
842	BS	A *1A -2A -1A -2A *1A	#	0.16
857	BS	A *1A -2A -1A -2A -1A	#	0.76
824	BS	A *1A -2A -1A -3A	#	1.16
835	BS	A *1A -2A -1A -4A *1A	#	2.29
842	BS	A *1A -2A -1A -4A *1A	#	0.16
837	BS	A *1A -2A -1A -4A *4A	#	7.61
842	BS	A *1A -2A -1A -4A *4A	#	0.16
857	BS	A *1A -2A -1A -4A -1A	#	0.76
851	BS	A *1A -2A -1A -4A -4A	#	4.86
815	BS	A *1A -4A -1A *1A	#	1.79
816	BS	A *1A -4A -1A *2A	#	2.34
816	BS	A *1A -4A -1A *4A	#	2.34
835	BS	A *1A -4A -1A -1A *1A	#	2.29
838	BS BS	A *1A -4A -1A -1A *1A A *1A -4A -1A -1A *2A	# #	0.72
836 838				1.05 0.72
837	BS BS	A *1A -4A -1A -1A *2A A *1A -4A -1A -1A *4A	# #	7.61
838	BS	A *1A -4A -1A -1A *4A	#	0.72
854	BS	A *1A -4A -1A -1A -1A A *1A -4A -1A -1A	#	5.30
856	BS	A *1A -4A -1A -1A -2A	#	0.24
849	BS	A *1A -4A -1A -1A -3A	#	1.26
856	BS	A *1A -4A -1A -1A -4A	#	0.24
835	BS	A *1A -4A -1A -2A *1A	#	2.29
842	BS	A *1A -4A -1A -2A *1A	#	0.16
857	BS	A *1A -4A -1A -2A -1A	#	0.76
824	BS	A *1A -4A -1A -3A	#	1.16
835	BS	A *1A -4A -1A -4A *1A	#	2.29
842	BS	A *1A -4A -1A -4A *1A	#	0.16
837	BS	A *1A -4A -1A -4A *4A	#	7.61
842	BS	A *1A -4A -1A -4A *4A	#	0.16
857	BS	A *1A -4A -1A -4A -1A	#	0.76
851	BS	A *1A -4A -1A -4A -4A	#	4.86
807	BS	A *1A -4A -4A	#	1.54
815	BS	A *1A -4A -4A *1A	#	1.79
815	BS	A *1A -4A -4A *4A	#	1.79
835	BS	A *1A -4A -4A -1A *1A	#	2.29
841	BS	A *1A -4A -4A -1A *1A	#	0.60
836	BS	A *1A -4A -4A -1A *2A	#	1.05
841	BS	A *1A -4A -4A -1A *2A	#	0.60

Screen Number		Fragment Definition	F	requency Percent
837	BS	A *1A -4A -4A -1A *4A	#	7.61
841	BS	A *1A -4A -4A -1A *4A	#	0.60
851	BS	A *1A -4A -4A -1A -1A	#	4.86
851	BS	A *1A -4A -4A -1A -2A	#	4.86
849	BS	A *1A -4A -4A -1A -3A	#	1.26
851	BS	A *1A -4A -4A -1A -4A	#	4.86
835	BS	A *1A -4A -4A -4A *1A	#	2.29
841	BS	A *1A -4A -4A -4A *1A	#	0.60
837	BS	A *1A -4A -4A -4A *4A	#	7.61
841	BS	A *1A -4A -4A *4A	#	0.60
851	BS	A *1A -4A -4A -1A	#	4.86
851	BS	A *1A -4A -4A -4A	#	4.86
728	BS	A *2A *1A *1A		33.57
735	BS	A *2A *1A *1A *1A		18.26
745 749	BS	A *2A *1A *1A *1A *1A A *2A *1A *1A *2A		11.68 4.86
749 750	BS BS	A *2A *1A *1A *1A *2A A *2A *1A *1A *4A	#	5.71
754	BS	A *2A *1A *1A *1A -1A	#	16.45
755	BS	A *2A *1A *1A *1A -2A	#	7.52
755 755	BS	A *2A *1A *1A *1A -4A	#	7.52
740	BS	A *2A *1A *1A *2A	- #	15.67
756	BS	A *2A *1A *1A *2A -1A	#	8.46
741	BS	A *2A *1A *1A *4A	П	10.64
757	BS	A *2A *1A *1A *4A -1A	#	7.07
758	BS	A *2A *1A *1A *4A -4A	#	0.97
768	BS	A *2A *1A *1A -1A	#	26.83
777	BS	A *2A *1A *1A -1A -2A	#	4.54
777	BS	A *2A *1A *1A -1A -4A	#	4.54
769	BS	A *2A *1A *1A -2A	#	10.73
769	BS	A *2A *1A *1A -4A	#	10.73
731	BS	A *2A *1A *2A		14.60
751	BS	A *2A *1A *2A *1A *2A		1.80
752	BS	A *2A *1A *2A *1A *4A	#	1.61
759	BS	A *2A *1A *2A *1A -1A	#	13.23
760	BS	A *2A *1A *2A *1A -2A	#	4.14
760	BS	A *2A *1A *2A *1A -4A	#	4.14
770	BS	A *2A *1A *2A -1A	#	17.24
732	BS	A *2A *1A *4A		12.99
752	BS	A *2A *1A *4A *1A *2A	#	1.61
752	BS	A *2A *1A *4A *1A *4A	#	1.61
759	BS	A *2A *1A *4A *1A -1A	#	13.23
760	BS	A *2A *1A *4A *1A -2A	#	4.14
760	BS	A *2A *1A *4A *1A -4A	#	4.14
761 762	BS BS	A *2A *1A *4A *4A -1A A *2A *1A *4A *4A -4A	#	3.88
770	BS	A *2A *1A *4A -1A	#	0.88
770 771	BS BS	A *2A *1A *4A -1A A *2A *1A *4A -4A	#	17.24 3.22
771	BS BS	A *2A *1A -4A A *2A *1A -1A	#	20.76
789	BS	A *2A *1A -1A -1A	#	15.32
790	BS	A *2A *1A -1A -2A	#	6.14
790	BS	A *2A *1A -1A -4A	#	6.14
782	BS	A *2A *1A -2A	"	7.00
791	BS	A *2A *1A -2A -1A	#	2.06
783	BS	A *2A *1A -4A		1.11
791	BS	A *2A *1A -4A -1A	#	2.06

Screen Number		Fragment Definition	Frequency Percent
797	BS	A *2A -1A *1A	2.29
800	BS	A *2A -1A *2A	0.82
801	BS	A *2A -1A *4A	6.81
808	BS	A *2A -1A -1A	# 14.59
813	BS	A *2A -1A -1A *1A	1.34
817	BS	A *2A -1A -1A *2A	0.35
818	BS	A *2A -1A -1A *4A	1.80
821	BS	A *2A -1A -1A -1A	# 29.59
834	BS	A *2A -1A -1A -1A *1A	# 9.08
836	BS	A *2A -1A -1A -1A *1A	# 1.05
834	BS	A *2A -1A -1A -1A *2A	# 9.08
843	BS	A *2A -1A -1A -1A *2A	# 0.38
834	BS	A *2A -1A -1A -1A *4A	# 9.08
844	BS	A *2A -1A -1A -1A *4A	# 2.50
847	BS	A *2A -1A -1A -1A	# 19.15
848	BS	A *2A -1A -1A -1A -2A	# 7.95
849	BS	A *2A -1A -1A -1A -3A	# 1.26
848	BS	A *2A -1A -1A -1A -4A	# 7.95
822	BS	A *2A -1A -1A -2A	# 6.54
836	BS	A *2A -1A -1A -2A *1A	# 1.05
838	BS	A *2A -1A -1A -2A *1A	# 0.72
850	BS	A *2A -1A -1A -2A -1A	# 6.05
824	BS	A *2A -1A -1A -3A	# 1.16
823	BS	A *2A -1A -1A -4A	# 3.08
836	BS	A *2A -1A -1A -4A *1A	# 1.05
838	BS	A *2A -1A -1A -4A *1A	# 0.72
838	BS	A *2A -1A -1A -4A *4A	# 0.72
844	BS	A *2A -1A -1A -4A *4A	# 2.50
850	BS	A *2A -1A -1A -4A -1A	# 6.05
851	BS	A *2A -1A -1A -4A -4A	# 4.86
809	BS	A *2A -1A -2A	# 8.95
816	BS	A *2A -1A -2A *1A	# 2.34
825	BS	A *2A -1A -2A -1A	# 9.84
836	BS	A *2A -1A -2A -1A *1A	# 1.05
839	BS	A *2A -1A -2A -1A *1A	# 3.00
839	BS	A *2A -1A -2A -1A *2A	# 3.00
843	BS	A *2A -1A -2A -1A *2A	# 0.38
839	BS	A *2A -1A -2A -1A *4A	# 3.00
844	BS	A *2A -1A -2A -1A *4A	# 2.50
852	BS	A *2A -1A -2A -1A -1A	# 9.56
853	BS	A *2A -1A -2A -1A -2A	# 3.89
849	BS	A *2A -1A -2A -1A -3A	# 1.26
853	BS	A *2A -1A -2A -1A -4A	# 3.89
806	BS	A *2A -1A -3A	# 3.87
849	BS	A *2A -1A -3A -1A -3A	# 1.26
809	BS	A *2A -1A -4A	# 8.95
816	BS	A *2A -1A -4A *1A	# 2.34
815	BS	A *2A -1A -4A *4A	# 1.79
825	BS	A *2A -1A -4A -1A	# 9.84
836	BS	A *2A -1A -4A -1A *1A	# 1.05
840	BS	A *2A -1A -4A -1A *1A	# 3.51
840	BS	A *2A -1A -4A -1A *2A	# 3.51
843	BS	A *2A -1A -4A -1A *2A	# 0.38
840	BS	A *2A -1A -4A -1A *4A	# 3.51
844	BS	A *2A -1A -4A -1A *4A	# 2.50

Screen Number		Fragment Definition	F	requency Percent
852	BS	A *2A -1A -4A -1A -1A	#	9.56
855	BS	A *2A -1A -4A -1A -2A	#	1.69
849	BS	A *2A -1A -4A -1A -3A	#	1.26
855	BS	A *2A -1A -4A -1A -4A	#	1.69
826	BS	A *2A -1A -4A -4A	#	3.47
836	BS	A *2A -1A -4A -4A *1A	#	1.05
841	BS	A *2A -1A -4A -4A *1A	#	0.60
841	BS	A *2A -1A -4A -4A *4A	#	0.60
844	BS	A *2A -1A -4A -4A *4A	#	2.50
851	BS	A *2A -1A -4A -4A -1A	#	4.86
851	BS	A *2A -1A -4A -4A	#	4.86
729	BS	A *4A *1A *1A		25.91
736	BS	A *4A *1A *1A		15.85
750	BS	A *4A *1A *1A *2A	#	5.71
750	BS	A *4A *1A *1A *4A	#	5.71
754	BS	A *4A *1A *1A -1A	#	16.45
755	BS	A *4A *1A *1A -2A	#	7.52
755	BS	A *4A *1A *1A -4A	#	7.52
741	BS	A *4A *1A *1A *2A		10.64
757	BS	A *4A *1A *1A *2A -1A	#	7.07
742	BS	A *4A *1A *1A *4A		5.18
757	BS	A *4A *1A *1A *4A -1A	#	7.07
758	BS	A *4A *1A *1A *4A -4A	#	0.97
768	BS	A *4A *1A *1A -1A	#	26.83
778	BS	A *4A *1A *1A -1A -2A	#	2.25
778	BS	A *4A *1A *1A -1A -4A	#	2.25
769	BS	A *4A *1A *1A -2A	#	10.73
769	BS	A *4A *1A *1A -4A	#	10.73
732	BS	A *4A *1A *2A		12.99
752	BS	A *4A *1A *2A *1A *2A	#	1.61
752	BS	A *4A *1A *2A *1A *4A	#	1.61
759	BS	A *4A *1A *2A *1A -1A	#	13.23
760	BS	A *4A *1A *2A *1A -2A	#	4.14
760	BS	A *4A *1A *2A *1A -4A	#	4.14
770	BS	A *4A *1A *2A -1A	#	17.24
779	BS	A *4A *1A *2A -1A -2A	#	1.43
779	BS	A *4A *1A *2A -1A -4A	#	1.43
733	BS	A *4A *1A *4A		3.43
738	BS	A *4A *1A *4A *1A		3.11
752	BS	A *4A *1A *4A *1A *2A	#	1.61
752	BS	A *4A *1A *4A *1A *4A	#	1.61
759	BS	A *4A *1A *4A *1A -1A	#	13.23
760	BS	A *4A *1A *4A *1A -2A	#	4.14
760	BS	A *4A *1A *4A *1A -4A	#	4.14
761	BS	A *4A *1A *4A *4A -1A	#	3.88
762	BS	A *4A *1A *4A *4A -4A	#	0.88
770	BS	A *4A *1A *4A -1A	#	17.24
780	BS	A *4A *1A *4A -1A -2A	#	0.18
780	BS	A *4A *1A *4A -1A -4A	#	0.18
771	BS	A *4A *1A *4A -4A	#	3.22
789	BS	A *4A *1A -1A -1A	#	15.32
790	BS	A *4A *1A -1A -2A	#	6.14
790	BS	A *4A *1A -1A -4A	#	6.14
791	BS	A *4A *1A -2A -1A	#	2.06
791	BS	A *4A *1A -4A -1A	#	2.06

772 BS A *4A *4A *1A -1A # 5.73 773 BS A *4A *4A *1A -4A # 5.73 743 BS A *4A *4A *4A *4A 70.68 792 BS A *4A *4A -1A -1A 50.44 793 BS A *4A *4A -1A -2A 21.99 794 BS A *4A *4A -1A -4A 14.39 798 BS A *4A -1A *1A 17.07 801 BS A *4A -1A *1A 17.07 801 BS A *4A -1A *1A 17.07 801 BS A *4A -1A *1A 4 4.33 814 BS A *4A -1A *1A 4 4.33 814 BS A *4A -1A *1A 18 8.26 818 BS A *4A -1A *1A *1A 1.80 8.26 819 BS A *4A -1A *1A *1A 4 9.08 837 BS A *4A *1A *1A *1A *1A # 9.08 844 BS A *4A *1A *1A *1A *1A *1A *1A # 9.08 844	Screen Number		Fragment Definition	F	requency Percent
773 BS A *4A *4A *1A -2A # 5.73 773 BS A *4A *4A *1A -2A # 5.73 7743 BS A *4A *4A *1A -4A # 70.68 792 BS A *4A *4A *1A -1A 50.44 793 BS A *4A *4A -1A -1A 50.44 794 BS A *4A *4A -1A -2A 21.99 794 BS A *4A *4A -1A -2A 14.39 798 BS A *4A *1A *1A 70.07 801 BS A *4A -1A *1A 17.07 801 BS A *4A -1A *1A 17.07 801 BS A *4A -1A *2A 6.81 802 BS A *4A -1A *1A 8.26 818 BS A *4A -1A *1A 8.26 818 BS A *4A -1A *1A 8.26 819 BS A *4A -1A *1A 8.26 819 BS A *4A -1A -1A *1A 8.26 819 BS A *4A -1A -1A *1A 7.50 827 BS A *4A -1A -1A *1A 7.50 837 BS A *4A -1A -1A *1A 7.61 834 BS A *4A -1A -1A -1A *1A 7.61 834 BS A *4A -1A -1A -1A *1A 7.61 834 BS A *4A -1A -1A -1A *2A 9.08 837 BS A *4A -1A -1A -1A *2A 9.08 834 BS A *4A -1A -1A -1A *1A 7.44 858 BS A *4A -1A -1A -1A *2A 9.08 844 BS A *4A -1A -1A -1A *1A 9.08 845 BS A *4A -1A -1A -1A *1A 9.08 846 BS A *4A -1A -1A -1A *1A 9.08 847 BS A *4A -1A -1A -1A *1A 9.08 848 BS A *4A -1A -1A -1A *1A 9.08 849 BS A *4A -1A -1A -1A *1A 9.08 845 BS A *4A -1A -1A -1A *1A 9.08 859 BS A *4A -1A -1A -1A *1A 9.08 859 BS A *4A -1A -1A -1A *1A 9.08 869 BS A *4A -1A -1A -1A *1A 9.08 870 BS A *4A -1A -1A -1A *1A 9.08 881 BS A *4A -1A -1A -1A *1A 9.08 882 BS A *4A -1A -1A -1A *1A 9.08 883 BS A *4A -1A -1A -1A *1A 9.08 884 BS A *4A -1A -1A -1A +1A 9.08 885 BS A *4A -1A -1A -1A +1A 9.08 886 BS A *4A -1A -1A -1A +1A 9.08 887 BS A *4A -1A -1A -1A +1A 9.08 888 BS A *4A -1A -1A -1A +1A 9.08 889 BS A *4A -1A -1A -1A +1A 9.08 890 BS A *4A -1A -1A -1A +1A 9.08 890 BS A *4A -1A -1A -1A +1A 9.08 890 BS A *4A -1A -1A -1A +1A 9.08 890 BS A *4A -1A -1A -1A -1A +1A 9.08 890 BS A *4A -1A -1A -1A -1A +1A 9.08 890 BS A *4A -1A -1A -1A -1A +1A 9.08 890 BS A *4A -1A -1A -1A -1A +1A 9.08 890 BS A *4A -1A -1A -1A -1A +1A 9.08 890 BS A *4A -1A -1A -1A -1A +1A 9.08 890 BS A *4A -1A -1A -1A -1A +1A 9.08 890 BS A *4A -1A -1A -1A -1A +1A 9.08 890 BS A *4A -1A -1A -1A -1A +1A 9.08 890 BS A *4A -1A -1A -1A -1A +1A 9.08 890 BS A *4A -1A	772	BS	A *4A *4A *1A -1A		12.57
773 BS A *4A *4A *1A -4A # 5.73 743 BS A *4A *4A *4A *4A *4A 70.68 792 BS A *4A *4A *4A -1A -1A 50.44 793 BS A *4A *4A -1A -1A 2A 21.99 794 BS A *4A *4A -1A -4A 14.39 798 BS A *4A *4A -1A -4A 14.39 798 BS A *4A -1A *1A 2A 14.39 798 BS A *4A -1A *1A 4 14.39 802 BS A *4A -1A *4A 4 4 3 4 4.33 814 BS A *4A -1A -1A *1A 8.26 818 BS A *4A -1A -1A *1A 8.26 818 BS A *4A -1A -1A *1A 1 8.26 819 BS A *4A -1A -1A *1A 4 1 32.93 834 BS A *4A -1A -1A *1A 4 1 32.93 837 BS A *4A -1A -1A -1A *1A # 7.61 834 BS A *4A -1A -1A -1A *1A # 7.61 834 BS A *4A -1A -1A -1A *1A # 7.61 834 BS A *4A -1A -1A -1A *1A # 9.08 845 BS A *4A -1A -1A +1A *1A # 9.08 846 BS A *4A -1A -1A -1A *1A # 9.08 847 BS A *4A -1A -1A -1A *1A # 9.08 848 BS A *4A -1A -1A -1A *1A # 7.49 859 BS A *4A -1A -1A -1A *1A # 7.49 859 BS A *4A -1A -1A -1A -1A *1A # 7.61 837 BS A *4A -1A -1A -1A *1A # 7.61 838 BS A *4A -1A -1A -1A *1A # 7.49 859 BS A *4A -1A -1A -1A *1A # 7.61 837 BS A *4A -1A -1A -1A *1A # 7.61 838 BS A *4A -1A -1A -1A *1A # 7.61 839 BS A *4A -1A -1A -1A *1A # 7.61 839 BS A *4A -1A -1A -1A *1A # 7.61 839 BS A *4A -1A -1A -1A *1A # 7.61 839 BS A *4A -1A -1A -1A -1A *1A # 7.61 839 BS A *4A -1A -1A -1A -1A *1A # 7.61 839 BS A *4A -1A -1A -1A -1A *1A # 7.61 839 BS A *4A -1A -1A -1A -1A *1A # 7.61 839 BS A *4A -1A -1A -1A -1A *1A # 7.61 839 BS A *4A -1A -1A -1A -1A *1A # 7.61 839 BS A *4A -1A -1A -1A -1A *1A # 7.61 839 BS A *4A -1A -1A -1A -2A *1A # 7.61 839 BS A *4A -1A -1A -1A -2A *1A # 7.61 839 BS A *4A -1A -1A -1A -4A *1A # 7.61 839 BS A *4A -1A -1A -1A -4A *1A # 7.61 839 BS A *4A -1A -1A -1A -4A *1A # 7.44 850 BS A *4A -1A -1A -1A -4A *1A # 7.44 850 BS A *4A -1A -1A -1A -4A *1A # 7.44 850 BS A *4A -1A -1A -1A -4A *1A # 7.44 850 BS A *4A -1A -1A -1A -4A *1A # 7.44 850 BS A *4A -1A -1A -1A -4A *1A # 7.44 850 BS A *4A -1A -1A -1A -4A *1A # 7.44 850 BS A *4A -1A -1A -1A -4A *1A # 7.44 850 BS A *4A -1A -1A -1A -4A *1A # 7.44 850 BS A *4A -1A -1A -1A -4A *1A # 7.44 850 BS A *4A -1A -1A -1A -1A *1A # 7.61 839 BS A *4A -1A -1A -1A -1A *1A # 7.61 839 BS A *4A -1A -1A	773	BS		#	
792 BS A *4A *4A *4A *4A *4A 70.68 792 BS A *4A *4A *4A *1A *1A 50.49 793 BS A *4A *4A *1A *1A 21.99 794 BS A *4A *4A *1A *1A 17.07 801 BS A *4A *1A *1A 17.07 801 BS A *4A *1A *1A 4.33 814 BS A *4A *1A *1A 8.26 818 BS A *4A *1A *1A 8.26 818 BS A *4A *1A *1A 1.80 819 BS A *4A *1A *1A *1A 1.80 819 BS A *4A *1A *1A *1A 4.33 827 BS A *4A *1A *1A *1A 1A 32.93 834 BS A *4A *1A *1A *1A *1A # 7.61 837 837 BS A *4A *1A *1A *1A *1A # 7.61 834 BS A *4A *1A *1A *1A *1A # 7.61 834 BS A *4A *1A *1A *1A *1A *1A # 7.61 834 BS A *4A *1A *1A *1A *1A *1A # 7.61 <td< td=""><td>773</td><td>BS</td><td>A *4A *4A *1A -4A</td><td></td><td>5.73</td></td<>	773	BS	A *4A *4A *1A -4A		5.73
792 BS A *4A *4A - 1A - 1A - 1A 50.44 793 BS A *4A *4A - 1A - 2A 21.99 794 BS A *4A *4A * 1A - 4A 14.39 798 BS A *4A - 1A * 1A 17.07 801 BS A *4A - 1A * 1A 4.33 814 BS A *4A - 1A - 1A * 1A 8.26 818 BS A *4A - 1A - 1A * 1A 8.26 819 BS A *4A - 1A - 1A * 1A 8.26 819 BS A *4A - 1A - 1A * 1A 32.93 827 BS A *4A - 1A - 1A - 1A 32.93 834 BS A * 4A - 1A - 1A - 1A # 9.08 837 BS A * 4A - 1A - 1A - 1A * 1A # 7.61 834 BS A * 4A - 1A - 1A - 1A * 1A # 7.61 834 BS A * 4A - 1A - 1A - 1A * 1A # 9.08 845 BS A * 4A - 1A - 1A - 1A * 1A # 9.08 845 BS A * 4A - 1A - 1A - 1A * 1A # 9.08 845 BS A * 4A - 1A - 1A - 1A			A *4A *4A *4A		
793 BS A *4A *4A -1A -2A 21.99 794 BS A *4A *4A -1A *1A 14.39 798 BS A *4A -1A *1A 17.07 801 BS A *4A -1A *1A 17.07 801 BS A *4A -1A *1A 4 802 BS A *4A -1A *1A 4 818 BS A *4A -1A +1A *1A 8 26 818 BS A *4A -1A -1A *1A 8 26 819 BS A *4A -1A -1A *1A 1 80.26 819 BS A *4A -1A -1A -1A *1A 7 50 827 BS A *4A -1A -1A -1A *1A # 9.08 837 BS A *4A -1A -1A -1A *1A # 9.08 837 BS A *4A -1A -1A -1A *1A # 9.08 844 BS A *4A -1A -1A -1A *1A # 9.08 844 BS A *4A -1A -1A -1A *1A # 9.08 845 BS A *4A -1A -1A -1A *1A # <	792	BS	A *4A *4A -1A -1A		
798 BS A *4A - 1A *1A 17.07 801 BS A *4A - 1A *2A 6.81 802 BS A *4A - 1A - 1A *1A 8.26 818 BS A *4A - 1A - 1A *1A 8.26 818 BS A *4A - 1A - 1A *1A 8.26 819 BS A *4A - 1A - 1A + A *1A 7.50 827 BS A *4A - 1A - 1A - 1A *1A #9.08 834 BS A *4A - 1A - 1A - 1A *1A #9.08 837 BS A *4A - 1A - 1A - 1A *1A #9.08 844 BS A *4A - 1A - 1A - 1A *2A #9.08 844 BS A *4A - 1A - 1A - 1A *2A #9.08 844 BS A *4A - 1A - 1A - 1A *2A #9.08 844 BS A *4A - 1A - 1A - 1A *2A #9.08 844 BS A *4A - 1A - 1A - 1A *2A #9.08 845 BS A *4A - 1A - 1A - 1A *4A #9.08 845 BS A *4A - 1A - 1A - 1A *4A #9.08 845 BS A *4A - 1A - 1A - 1A *3	793				
798 BS A *4A - 1A *1A 17.07 801 BS A *4A - 1A *2A 6.81 802 BS A *4A - 1A - 1A *1A 8.26 818 BS A *4A - 1A - 1A *1A 8.26 818 BS A *4A - 1A - 1A *1A 8.26 819 BS A *4A - 1A - 1A + A *1A 7.50 827 BS A *4A - 1A - 1A - 1A *1A #9.08 834 BS A *4A - 1A - 1A - 1A *1A #9.08 837 BS A *4A - 1A - 1A - 1A *1A #9.08 844 BS A *4A - 1A - 1A - 1A *2A #9.08 844 BS A *4A - 1A - 1A - 1A *2A #9.08 844 BS A *4A - 1A - 1A - 1A *2A #9.08 844 BS A *4A - 1A - 1A - 1A *2A #9.08 844 BS A *4A - 1A - 1A - 1A *2A #9.08 845 BS A *4A - 1A - 1A - 1A *4A #9.08 845 BS A *4A - 1A - 1A - 1A *4A #9.08 845 BS A *4A - 1A - 1A - 1A *3	794		A *4A *4A -1A -4A		
802 BS A *4A - 1A * 1A * 1A 8.26 814 BS A *4A - 1A - 1A * 1A 8.26 818 BS A *4A - 1A - 1A * 2A 1.80 819 BS A *4A - 1A - 1A * 1A 7.50 827 BS A *4A - 1A - 1A - 1A * 1A # 9.08 834 BS A *4A - 1A - 1A - 1A * 1A # 7.61 834 BS A *4A - 1A - 1A - 1A * 1A # 7.61 834 BS A *4A - 1A - 1A - 1A * 2A # 9.08 844 BS A *4A - 1A - 1A - 1A * 2A # 9.08 844 BS A *4A - 1A - 1A - 1A * 2A # 9.08 845 BS A *4A - 1A - 1A - 1A * 2A # 9.08 845 BS A *4A - 1A - 1A - 1A * 1A # 9.08 845 BS A *4A - 1A - 1A - 1A - 1A # 9.08 845 BS A *4A - 1A - 1A - 1A - 1A # 9.08 849 BS A *4A - 1A - 1A - 1A - 1A # 9.09 859 BS A *4A - 1A - 1A - 1A - 1A # 10.42 849 <	798	BS			17.07
814 BS A *4A - 1A - 1A *1A 1.80 818 BS A *4A - 1A - 1A *2A 1.80 827 BS A *4A - 1A - 1A *4A 7.50 827 BS A *4A - 1A - 1A *1A # 9.08 837 BS A *4A - 1A - 1A *1A # 9.08 837 BS A *4A - 1A - 1A *1A # 9.08 844 BS A *4A - 1A - 1A *1A *2A # 9.08 844 BS A *4A - 1A - 1A *1A *2A # 9.08 844 BS A *4A - 1A - 1A *1A *1A # 9.08 844 BS A *4A - 1A - 1A *1A *1A # 9.08 845 BS A *4A - 1A - 1A *1A *1A # 9.08 845 BS A *4A *1A *1A *1A *1A *1A # 7.44 858 BS A *4A *1A *1A *1A *1A *1A # 7.44 859 BS A *4A *1A *1A *1A *1A *1A # 10.42 849 BS A *4A *1A *1A *1A *1A *1A # 10.42 828 BS A *4A *1A *1A *1A *1A *1A # 10.42 828 BS <td< td=""><td>801</td><td>BS</td><td>A *4A -1A *2A</td><td></td><td>6.81</td></td<>	801	BS	A *4A -1A *2A		6.81
814 BS A *4A - 1A - 1A *1A 1.80 818 BS A *4A - 1A - 1A *2A 1.80 827 BS A *4A - 1A - 1A *4A 7.50 827 BS A *4A - 1A - 1A *1A # 9.08 837 BS A *4A - 1A - 1A *1A # 9.08 837 BS A *4A - 1A - 1A *1A # 9.08 844 BS A *4A - 1A - 1A *1A *2A # 9.08 844 BS A *4A - 1A - 1A *1A *2A # 9.08 844 BS A *4A - 1A - 1A *1A *1A # 9.08 844 BS A *4A - 1A - 1A *1A *1A # 9.08 845 BS A *4A - 1A - 1A *1A *1A # 9.08 845 BS A *4A *1A *1A *1A *1A *1A # 7.44 858 BS A *4A *1A *1A *1A *1A *1A # 7.44 859 BS A *4A *1A *1A *1A *1A *1A # 10.42 849 BS A *4A *1A *1A *1A *1A *1A # 10.42 828 BS A *4A *1A *1A *1A *1A *1A # 10.42 828 BS <td< td=""><td>802</td><td>BS</td><td>A *4A -1A *4A</td><td></td><td>4.33</td></td<>	802	BS	A *4A -1A *4A		4.33
818 BS A *4A - 1A - 1A *2A 7.50 819 BS A *4A - 1A - 1A *4A 7.50 827 BS A *4A - 1A - 1A *1A # 9.08 837 BS A *4A - 1A - 1A - 1A *1A # 9.08 837 BS A *4A - 1A - 1A - 1A *2A # 9.08 844 BS A *4A - 1A - 1A - 1A *2A # 9.08 844 BS A *4A - 1A - 1A - 1A *2A # 9.08 845 BS A *4A - 1A - 1A - 1A *2A # 9.08 845 BS A *4A - 1A - 1A - 1A *4A # 9.08 845 BS A *4A - 1A - 1A - 1A *4A # 9.08 845 BS A *4A - 1A - 1A - 1A *4A # 9.08 845 BS A *4A - 1A - 1A - 1A - 1A # 10.42 849 BS A *4A - 1A - 1A - 1A - 1A # 10.42 849 BS A *4A - 1A - 1A - 1A - 2A # 10.42 828 BS A *4A - 1A - 1A - 1A - 2A # 10.42 828 BS A *4A - 1A - 1A - 2A *1A # 7.61 837 <	814	BS			
827 BS A *4A -1A -1A -1A -1A # 9.08 837 BS A *4A -1A -1A -1A +1A # 9.08 837 BS A *4A -1A -1A -1A *1A # 7.61 834 BS A *4A -1A -1A -1A *2A # 9.08 844 BS A *4A -1A -1A -1A *4A # 9.08 845 BS A *4A -1A -1A -1A *4A # 7.44 858 BS A *4A -1A -1A -1A -1A *4A # 7.44 858 BS A *4A -1A -1A -1A -1A *4A # 7.44 858 BS A *4A -1A -1A -1A -1A *4A # 7.44 858 BS A *4A -1A -1A -1A -1A *4A # 7.44 858 BS A *4A -1A -1A -1A -1A *4A # 7.44 858 BS A *4A -1A -1A -1A -1A *4A # 7.44 859 BS A *4A -1A -1A -1A -1A *4A # 10.42 849 BS A *4A -1A -1A -1A -1A *4A # 10.42 828 BS A *4A -1A -1A -1A *4A # 10.42 828 BS A *4A -1A -1A -1A *4A # 7.61 837 BS A *4A -1A -1A -1A *4A # 7.44 838 BS A *4A -1A -1A *1A *1A *1A # 7.61 829 BS <td< td=""><td>818</td><td>BS</td><td>A *4A -1A -1A *2A</td><td>1.80</td><td></td></td<>	818	BS	A *4A -1A -1A *2A	1.80	
834 BS A *4A - 1A - 1A - 1A * 1A # 9.08 837 BS A *4A - 1A - 1A - 1A * 1A # 7.61 834 BS A *4A - 1A - 1A - 1A * 2A # 9.08 844 BS A *4A - 1A - 1A - 1A * 2A # 2.50 834 BS A *4A - 1A - 1A - 1A * 4A # 9.08 845 BS A *4A - 1A - 1A - 1A * 4A # 9.08 845 BS A * 4A - 1A - 1A - 1A * 4A # 9.08 845 BS A * 4A - 1A - 1A - 1A * 1A # 7.44 858 BS A * 4A - 1A - 1A - 1A - 1A # 10.42 849 BS A * 4A - 1A - 1A - 1A - 2A # 10.42 849 BS A * 4A - 1A - 1A - 1A - 2A # 10.42 828 BS A * 4A - 1A - 1A - 1A - 2A # 10.42 828 BS A * 4A - 1A - 1A - 1A - 2A # 10.42 828 BS A * 4A - 1A - 1A - 1A - 2A # 1 # 7.61 837 BS A * 4A - 1A - 1A - 1A - 2A + 1A # 7.61 838 BS A * 4A - 1A - 1A - A + A + 1A	819	BS	A *4A -1A -1A *4A		7.50
834 BS A *4A - 1A - 1A - 1A * 1A # 9.08 837 BS A *4A - 1A - 1A - 1A * 1A # 7.61 834 BS A *4A - 1A - 1A - 1A * 2A # 9.08 844 BS A *4A - 1A - 1A - 1A * 2A # 2.50 834 BS A *4A - 1A - 1A - 1A * 4A # 9.08 845 BS A *4A - 1A - 1A - 1A * 4A # 9.08 845 BS A * 4A - 1A - 1A - 1A * 4A # 9.08 845 BS A * 4A - 1A - 1A - 1A * 1A # 7.44 858 BS A * 4A - 1A - 1A - 1A - 1A # 10.42 849 BS A * 4A - 1A - 1A - 1A - 2A # 10.42 849 BS A * 4A - 1A - 1A - 1A - 2A # 10.42 828 BS A * 4A - 1A - 1A - 1A - 2A # 10.42 828 BS A * 4A - 1A - 1A - 1A - 2A # 10.42 828 BS A * 4A - 1A - 1A - 1A - 2A # 1 # 7.61 837 BS A * 4A - 1A - 1A - 1A - 2A + 1A # 7.61 838 BS A * 4A - 1A - 1A - A + A + 1A	827	BS	A *4A -1A -1A -1A		32.93
837 BS A *4A -1A -1A -1A -1A *1A # 7.61 834 BS A *4A -1A -1A -1A +2A # 9.08 844 BS A *4A -1A -1A -1A *2A # 2.50 834 BS A *4A -1A -1A -1A *4A # 9.08 845 BS A *4A -1A -1A -1A *4A # 7.44 858 BS A *4A -1A -1A -1A *4A # 7.44 858 BS A *4A -1A -1A -1A *4A # 7.44 859 BS A *4A -1A -1A -1A *4A # 7.44 859 BS A *4A -1A -1A -1A *4A # 10.42 849 BS A *4A -1A -1A *1A *2A # 10.42 859 BS A *4A -1A -1A *1A *2A # 10.42 828 BS A *4A *1A *1A *1A *2A *1A # 7.61 838 BS A *4A *1A *1A *1A *2A *1A # 7.61 838 BS A *4A *1A *1A *1A *2A *1A # 7.61 839 BS A *4A *1A *1A *1A *1A *1A # 7.61 830 BS A *4A *1A *1A *1A *1A *1A # 7.61 839 BS		BS	A *4A -1A -1A -1A *1A	#	
834 BS A *4A -1A -1A -1A -1A *2A # 9.08 844 BS A *4A -1A -1A -1A *2A # 2.50 834 BS A *4A -1A -1A -1A *4A # 9.08 845 BS A *4A -1A -1A -1A *4A # 7.44 858 BS A *4A -1A -1A -1A -1A # 10.42 859 BS A *4A -1A -1A -1A -1A # 10.42 849 BS A *4A -1A -1A -1A -2A # 10.42 828 BS A *4A -1A -1A -1A -2A # 10.42 828 BS A *4A -1A -1A -2A # 7.61 837 BS A *4A -1A -1A -2A # 6.41 837 BS A *4A -1A -1A -2A # 6.05 824 BS A *4A -1A -1A -2A # 6.05 824 BS A *4A -1A -1A -2A +1A # 7.61 838 BS A *4A -1A -1A -4A # 1.16 829 BS A *4A -1A -1A -4A # 1.16 829 BS A *4A -1A -1A -4A # 7.61 837 BS A *4A -1A -1A -4A <td< td=""><td>837</td><td>BS</td><td>A *4A -1A -1A -1A *1A</td><td></td><td>7.61</td></td<>	837	BS	A *4A -1A -1A -1A *1A		7.61
844 BS A *4A - 1A - 1A - 1A *2A # 2.50 834 BS A *4A - 1A - 1A - 1A *4A # 9.08 845 BS A *4A - 1A - 1A - 1A *4A # 7.44 858 BS A *4A - 1A - 1A - 1A - 1A # 10.42 849 BS A *4A - 1A - 1A - 1A - 3A # 1.26 859 BS A *4A - 1A - 1A - 1A - 2A # 10.42 849 BS A *4A - 1A - 1A - 1A - 2A # 10.42 859 BS A *4A - 1A - 1A - 1A - 2A # 10.42 859 BS A *4A - 1A - 1A - 2A # 10.42 828 BS A *4A - 1A - 1A - 2A # 10.42 828 BS A *4A - 1A - 1A - 2A * 1A # 7.61 838 BS A *4A - 1A - 1A - 2A * 1A # 7.61 838 BS A *4A - 1A - 1A - 2A * 1A # 7.61 829 BS A *4A - 1A - 1A - 2A * 1A # 7.61 837 BS A *4A - 1A - 1A - 4A * 1A # 7.61 838 BS A * 4A - 1A - 1A - 4A * 1A # 7.61 <	834	BS	A *4A -1A -1A -1A *2A		9.08
834 BS A *4A - 1A - 1A - 1A *4A # 7.44 845 BS A *4A - 1A - 1A - 1A *4A # 7.44 858 BS A *4A - 1A - 1A - 1A - 1A 19.79 859 BS A *4A - 1A - 1A - 1A - 1A # 10.42 849 BS A *4A - 1A - 1A - 1A - 4A # 10.42 859 BS A *4A - 1A - 1A - 2A 6.41 837 BS A *4A - 1A - 1A - 2A * 1A # 7.61 838 BS A *4A - 1A - 1A - 2A * 1A # 7.61 838 BS A *4A - 1A - 1A - 2A * 1A # 7.61 838 BS A *4A - 1A - 1A - 2A * 1A # 7.61 838 BS A *4A - 1A - 1A - 2A * 1A # 7.61 838 BS A * 4A - 1A - 1A - 4A # 1.16 829 BS A * 4A - 1A - 1A - 4A # 1.16 829 BS A * 4A - 1A - 1A - 4A # 1A # 7.61 838 BS A * 4A - 1A - 1A - 4A * 1A # 7.61 838 BS A * 4A - 1A - 1A - 4A * 1A # 7.44	844	BS	A *4A -1A -1A -1A *2A		2.50
845 BS A *4A - 1A - 1A - 1A - 1A # 7.44 858 BS A *4A - 1A - 1A - 1A 19.79 859 BS A *4A - 1A - 1A - 1A - 2A # 10.42 849 BS A *4A - 1A - 1A - 1A - A # 10.42 859 BS A *4A - 1A - 1A - 1A - A # 10.42 828 BS A *4A - 1A - 1A - 2A 6.41 837 BS A *4A - 1A - 1A - 2A * 1A # 7.61 838 BS A *4A - 1A - 1A - 2A * 1A # 0.72 850 BS A *4A - 1A - 1A - 2A * 1A # 0.72 850 BS A *4A - 1A - 1A - 2A * 1A # 0.72 850 BS A *4A - 1A - 1A - AA # 1.16 824 BS A *4A - 1A - 1A - AA # 1.16 829 BS A * 4A - 1A - 1A - AA # 1.16 829 BS A * 4A - 1A - 1A - 4A * 1A # 7.61 838 BS A * 4A - 1A - 1A - 4A * 1A # 7.61 838 BS A * 4A - 1A - 1A - 4A * 1A # 7.44 850	834	BS	A *4A -1A -1A -1A *4A		
858 BS A *4A - 1A - 1A - 1A - 1A 19 . 79 859 BS A *4A - 1A - 1A - 1A - 1A - 2A # 10 . 42 849 BS A *4A - 1A - 1A - 1A - 1A - 3A # 1 . 26 859 BS A *4A - 1A - 1A - 1A - 2A # 10 . 42 828 BS A *4A - 1A - 1A - 2A # 10 . 42 828 BS A *4A - 1A - 1A - 2A # 6.41 837 BS A *4A - 1A - 1A - 2A * 1A # 7 . 61 838 BS A *4A - 1A - 1A - 2A * 1A # 0.72 850 BS A *4A - 1A - 1A - 2A * 1A # 0.75 854 BS A *4A - 1A - 1A - 2A * 1A # 0.75 854 BS A *4A - 1A - 1A - 4A # 1.16 829 BS A *4A - 1A - 1A - 4A # 1. 16 829 BS A *4A - 1A - 1A - 4A # 1. 16 838 BS A *4A - 1A - 1A - 4A * 1A # 7. 61 838 BS A *4A - 1A - 1A - 4A * 1A # 0.72 845 BS A *4A - 1A - 1A - 4A * 1A # 1. 26		BS	A *4A -1A -1A -1A *4A		
849 BS A *4A -1A -1A -1A -1A -3A # 1.26 859 BS A *4A -1A -1A -1A -4A # 10.42 828 BS A *4A -1A -1A -2A 6.41 837 BS A *4A -1A -1A -2A *1A # 7.61 838 BS A *4A -1A -1A -2A *1A # 0.72 850 BS A *4A -1A -1A -2A -1A # 6.05 824 BS A *4A -1A -1A -3A # 1.16 829 BS A *4A -1A -1A -4A *1A # 7.61 838 BS A *4A -1A -1A -4A *1A # 7.61 837 BS A *4A -1A -1A -4A *1A # 0.72 838 BS A *4A -1A -1A -4A *1A # 0.72 838 BS A *4A -1A -1A -4A *1A # 0.72 838 BS A *4A -1A -1A -4A *1A # 0.72 845 BS A *4A -1A -1A -4A *1A # 0.72 845 BS A *4A -1A -1A -4A *4A # 0.72 845 BS A *4A -1A -1A -1A *4A # 0.74 850 BS A *4A -1A -1A -1A *4A # 0.74 851 BS A *4A -1A -2A *1A	858	BS			19.79
859 BS A *4A -1A -1A -1A -4A # 10.42 828 BS A *4A -1A -1A -2A 6.41 837 BS A *4A -1A -1A -2A *1A # 7.61 838 BS A *4A -1A -1A -2A *1A # 0.72 850 BS A *4A -1A -1A -2A -1A # 6.05 824 BS A *4A -1A -1A -3A # 1.16 829 BS A *4A -1A -1A -4A 3.12 837 BS A *4A -1A -1A -4A *1A # 7.61 838 BS A *4A -1A -1A -4A *1A # 0.72 837 BS A *4A -1A -1A -4A *1A # 0.72 838 BS A *4A -1A -1A -4A *1A # 0.72 845 BS A *4A -1A -1A -4A *4A # 0.72 845 BS A *4A -1A -1A -4A *4A # 7.44 850 BS A *4A -1A -1A -4A *4A # 7.44 850 BS A *4A -1A -1A -1A -4A # 4.86 816 BS A *4A -1A -2A -1A # 1.86 816 BS A *4A -1A -2A -1A <t< td=""><td>859</td><td>BS</td><td>A *4A -1A -1A -1A -2A</td><td>#</td><td>10.42</td></t<>	859	BS	A *4A -1A -1A -1A -2A	#	10.42
859 BS A *4A -1A -1A -1A -4A # 10.42 828 BS A *4A -1A -1A -2A 6.41 837 BS A *4A -1A -1A -2A *1A # 7.61 838 BS A *4A -1A -1A -2A *1A # 0.72 850 BS A *4A -1A -1A -2A -1A # 6.05 824 BS A *4A -1A -1A -3A # 1.16 829 BS A *4A -1A -1A -4A 3.12 837 BS A *4A -1A -1A -4A # 7.61 838 BS A *4A -1A -1A -4A *1A # 0.72 838 BS A *4A -1A -1A -4A *1A # 0.72 838 BS A *4A -1A -1A -4A *1A # 0.72 845 BS A *4A -1A -1A -4A *1A # 0.72 845 BS A *4A -1A -1A -4A *4A # 7.44 850 BS A *4A -1A -1A -4A *4A # 7.44 850 BS A *4A -1A -1A -4A -4A # 4.86 816 BS A *4A -1A -2A -1A # 3.86 816 BS A *4A -1A -2A -1A #	849	BS	A *4A -1A -1A -1A -3A	#	1.26
837 BS A *4A -1A -1A -2A *1A # 7.61 838 BS A *4A -1A -1A -2A *1A # 0.72 850 BS A *4A -1A -1A -2A -1A # 6.05 824 BS A *4A -1A -1A -3A # 1.16 829 BS A *4A -1A -1A -4A 3.12 837 BS A *4A -1A -1A -4A # 7.61 838 BS A *4A -1A -1A -4A *1A # 0.72 838 BS A *4A -1A -1A -4A *4A # 0.72 845 BS A *4A -1A -1A -4A *4A # 0.72 845 BS A *4A -1A -1A -4A *4A # 7.44 850 BS A *4A -1A -1A -4A -4A # 4.86 816 BS A *4A -1A -2A +1A # 4.86 816 BS A *4A -1A -2A -1A # 7.61 839 BS A *4A -1A -2A -1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 845 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *3A # 3.89	859	BS	A *4A -1A -1A -1A -4A		
838 BS A *4A -1A -1A -2A *1A # 0.72 850 BS A *4A -1A -1A -2A -1A # 6.05 824 BS A *4A -1A -1A -3A # 1.16 829 BS A *4A -1A -1A -4A # 7.61 837 BS A *4A -1A -1A -4A *1A # 0.72 838 BS A *4A -1A -1A -4A *4A # 0.72 845 BS A *4A -1A -1A -4A *4A # 7.44 850 BS A *4A -1A -1A -4A -4A # 4.86 816 BS A *4A -1A -2A +1A # 2.34 830 BS A *4A -1A -2A -1A # 3.00 837 BS A *4A -1A -2A -1A # 3.00 845 BS A *4A -1A -2A -1A # 4.86 816 BS A *4A -1A -2A -1A # 3.00 837 BS A *4A -1A -2A -1A # 3.00 839 BS A *4A -1A -2A -1A *1A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 3.89 </td <td>828</td> <td>BS</td> <td>A *4A -1A -1A -2A</td> <td></td> <td>6.41</td>	828	BS	A *4A -1A -1A -2A		6.41
850 BS A *4A -1A -1A -2A -1A # 6.05 824 BS A *4A -1A -1A -3A # 1.16 829 BS A *4A -1A -1A -4A 3.12 837 BS A *4A -1A -1A -4A *1A # 7.61 838 BS A *4A -1A -1A -4A *1A # 0.72 838 BS A *4A -1A -1A -4A *4A # 0.72 845 BS A *4A -1A -1A -4A *4A # 7.44 850 BS A *4A -1A -1A -4A -4A # 7.44 850 BS A *4A -1A -1A -4A -4A # 4.86 816 BS A *4A -1A -1A -2A +A # 4.86 816 BS A *4A -1A -2A -1A # 7.09 837 BS A *4A -1A -2A -1A # 7.61 839 BS A *4A -1A -2A -1A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 845 BS A *4A -1A -2A -1A *2A # 3.89 845 BS A *4A -1A -2A -1A -4A # 3.89 <td>837</td> <td>BS</td> <td>A *4A -1A -1A -2A *1A</td> <td>#</td> <td>7.61</td>	837	BS	A *4A -1A -1A -2A *1A	#	7.61
824 BS A *4A -1A -1A -1A -3A # 1.16 829 BS A *4A -1A -1A -4A 3.12 837 BS A *4A -1A -1A -4A *1A # 7.61 838 BS A *4A -1A -1A -4A *1A # 0.72 838 BS A *4A -1A -1A -4A *4A # 0.72 845 BS A *4A -1A -1A -4A *4A # 7.44 850 BS A *4A -1A -1A -4A -1A # 6.05 851 BS A *4A -1A -1A -4A -4A # 4.86 816 BS A *4A -1A -2A *1A # 2.34 830 BS A *4A -1A -2A -1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -4A # 3.89 845 BS A *4A -1A -2A -1A -4A	838	BS	A *4A -1A -1A -2A *1A	#	0.72
824 BS A *4A -1A -1A -1A -3A # 1.16 829 BS A *4A -1A -1A -4A 3.12 837 BS A *4A -1A -1A -4A *1A # 7.61 838 BS A *4A -1A -1A -4A *1A # 0.72 838 BS A *4A -1A -1A -4A *4A # 0.72 845 BS A *4A -1A -1A -4A *4A # 7.44 850 BS A *4A -1A -1A -4A -1A # 6.05 851 BS A *4A -1A -1A -4A -4A # 4.86 816 BS A *4A -1A -2A *1A # 2.34 830 BS A *4A -1A -2A -1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -4A # 3.89 845 BS A *4A -1A -2A -1A -4A	850	BS	A *4A -1A -1A -2A -1A		
837 BS A *4A -1A -1A -1A -4A *1A # 7.61 838 BS A *4A -1A -1A -4A *1A # 0.72 838 BS A *4A -1A -1A -4A *4A # 0.72 845 BS A *4A -1A -1A -4A *4A # 7.44 850 BS A *4A -1A -1A -4A -1A # 6.05 851 BS A *4A -1A -1A -4A -4A # 4.86 816 BS A *4A -1A -2A *1A # 2.34 830 BS A *4A -1A -2A -1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 7.61 839 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 845 BS A *4A -1A -2A -1A *2A # 3.00 845 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 3.89 845 BS A *4A -1A -2A -1A -4A # 3.89 845 BS A *4A -1A -2A -1A -2A # 3.89 849 BS A *4A -1A -2A -1A -4A	824	BS	A *4A -1A -1A -3A		
838 BS A *4A -1A -1A -1A -4A *1A # 0.72 838 BS A *4A -1A -1A -4A *4A # 0.72 845 BS A *4A -1A -1A -4A *4A # 7.44 850 BS A *4A -1A -1A -4A -1A # 6.05 851 BS A *4A -1A -1A -4A -4A # 4.86 816 BS A *4A -1A -2A *1A # 2.34 830 BS A *4A -1A -2A -1A # 7.61 837 BS A *4A -1A -2A -1A *1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 845 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -4A # 7.44 852 BS A *4A -1A -2A -1A -1A # 9.56 853 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -2A -1A -3A	829	BS	A *4A -1A -1A -4A		3.12
838 BS A *4A -1A -1A -1A -4A *4A # 0.72 845 BS A *4A -1A -1A -4A *4A # 7.44 850 BS A *4A -1A -1A -4A -1A # 6.05 851 BS A *4A -1A -1A -4A -4A # 4.86 816 BS A *4A -1A -2A *1A # 2.34 830 BS A *4A -1A -2A -1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 845 BS A *4A -1A -2A -1A *2A # 3.00 845 BS A *4A -1A -2A -1A *2A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -1A # 7.44 852 BS A *4A -1A -2A -1A -1A # 3.89 849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -3A -1A -3A # 3.89 806 BS A *4A -1A -3A -1A -3A	837	BS	A *4A -1A -1A -4A *1A	#	7.61
845 BS A *4A -1A -1A -4A *4A # 7.44 850 BS A *4A -1A -1A -4A -1A # 6.05 851 BS A *4A -1A -1A -4A -4A # 4.86 816 BS A *4A -1A -2A *1A # 2.34 830 BS A *4A -1A -2A -1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 845 BS A *4A -1A -2A -1A *2A # 3.00 845 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -4A # 7.44 852 BS A *4A -1A -2A -1A -4A # 3.89 849 BS A *4A -1A -2A -1A -4A # 3.89 849 BS A *4A -1A -2A -1A -4A # 3.89 806 BS A *4A -1A -3A -1A -3A # 3.87 849 BS A *4A -1A -4A -1A -4A	838	BS	A *4A -1A -1A -4A *1A	#	0.72
850 BS A *4A -1A -1A -4A -1A # 6.05 851 BS A *4A -1A -1A -4A -4A # 4.86 816 BS A *4A -1A -2A *1A # 2.34 830 BS A *4A -1A -2A -1A # 7.61 837 BS A *4A -1A -2A -1A *1A # 3.00 839 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 2.50 839 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -1A # 9.56 853 BS A *4A -1A -2A -1A -2A # 3.89 849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -3A -4A # 3.89 806 BS A *4A -1A -3A # 3.87 849 BS A *4A -1A -4A *1A # 2.34 816 BS A *4A -1A -4A *1A # 1.79 831 BS A *4A -1A -4A -1A # 1.79 </td <td>838</td> <td>BS</td> <td>A *4A -1A -1A -4A *4A</td> <td>#</td> <td>0.72</td>	838	BS	A *4A -1A -1A -4A *4A	#	0.72
851 BS A *4A -1A -1A -4A -4A # 4.86 816 BS A *4A -1A -2A *1A # 2.34 830 BS A *4A -1A -2A -1A 7.09 837 BS A *4A -1A -2A -1A *1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 2.50 839 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -1A # 9.56 853 BS A *4A -1A -2A -1A -2A # 3.89 849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -3A -1A -3A # 3.87 849 BS A *4A -1A -3A -1A -3A # 3.87 849 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 1.79 831 BS A *4A -1A -4A -1A # 1.79 831 BS A *4A -1A -1A -4A -1A # 1.	845	BS	A *4A -1A -1A -4A *4A	#	7.44
816 BS A *4A -1A -2A *1A # 2.34 830 BS A *4A -1A -2A -1A 7.09 837 BS A *4A -1A -2A -1A *1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 3.00 849 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 2.50 839 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -1A # 9.56 853 BS A *4A -1A -2A -1A -2A # 3.89 849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -2A -1A -4A # 3.89 849 BS A *4A -1A -2A -1A -3A # 3.87 849 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *1A # 1.79 831 BS A *4A -1A -4A -1A # 7.61	850	BS	A *4A -1A -1A -4A -1A	#	6.05
830 BS A *4A -1A -2A -1A 7.09 837 BS A *4A -1A -2A -1A *1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 3.00 839 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 2.50 839 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -1A # 9.56 853 BS A *4A -1A -2A -1A -2A # 3.89 849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -3A -1A -4A # 3.89 806 BS A *4A -1A -3A -1A -4A # 3.89 806 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *1A # 1.79 831 BS A *4A -1A -4A -1A # 7.61	851	BS	A *4A -1A -1A -4A -4A	#	4.86
830 BS A *4A -1A -2A -1A 7.09 837 BS A *4A -1A -2A -1A *1A # 7.61 839 BS A *4A -1A -2A -1A *1A # 3.00 844 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 2.50 839 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -1A # 9.56 853 BS A *4A -1A -2A -1A -2A # 3.89 849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -3A -1A -4A # 3.89 806 BS A *4A -1A -3A -1A -4A # 3.89 806 BS A *4A -1A -4A *1A # 2.34 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *1A # 1.79 831 BS A *4A -1A -4A -1A # 7.61	816	BS	A *4A -1A -2A *1A	#	2.34
839 BS A *4A -1A -2A -1A *1A # 3.00 839 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 2.50 839 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -1A # 9.56 853 BS A *4A -1A -2A -1A -2A # 3.89 849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -2A -1A -4A # 3.89 806 BS A *4A -1A -3A -1A -4A # 3.89 806 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *4A # 1.79 831 BS A *4A -1A -4A -1A # 7.61	830	BS			7.09
839 BS A *4A -1A -2A -1A *2A # 3.00 844 BS A *4A -1A -2A -1A *2A # 2.50 839 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -1A # 9.56 853 BS A *4A -1A -2A -1A -2A # 3.89 849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -2A -1A -4A # 3.89 806 BS A *4A -1A -3A -1A -4A # 3.87 849 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *4A # 1.79 831 BS A *4A -1A -4A -1A # 9.50 837 BS A *4A -1A -1A -4A -1A # 7.61	837	BS	A *4A -1A -2A -1A *1A	#	7.61
844 BS A *4A -1A -2A -1A *2A # 2.50 839 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -1A # 9.56 853 BS A *4A -1A -2A -1A -2A # 3.89 849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -2A -1A -4A # 3.89 806 BS A *4A -1A -3A -1A -4A # 3.87 849 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *4A # 1.79 831 BS A *4A -1A -4A -1A # 9.50 837 BS A *4A -1A -4A -1A # 7.61	839	BS	A *4A -1A -2A -1A *1A	#	3.00
839 BS A *4A -1A -2A -1A *4A # 3.00 845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -1A # 9.56 853 BS A *4A -1A -2A -1A -2A # 3.89 849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -2A -1A -4A # 3.89 806 BS A *4A -1A -3A # 3.87 849 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *4A # 1.79 831 BS A *4A -1A -4A -1A 9.50 837 BS A *4A -1A -4A -1A *1A # 7.61	839	BS	A *4A -1A -2A -1A *2A	#	3.00
845 BS A *4A -1A -2A -1A *4A # 7.44 852 BS A *4A -1A -2A -1A -1A # 9.56 853 BS A *4A -1A -2A -1A -2A # 3.89 849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -2A -1A -4A # 3.89 806 BS A *4A -1A -3A # 3.87 849 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *4A # 1.79 831 BS A *4A -1A -4A -1A 9.50 837 BS A *4A -1A -4A -1A # 7.61	844	BS	A *4A -1A -2A -1A *2A	#	2.50
852 BS A *4A -1A -2A -1A -1A # 9.56 853 BS A *4A -1A -2A -1A -2A # 3.89 849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -2A -1A -4A # 3.89 806 BS A *4A -1A -3A # 3.87 849 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *4A # 1.79 831 BS A *4A -1A -4A -1A 9.50 837 BS A *4A -1A -4A -1A # 7.61	839	BS	A *4A -1A -2A -1A *4A	#	3.00
853 BS A *4A -1A -2A -1A -2A # 3.89 849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -2A -1A -4A # 3.89 806 BS A *4A -1A -3A # 3.87 849 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *4A # 1.79 831 BS A *4A -1A -4A -1A 9.50 837 BS A *4A -1A -4A -1A *1A # 7.61	845	BS	A *4A -1A -2A -1A *4A	#	7.44
849 BS A *4A -1A -2A -1A -3A # 1.26 853 BS A *4A -1A -2A -1A -4A # 3.89 806 BS A *4A -1A -3A # 3.87 849 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *4A # 1.79 831 BS A *4A -1A -4A -1A 9.50 837 BS A *4A -1A -4A -1A *1A # 7.61	852	BS	A *4A -1A -2A -1A -1A	#	9.56
853 BS A *4A -1A -2A -1A -4A # 3.89 806 BS A *4A -1A -3A # 3.87 849 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *4A # 1.79 831 BS A *4A -1A -4A -1A 9.50 837 BS A *4A -1A -4A -1A *1A # 7.61	853	BS	A *4A -1A -2A -1A -2A	#	
806 BS A *4A -1A -3A # 3.87 849 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *4A # 1.79 831 BS A *4A -1A -4A -1A 9.50 837 BS A *4A -1A -4A -1A *1A # 7.61	849	BS	A *4A -1A -2A -1A -3A	#	1.26
849 BS A *4A -1A -3A -1A -3A # 1.26 816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *4A # 1.79 831 BS A *4A -1A -4A -1A 9.50 837 BS A *4A -1A -4A -1A *1A # 7.61	853	BS	A *4A -1A -2A -1A -4A	#	3.89
816 BS A *4A -1A -4A *1A # 2.34 815 BS A *4A -1A -4A *4A # 1.79 831 BS A *4A -1A -4A -1A 9.50 837 BS A *4A -1A -4A -1A *1A # 7.61	806	BS	A *4A -1A -3A	#	3.87
815 BS A *4A -1A -4A *4A # 1.79 831 BS A *4A -1A -4A -1A 9.50 837 BS A *4A -1A -4A -1A *1A # 7.61	849	BS			
831 BS A *4A -1A -4A -1A 9.50 837 BS A *4A -1A -4A -1A *1A # 7.61	816	BS	A *4A -1A -4A *1A	#	2.34
837 BS A *4A -1A -4A -1A *1A # 7.61	815	BS	A *4A -1A -4A *4A	#	1.79
	831	BS			9.50
840 BS A *4A -1A -4A -1A *1A # 3.51		BS		#	
	840	BS	A *4A -1A -4A -1A *1A	#	3.51

Screen Number		Fragment Definition	Fr	equency Percent
840	BS	A *4A -1A -4A -1A *2A	#	3.51
844	BS	A *4A -1A -4A -1A *2A	#	2.50
840	BS	A *4A -1A -4A -1A *4A	#	3.51
845	BS	A *4A -1A -4A -1A *4A	#	7.44
852	BS	A *4A -1A -4A -1A -1A	#	9.56
855	BS	A *4A -1A -4A -1A -2A	#	1.69
849	BS	A *4A -1A -4A -1A -3A	#	1.26
855	BS	A *4A -1A -4A -1A -4A	#	1.69
832	BS	A *4A -1A -4A -4A		8.33
837	BS	A *4A -1A -4A -4A *1A	#	7.61
841	BS	A *4A -1A -4A -4A *1A	#	0.60
841	BS	A *4A -1A -4A -4A *4A	#	0.60
845	BS	A *4A -1A -4A -4A *4A	#	7.44
851	BS	A *4A -1A -4A -4A -1A	#	4.86
851	BS	A *4A -1A -4A -4A	#	4.86
810	BS	A *4A -4A -1A		2.32
815	BS	A *4A -4A -1A *1A	#	1.79
815	BS	A *4A -4A -1A *2A	#	1.79
815	BS	A *4A -4A -1A *4A	#	1.79
838	BS	A *4A -4A -1A -1A *1A	#	0.72
838	BS	A *4A -4A -1A -1A *2A	#	0.72
844	BS	A *4A -4A -1A -1A *2A	#	2.50
838	BS	A *4A -4A -1A -1A *4A	#	0.72
845	BS	A *4A -4A -1A -1A *4A	#	7.44
854	BS	A *4A -4A -1A -1A -1A	#	5.30
856	BS	A *4A -4A -1A -1A -2A	#	0.24
849	BS	A *4A -4A -1A -1A -3A	#	1.26
856	BS	A *4A -4A -1A -1A -4A	#	0.24
837	BS	A *4A -4A -1A -2A *1A	#	7.61
842	BS	A *4A -4A -1A -2A *1A	#	0.16
857	BS	A *4A -4A -1A -2A -1A	#	0.76
824	BS	A *4A -4A -1A -3A	#	1.16
837	BS	A *4A -4A -1A -4A *1A	#	7.61
842	BS	A *4A -4A -1A -4A *1A	#	0.16
842	BS	A *4A -4A -1A -4A *4A	#	0.16
845	BS	A *4A -4A -1A -4A *4A	#	7.44
857	BS	A *4A -4A -1A -4A -1A	#	0.76
851	BS	A *4A -4A -1A -4A -4A	#	4.86
807	BS	A *4A -4A -4A	#	1.54
815	BS	A *4A -4A -4A *1A	#	1.79
815	BS	A *4A -4A -4A *4A	#	1.79
837	BS	A *4A -4A -4A -1A *1A	#	7.61
841	BS	A *4A -4A -4A -1A *1A	#	0.60
841	BS	A *4A -4A -4A -1A *2A	#	0.60
844	BS	A *4A -4A -4A -1A *2A	#	2.50
841	BS	A *4A -4A -4A -1A *4A	#	0.60
845	BS	A *4A -4A -4A -1A *4A	#	7.44
851	BS	A *4A -4A -4A -1A -1A	#	4.86
851	BS	A *4A -4A -4A -1A -2A	#	4.86
849	BS	A *4A -4A -4A -1A -3A	#	1.26
851	BS	A *4A -4A -4A -1A -4A	#	4.86
837	BS	A *4A -4A -4A -4A *1A	#	7.61
841	BS	A *4A -4A -4A -4A *1A	#	0.60
841	BS	A *4A -4A -4A -4A *4A	#	0.60
845	BS	A *4A -4A -4A -4A *4A	#	7.44

Screen Number		Fragment Definition	F	requency Percent
851	BS	A *4A -4A -4A -4A -1A	#	4.86
851	BS	A *4A -4A -4A -4A -4A	#	4.86
860	BS	A - A * A * A * A - A		60.97
872	BS	A - A * A * A - A		53.81
803	BS	A - A * A * A - A * A		16.99
884	BS	A - A * A - A		52.87
804	BS	A - A * A - A * A		15.25
893	BS	A - A * A - A * A - A		2.80
820	BS	A - A * A - A - A * A		11.11
846	BS	A - A - A - A * A		49.89
926	BS	A - A - A - A - A - A		44.76
763	BS	A -1A *1A *1A		43.32
754	BS	A -1A *1A *1A *2A	#	16.45
754	BS	A -1A *1A *1A *4A	#	16.45
861	BS	A -1A *1A *1A -1A		18.92
862	BS	A -1A *1A *1A -2A		7.82
863	BS	A -1A *1A *1A -4A		0.85
768	BS	A -1A *1A *1A *2A	#	26.83
864	BS	A -1A *1A *1A *2A -1A	#	14.38
768	BS	A -1A *1A *1A *4A	#	26.83
865 866	BS	A -1A *1A *1A *4A -1A	#	5.70
873	BS	A -1A *1A *1A *4A -4A A -1A *1A *1A -1A	#	3.89
874	BS	A -1A "1A "1A -1A A -1A *1A *1A -2A	#	20.93
87 4 875	BS BS	A -1A "1A "1A -2A A -1A *1A *1A -4A	#	12.22 2.85
781	BS	A -1A *1A *2A		20.76
759	BS	A -1A *1A *2A *1A *2A	#	13.23
759	BS	A -1A *1A *2A *1A *4A	#	13.23
865	BS	A -1A *1A *2A *1A -1A	#	5.70
867	BS	A -1A *1A *2A *1A -2A	#	7.30
866	BS	A -1A *1A *2A *1A -4A	#	3.89
876	BS	A -1A *1A *2A -1A	#	10.85
766	BS	A -1A *1A *4A *1A	#	15.89
759	BS	A -1A *1A *4A *1A *2A	#	13.23
759	BS	A -1A *1A *4A *1A *4A	#	13.23
864	BS	A -1A *1A *4A *1A -1A	#	14.38
867	BS	A -1A *1A *4A *1A -2A	#	7.30
866	BS	A -1A *1A *4A *1A -4A	#	3.89
772	BS	A -1A *1A *4A *4A		12.57
864	BS	A -1A *1A *4A *4A -1A	#	14.38
866	BS	A -1A *1A *4A *4A -4A	#	3.89
876	BS	A -1A *1A *4A -1A	#	10.85
875	BS	A -1A *1A *4A -4A	#	2.85
885	BS	A -1A *1A -1A		23.45
886	BS	A -1A *1A -2A		14.04
887	BS	A -1A *1A -4A	ш	2.47
765 756	BS	A -1A *2A *1A *1A A -1A *2A *1A *1A *2A	#	24.92 8.46
756 757	BS BS	A -1A *2A *1A *1A *2A A -1A *2A *1A *1A *4A	#	
864	BS BS	A -1A *2A *1A *1A -1A A -1A *2A *1A *1A -1A	#	7.07 14.38
867	BS	A -1A *2A *1A *1A -1A A -1A *2A *1A *1A -2A	#	7.30
866	BS	A -1A *2A *1A *1A -2A A -1A *2A *1A *1A -4A	#	3.89
770	BS	A -1A *2A *1A *2A	#	17.24
864	BS	A -1A *2A *1A *2A -1A	#	14.38
770	BS	A -1A *2A *1A *4A	#	17.24
•	_~~		"	- · ·

Screen Number		Fragment Definition	Frequency Percent
864	BS	A -1A *2A *1A *4A -1A	# 14.38
866	BS	A -1A *2A *1A *4A -4A	# 3.89
876	BS	A -1A *2A *1A -1A	# 10.85
874	BS	A -1A *2A *1A -2A	# 12.22
875	BS	A -1A *2A *1A -4A	# 2.85
888	BS	A -1A *2A -1A	8.13
765	BS	A -1A *4A *1A *1A	# 24.92
757	BS	A -1A *4A *1A *1A *2A	# 7.07
757	BS	A -1A *4A *1A *1A *4A	# 7.07
865	BS	A -1A *4A *1A *1A -1A	# 5.70
867	BS	A -1A *4A *1A *1A -2A	# 7.30
866	BS	A -1A *4A *1A *1A -4A	# 3.89
770	BS	A -1A *4A *1A *2A	# 17.24
864	BS	A -1A *4A *1A *2A -1A	# 14.38
770	BS	A -1A *4A *1A *4A	# 17.24
864	BS	A -1A *4A *1A *4A -1A	# 14.38
866	BS	A -1A *4A *1A *4A -4A	# 3.89
876	BS	A -1A *4A *1A -1A	# 10.85
874	BS	A -1A *4A *1A -2A	# 12.22
875	BS	A -1A *4A *1A -4A	# 2.85
767	BS	A -1A *4A *4A *1A	# 14.13
761	BS	A -1A *4A *4A *1A *2A	# 3.88
761	BS	A -1A *4A *4A *1A *4A	# 3.88
864	BS	A -1A *4A *4A *1A -1A	# 14.38
867	BS	A -1A *4A *4A *1A -2A	# 7.30
866	BS	A -1A *4A *4A *1A -4A	# 3.89
753	BS	A -1A *4A *4A *4A *1A	# 11.30
868	BS	A -1A *4A *4A -1A	35.57
869	BS	A -1A *4A *4A -4A	0.88
877	BS	A -1A *4A *4A -1A	25.09
881	BS	A -1A *4A *4A -1A -1A	15.57
882	BS	A -1A *4A *4A -1A -2A	7.58 5.64
883	BS	A -1A *4A *4A -1A -4A	
878 889	BS	A -1A *4A *4A -4A	2.01
894	BS BS	A -1A *4A -1A A -1A *4A -1A -1A	24.67 16.03
895	BS	A -1A *4A -1A -2A	7.01
896	BS	A -1A *4A -1A -2A A -1A *4A -1A -4A	5.42
890	BS	A -1A +4A -4A A -1A *4A -4A	0.92
784	BS	A -1A -1A *1A	38.04
774	BS	A -1A -1A *1A *1A	31.09
789	BS	A -1A -1A *1A *2A	# 15.32
789	BS	A -1A -1A *1A *4A	# 15.32
808	BS	A -1A -1A *2A	# 14.59
787	BS	A -1A -1A *4A *1A	2.71
792	BS	A -1A -1A *4A *4A	50.44
881	BS	A -1A -1A *4A *4A -1A	15.57
894	BS	A -1A -1A *4A -1A	16.03
897	BS	A -1A -1A *4A -1A -1A	5.51
898	BS	A -1A -1A *4A -1A -2A	# 4.41
898	BS	A -1A -1A *4A -1A -4A	# 4.41
821	BS	A -1A -1A -1A *1A	# 29.59
821	BS	A -1A -1A -1A *2A	# 29.59
827	BS	A -1A -1A -1A *4A	32.93
915	BS	A -1A -1A -1A -1A	45.77

Screen Number		Fragment Definition	F	requency Percent
847	BS	A -1A -1A -1A *1A	#	19.15
847	BS	A -1A -1A -1A *2A	#	19.15
858	BS	A -1A -1A -1A +4A		19.79
927	BS	A -1A -1A -1A -1A		30.55
928	BS	A -1A -1A -1A -2A	#	24.95
928	BS	A -1A -1A -1A -3A	#	24.95
928	BS	A -1A -1A -1A -4A	#	24.95
916	BS	A -1A -1A -1A -2A		26.16
854	BS	A -1A -1A -1A -2A *1A	#	5.30
929	BS	A -1A -1A -1A -2A -1A	#	18.34
918	BS	A -1A -1A -3A		2.42
929	BS	A -1A -1A -3A -1A	#	18.34
917	BS	A -1A -1A -4A		18.40
854	BS	A -1A -1A -1A -4A *1A	#	5.30
854	BS	A -1A -1A -1A -4A *4A	#	5.30
929	BS	A -1A -1A -1A -4A -1A	#	18.34
930	BS	A -1A -1A -4A -4A		9.93
900 919	BS BS	A -1A -1A -2A A -1A -1A -2A -1A	ш	36.03 23.74
852	BS BS	A -1A -1A -2A -1A A -1A -1A -2A -1A *1A	#	9.56
852	BS	A -1A -1A -2A -1A *1A A -1A -1A -2A -1A *2A	#	9.56
852	BS	A -1A -1A -2A -1A *4A	#	9.56
931	BS	A -1A -1A -2A -1A -1A A -1A -1A -2A -1A -1A	#	10.49
902	BS	A -1A -1A -3A	π	4.52
919	BS	A -1A -1A -3A -1A	#	23.74
931	BS	A -1A -1A -3A -1A -1A	#	10.49
901	BS	A -1A -1A -4A	П	23.62
919	BS	A -1A -1A -4A -1A	#	23.74
854	BS	A -1A -1A -4A -1A *1A	#	5.30
852	BS	A -1A -1A -4A -1A *2A	#	9.56
852	BS	A -1A -1A -4A -1A *4A	#	9.56
931	BS	A -1A -1A -4A -1A -1A	#	10.49
920	BS	A -1A -1A -4A -4A		12.63
851	BS	A -1A -1A -4A -4A *1A	#	4.86
851	BS	A -1A -1A -4A -4A *4A	#	4.86
786	BS	A -1A -2A *1A *1A	#	4.41
791	BS	A -1A -2A *1A *2A	#	2.06
791	BS	A -1A -2A *1A *4A	#	2.06
903	BS	A -1A -2A -1A		13.44
825	BS	A -1A -2A -1A *1A	#	9.84
825	BS	A -1A -2A -1A *2A	#	9.84
830	BS	A -1A -2A -1A *4A		7.09
919	BS	A -1A -2A -1A -1A	#	23.74
850	BS	A -1A -2A -1A -1A *1A	#	6.05
850	BS	A -1A -2A -1A -1A *2A	#	6.05
850	BS	A -1A -2A -1A -1A *4A	#	6.05
929	BS	A -1A -2A -1A -1A -1A	#	18.34
921 957	BS	A -1A -2A -1A -2A	#	7.65
857 932	BS	A -1A -2A -1A -2A *1A	#	0.76
932	BS	A -1A -2A -1A -2A -1A A -1A -2A -1A -3A	#	3.30
921 932	BS BS	A -1A -2A -1A -3A A -1A -2A -1A -3A -1A	#	7.65
932 921	BS BS	A -1A -2A -1A -3A -1A A -1A -2A -1A -4A	#	3.30 7.65
921 857	BS BS	A -1A -2A -1A -4A A -1A -2A -1A -4A *1A	#	0.76
857 857	BS BS	A - 1A - 2A - 1A - 4A = 1A $A - 1A - 2A - 1A - 4A * 4A$	#	0.76
031	טם	A IA ZA IA TA	#	0.70

Screen Number		Fragment Definition	F	requency Percent
932	BS	A -1A -2A -1A -4A -1A	#	3.30
904	BS	A -1A -2A -2A		1.23
907	BS	A -1A -3A -1A		1.31
919	BS	A -1A -3A -1A -1A	#	23.74
929	BS	A -1A -3A -1A -1A -1A	#	18.34
921	BS	A -1A -3A -1A -2A	#	7.65
932	BS	A -1A -3A -1A -2A -1A	#	3.30
921	BS	A -1A -3A -1A -3A	#	7.65
932	BS	A -1A -3A -1A -3A -1A	#	3.30
921	BS	A -1A -3A -1A -4A	#	7.65
932	BS	A -1A -3A -1A -4A -1A	#	3.30
786	BS	A -1A -4A *1A *1A	#	4.41
791	BS	A -1A -4A *1A *2A	#	2.06
791	BS	A -1A -4A *1A *4A	#	2.06
810	BS	A -1A -4A *4A		2.32
905	BS	A -1A -4A -1A		20.88
825	BS	A -1A -4A -1A *1A	#	9.84
825	BS	A -1A -4A -1A *2A	#	9.84
831	BS	A -1A -4A -1A *4A		9.50
919	BS	A -1A -4A -1A -1A	#	23.74
850	BS	A -1A -4A -1A -1A *1A	#	6.05
850	BS	A -1A -4A -1A -1A *2A	#	6.05
850	BS	A -1A -4A -1A -1A *4A	#	6.05
929	BS	A -1A -4A -1A -1A -1A	#	18.34
921	BS	A -1A -4A -1A -2A	#	7.65
857	BS	A -1A -4A -1A -2A *1A	#	0.76
932	BS	A -1A -4A -1A -2A -1A	#	3.30
921	BS	A -1A -4A -1A -3A	#	7.65
932	BS	A -1A -4A -1A -3A -1A	#	3.30
921	BS	A -1A -4A -1A -4A	#	7.65
857	BS	A -1A -4A -1A -4A *1A	#	0.76
857	BS	A -1A -4A -1A -4A *4A	#	0.76
932	BS	A -1A -4A -1A -4A -1A	#	3.30
906	BS	A -1A -4A -4A		23.99
922	BS	A -1A -4A -4A -1A	#	2.48
851	BS	A -1A -4A -4A -1A *1A	#	4.86
851	BS	A -1A -4A -4A -1A *2A	#	4.86
851	BS	A -1A -4A -4A -1A *4A	#	4.86
922	BS	A -1A -4A -4A -4A	#	2.48
851	BS	A -1A -4A -4A -4A *1A	#	4.86
851	BS	A -1A -4A -4A *4A	#	4.86
764	BS	A -2A *1A *1A *1A	#	16.95
755	BS	A -2A *1A *1A *1A *2A	#	7.52
755	BS	A -2A *1A *1A *4A	#	7.52
862	BS	A -2A *1A *1A *1A -1A		7.82
870	BS	A -2A *1A *1A *1A -2A	#	3.88
871	BS	A -2A *1A *1A *1A -4A	#	1.29
769	BS	A -2A *1A *1A *2A	#	10.73
867	BS	A -2A *1A *1A *2A -1A	#	7.30
769	BS	A -2A *1A *1A *4A	#	10.73
867	BS	A -2A *1A *1A *4A -1A	#	7.30
871	BS	A -2A *1A *1A *4A -4A	#	1.29
874	BS	A -2A *1A *1A -1A	#	12.22
879	BS	A -2A *1A *1A -2A	••	3.77
880	BS	A -2A *1A *1A -4A	#	2.69

Screen Number		Fragment Definition	F	requency Percent
782	BS	A -2A *1A *2A		7.00
760	BS	A -2A *1A *2A *1A *2A	#	4.14
760	BS	A -2A *1A *2A *1A *4A	#	4.14
867	BS	A -2A *1A *2A *1A -1A	#	7.30
870	BS	A -2A *1A *2A *1A -2A	#	3.88
871	BS	A -2A *1A *2A *1A -4A	#	1.29
874	BS	A -2A *1A *2A -1A	#	12.22
766	BS	A -2A *1A *4A *1A	#	15.89
760	BS	A -2A *1A *4A *1A *2A	#	4.14
760	BS	A -2A *1A *4A *1A *4A	#	4.14
867	BS	A -2A *1A *4A *1A -1A	#	7.30
870	BS	A -2A *1A *4A *1A -2A	#	3.88
871	BS	A -2A *1A *4A *1A -4A	#	1.29
773	BS	A -2A *1A *4A *4A	#	5.73
867	BS	A -2A *1A *4A *4A -1A	#	7.30
871	BS	A -2A *1A *4A *4A -4A	#	1.29
874	BS	A -2A *1A *4A -1A	#	12.22
880	BS	A -2A *1A *4A -4A	#	2.69
886	BS	A -2A *1A -1A		14.04
891	BS	A -2A *1A -2A		1.95
892	BS	A -2A *1A -4A	#	0.54
785	BS	A -2A -1A *1A *1A	#	19.91
775	BS	A -2A -1A *1A *1A *1A	#	15.47
777	BS	A -2A -1A *1A *1A *2A	#	4.54
778	BS	A -2A -1A *1A *1A *4A	#	2.25
790	BS	A -2A -1A *1A *2A	#	6.14
790	BS	A -2A -1A *1A *4A	#	6.14
809	BS	A -2A -1A *2A	#	8.95
779	BS	A -2A -1A *2A *1A *4A	#	1.43
788	BS	A -2A -1A *4A *1A	#	0.92
780	BS	A -2A -1A *4A *1A *4A	#	0.18
793	BS	A -2A -1A *4A *4A		21.99
776	BS	A -2A -1A *4A *4A *1A	#	3.05
882	BS	A -2A -1A *4A *4A -1A		7.58
895	BS	A -2A -1A *4A -1A		7.01
898	BS	A -2A -1A *4A -1A -1A	#	4.41
899	BS	A -2A -1A *4A -1A -2A	#	1.55
899	BS	A -2A -1A *4A -1A -4A	#	1.55
900	BS	A -2A -1A -1A		36.03
822	BS	A -2A -1A -1A *1A	#	6.54
822	BS	A -2A -1A -1A *2A	#	6.54
828	BS	A -2A -1A -1A *4A		6.41
916	BS	A -2A -1A -1A -1A		26.16
848	BS	A -2A -1A -1A +1A	#	7.95
848	BS	A -2A -1A -1A *2A	#	7.95
859	BS	A -2A -1A -1A +4A	#	10.42
928	BS	A -2A -1A -1A -1A -1A	#	24.95
933	BS	A -2A -1A -1A -2A	#	6.75
933	BS	A -2A -1A -1A -3A	#	6.75
933	BS	A -2A -1A -1A -4A	#	6.75
923	BS	A -2A -1A -1A -2A	#	9.54
856	BS	A -2A -1A -1A -2A *1A	#	0.24
924	BS	A -2A -1A -1A -3A	#	1.72
923	BS	A -2A -1A -1A -4A	#	9.54
856	BS	A -2A -1A -1A -4A *1A	#	0.24

Screen Number		Fragment Definition	F	requency Percent
856	BS	A -2A -1A -1A -4A *4A	#	0.24
908	BS	A -2A -1A -2A		5.38
921	BS	A -2A -1A -2A -1A	#	7.65
853	BS	A -2A -1A -2A -1A *1A	#	3.89
853	BS	A -2A -1A -2A -1A *2A	#	3.89
853	BS	A -2A -1A -2A -1A *4A	#	3.89
934	BS	A -2A -1A -2A -1A -2A	#	1.22
934	BS	A -2A -1A -2A -1A -3A	#	1.22
934	BS	A -2A -1A -2A -1A -4A	#	1.22
910	BS	A -2A -1A -3A		1.19
921	BS	A -2A -1A -3A -1A	#	7.65
934	BS	A -2A -1A -3A -1A -2A	#	1.22
934	BS	A -2A -1A -3A -1A -3A	#	1.22
934	BS	A -2A -1A -3A -1A -4A	#	1.22
909	BS	A -2A -1A -4A		4.21
921	BS	A -2A -1A -4A -1A	#	7.65
855	BS	A -2A -1A -4A -1A *1A	#	1.69
855	BS	A -2A -1A -4A -1A *2A	#	1.69
855	BS	A -2A -1A -4A -1A *4A	#	1.69
934	BS	A -2A -1A -4A -1A -2A	#	1.22
934	BS	A -2A -1A -4A -1A -3A	#	1.22
934	BS	A -2A -1A -4A -1A -4A	#	1.22
925	BS	A -2A -1A -4A -4A	#	3.29
851	BS	A -2A -1A -4A -4A *1A	#	4.86
851	BS	A -2A -1A -4A -4A *4A	#	4.86
904	BS	A -2A -2A -1A		1.23
806	BS	A -3A -1A *1A	#	3.87
806	BS	A -3A -1A *2A	#	3.87
806	BS	A -3A -1A *4A	#	3.87
902	BS	A -3A -1A -1A	ш	4.52
824 824	BS	A -3A -1A -1A *1A A -3A -1A -1A *2A	#	1.16
824	BS	A -3A -1A -1A *2A A -3A -1A -1A *4A	#	1.16
918	BS BS	A -3A -1A -1A -4A A -3A -1A -1A -1A	#	$1.16 \\ 2.42$
849	BS	A -3A -1A -1A -1A A -3A -1A -1A -1A *1A	#	1.26
849	BS	A -3A -1A -1A -1A 1A A -3A -1A -1A -1A *2A	<u>#_</u> #	1.26
849	BS	A -3A -1A -1A -1A *4A	#	1.26
928	BS	A -3A -1A -1A -1A -1A	#	24.95
933	BS	A -3A -1A -1A -1A -2A	#	6.75
933	BS	A -3A -1A -1A -1A -3A	#	6.75
933	BS	A -3A -1A -1A -4A	#	6.75
924	BS	A -3A -1A -1A -2A	#	1.72
849	BS	A -3A -1A -1A -2A *1A	#	1.26
924	BS	A -3A -1A -1A -3A	#	1.72
924	BS	A -3A -1A -1A -4A	#	1.72
849	BS	A -3A -1A -1A -4A *1A	#	1.26
849	BS	A -3A -1A -1A -4A *4A	#	1.26
910	BS	A -3A -1A -2A		1.19
824	BS	A -3A -1A -2A *1A	#	1.16
921	BS	A -3A -1A -2A -1A	#	7.65
849	BS	A -3A -1A -2A -1A *1A	#	1.26
849	BS	A -3A -1A -2A -1A *2A	#	1.26
849	BS	A -3A -1A -2A -1A *4A	#	1.26
934	BS	A -3A -1A -2A -1A -2A	#	1.22
934	BS	A -3A -1A -2A -1A -3A	#	1.22

Screen Number		Fragment Definition	F	requency Percent
934	BS	A -3A -1A -2A -1A -4A	#	1.22
914	BS	A -3A -1A -3A		0.09
921	BS	A -3A -1A -3A -1A	#	7.65
849	BS	A -3A -1A -3A -1A *1A	#	1.26
849	BS	A -3A -1A -3A -1A *2A	#	1.26
849	BS	A -3A -1A -3A -1A *4A	#	1.26
934	BS	A -3A -1A -3A -1A -2A	#	1.22
934	BS	A -3A -1A -3A -1A -3A	#	1.22
934	BS	A -3A -1A -3A -1A -4A	#	1.22
913	BS	A -3A -1A -4A		0.00
824	BS	A -3A -1A -4A *1A	#	1.16
824	BS	A -3A -1A -4A *4A	#	1.16
921	BS	A -3A -1A -4A -1A	#	7.65
849	BS	A -3A -1A -4A -1A *1A	#	1.26
849 849	BS	A -3A -1A -4A -1A *2A A -3A -1A -4A -1A *4A	# #	1.26
934	BS BS	A -3A -1A -4A -1A *4A A -3A -1A -4A -1A -2A	#	1.26 1.22
934	BS	A -3A -1A -4A -1A -3A	#	1.22
934	BS	A -3A -1A -4A -1A -4A	#	1.22
925	BS	A -3A -1A -4A -4A	#	3.29
849	BS	A -3A -1A -4A -4A *1A	#	1.26
849	BS	A -3A -1A -4A -4A *4A	#	1.26
764	BS	A -4A *1A *1A	#	16.95
755	BS	A -4A *1A *1A *1A *2A	#	7.52
755	BS	A -4A *1A *1A *1A *4A	#	7.52
863	BS	A -4A *1A *1A -1A		0.85
871	BS	A -4A *1A *1A *1A -2A	#	1.29
871	BS	A -4A *1A *1A *1A -4A	#	1.29
769	BS	A -4A *1A *1A *2A	#	10.73
866	BS	A -4A *1A *1A *2A -1A	#	3.89
769	BS	A -4A *1A *1A *4A	#	10.73
866	BS	A -4A *1A *1A *4A -1A	#	3.89
871	BS	A -4A *1A *1A *4A -4A	#	1.29
875	BS	A -4A *1A *1A -1A	#	2.85
880	BS	A -4A *1A *1A -2A	#	2.69
880	BS	A -4A *1A *1A -4A	#	2.69
783	BS	A -4A *1A *2A		1.11
760	BS	A -4A *1A *2A *1A *2A	#	4.14
760 866	BS BS	A -4A *1A *2A *1A *4A A -4A *1A *2A *1A -1A	#	4.14 3.89
871	BS	A -4A *1A *2A *1A -2A	#	1.29
871	BS	A -4A 1A 2A 1A -2A A -4A *1A *2A *1A -4A	#	1.29
875	BS	A -4A *1A *2A -1A	#	2.85
766	BS	A -4A *1A *4A *1A	#	15.89
760	BS	A -4A *1A *4A *1A *2A	#	4.14
760	BS	A -4A *1A *4A *1A *4A	#	4.14
866	BS	A -4A *1A *4A *1A -1A	#	3.89
871	BS	A -4A *1A *4A *1A -2A	#	1.29
871	BS	A -4A *1A *4A *1A -4A	#	1.29
773	BS	A -4A *1A *4A *4A	#	5.73
866	BS	A -4A *1A *4A *4A -1A	#	3.89
871	BS	A -4A *1A *4A *4A -4A	#	1.29
875	BS	A -4A *1A *4A -1A	#	2.85
880	BS	A -4A *1A *4A -4A	#	2.69
887	BS	A -4A *1A -1A		2.47

Screen Number		Fragment Definition	F	requency Percent
892	BS	A -4A *1A -2A	#	0.54
892	BS	A -4A *1A -4A	#	0.54
765	BS	A -4A *4A *1A *1A	#	24.92
758	BS	A -4A *4A *1A *1A *2A	#	0.97
758	BS	A -4A *4A *1A *1A *4A	#	0.97
866	BS	A -4A *4A *1A *1A -1A	#	3.89
871	BS	A -4A *4A *1A *1A -2A	#	1.29
871	BS	A -4A *4A *1A *1A -4A	#	1.29
771	BS	A -4A *4A *1A *2A	#	3.22
866	BS	A -4A *4A *1A *2A -1A	#	3.89
771	BS	A -4A *4A *1A *4A	#	3.22
866	BS	A -4A *4A *1A *4A -1A	#	3.89
871	BS	A -4A *4A *1A *4A -4A	#	1.29
875	BS	A -4A *4A *1A -1A	#	2.85
880	BS	A -4A *4A *1A -2A	#	2.69
880	BS	A -4A *4A *1A -4A	#	2.69
767 762	BS	A -4A *4A *4A *1A A -4A *4A *4A *1A *2A	# #	14.13 0.88
762 762	BS BS	A -4A *4A *1A *2A A -4A *4A *1A *4A	#	0.88
762 866	BS BS	A -4A *4A *4A *1A -1A	#	3.89
871	BS	A -4A *4A *4A *1A -2A	#	1.29
871	BS	A -4A *4A *1A -4A	#	1.29
753	BS	A -4A *4A *4A *1A	#	11.30
869	BS	A -4A *4A *4A -1A	П	0.88
871	BS	A -4A *4A *4A -4A	#	1.29
878	BS	A -4A *4A *4A -1A		2.01
880	BS	A -4A *4A -4A	#	2.69
890	BS	A -4A *4A -1A		0.92
892	BS	A -4A *4A -4A	#	0.54
785	BS	A -4A -1A *1A *1A	#	19.91
775	BS	A -4A -1A *1A *1A *1A	#	15.47
777	BS	A -4A -1A *1A *1A *2A	#	4.54
778	BS	A -4A -1A *1A *1A *4A	#	2.25
790	BS	A -4A -1A *1A *2A	#	6.14
790	BS	A -4A -1A *1A *4A	#	6.14
809	BS	A -4A -1A *2A	#	8.95
779	BS	A -4A -1A *2A *1A *4A	#	1.43
788	BS	A -4A -1A *4A *1A	#	0.92
780	BS	A -4A -1A *4A *1A *4A	#	0.18
794	BS	A -4A -1A *4A *4A		14.39
776	BS	A -4A -1A *4A *4A *1A	#	3.05
883	BS	A -4A -1A *4A *4A -1A		5.64
896	BS	A -4A -1A *4A -1A		5.42
898	BS	A -4A -1A *4A -1A -1A	#	4.41
899	BS	A -4A -1A *4A -1A -2A	#_	1.55
899	BS	A -4A -1A *4A -1A -4A	#	1.55
901	BS	A -4A -1A -1A *1A	щ	23.62
823 823	BS BS	A -4A -1A -1A *1A A -4A -1A -1A *2A	#	3.08
823 829	BS BS	A -4A -1A -1A *2A A -4A -1A -1A *4A	#	3.08 3.12
917	BS	A -4A -1A -1A -1A A -4A -1A -1A		18.40
848	BS	A -4A -1A -1A -1A A -4A -1A -1A -1A *1A	#	7.95
848	BS	A -4A -1A -1A -1A +2A	#	7.95
859	BS	A -4A -1A -1A -1A *4A	#	10.42
928	BS	A -4A -1A -1A -1A	#	24.95
220	20		TT	21.75

Screen Number		Fragment Definition	Fr	equency Percent
933	BS	A -4A -1A -1A -1A -2A	#	6.75
933	BS	A -4A -1A -1A -1A -3A	#	6.75
933	BS	A -4A -1A -1A -1A -4A	#	6.75
923	BS	A -4A -1A -1A -2A	#	9.54
856	BS	A -4A -1A -1A -2A *1A	#	0.24
924	BS	A -4A -1A -1A -3A	#	1.72
923	BS	A -4A -1A -1A -4A	#	9.54
856	BS	A -4A -1A -1A -4A *1A	#	0.24
856	BS	A -4A -1A -1A -4A *4A	#	0.24
909	BS	A -4A -1A -2A		4.21
921	BS	A -4A -1A -2A -1A	#	7.65
853	BS	A -4A -1A -2A -1A *1A	#	3.89
853	BS	A -4A -1A -2A -1A *2A	#	3.89
853	BS	A -4A -1A -2A -1A *4A	#	3.89
934	BS	A -4A -1A -2A -1A -2A	#	1.22
934	BS	A -4A -1A -2A -1A -3A	#	1.22
934	BS	A -4A -1A -2A -1A -4A	#	1.22
913	BS	A -4A -1A -3A		0.00
921	BS	A -4A -1A -3A -1A	#	7.65
934	BS	A -4A -1A -3A -1A -2A	#	1.22
934	BS	A -4A -1A -3A -1A -3A	#	1.22
934	BS	A -4A -1A -3A -1A -4A	#	1.22
911	BS	A -4A -1A -4A		0.72
921	BS	A -4A -1A -4A -1A	#	7.65
855	BS	A -4A -1A -4A -1A *1A	#	1.69
855	BS	A -4A -1A -4A -1A *2A	#	1.69
855	BS	A -4A -1A -4A -1A *4A	#	1.69
934	BS	A -4A -1A -4A -1A -2A	#	1.22
934	BS	A -4A -1A -4A -1A -3A	#	1.22
934	BS	A -4A -1A -4A -1A -4A	#	1.22
925	BS	A -4A -1A -4A -4A	#	3.29
851	BS	A -4A -1A -4A -4A *1A	#	4.86
851	BS	A -4A -1A -4A -4A *4A	#	4.86
807	BS	A -4A -4A *1A	#	1.54
807	BS	A -4A -4A *4A	#	1.54
906	BS	A -4A -4A -1A	23.99	
826	BS	A -4A -4A -1A *1A	#	3.47
826	BS	A -4A -4A -1A *2A	#	3.47
832	BS	A -4A -4A -1A *4A		8.33
920	BS	A -4A -4A -1A -1A		12.63
851	BS	A -4A -4A -1A -1A *1A	#	4.86
851	BS	A -4A -4A -1A -1A *2A	#	4.86
851	BS	A -4A -4A -1A -1A *4A	#	4.86
930	BS	A -4A -4A -1A -1A -1A		9.93
925	BS	A -4A -4A -1A -2A	#	3.29
851	BS	A -4A -4A -1A -2A *1A	#	4.86
925	BS	A -4A -4A -1A -3A	#	3.29
925	BS	A -4A -4A -1A -4A	#	3.29
851	BS	A -4A -4A -1A -4A *1A	#	4.86
851	BS	A -4A -4A -1A -4A *4A	#	4.86
912	BS	A -4A -4A -4A		2.45
922	BS	A -4A -4A -4A -1A	#	2.48
851	BS	A -4A -4A -4A -1A *1A	#	4.86
851	BS	A -4A -4A -4A -1A *2A	#	4.86
851	BS	A -4A -4A -4A -1A *4A	#	4.86

Screen Number		Fragment Definition	Frequency Percent
925	BS	A -4A -4A -4A	# 3.29
851	BS	A -4A -4A -4A *1A	# 4.86
851	BS	A -4A -4A -4A *4A	# 4.86

CS Screens

Connectivity sequence (CS) screens specify the connectivity values (the number of non-hydrogen attachments) of the atoms in the string and the types of bonds between them, as in:

CS 1 2 * 2 * 3 * 3 - 1

CS Screen Definitions

These screens are descriptions of non-hydrogen connectivities for linear sequences of 4, 5, or 6 atoms, often including bond types but never bond values. *The connectivity values here are the exact number of non-hydrogen attachments, not the usual "or more" specification*, so that, for example, a "1" would always indicate a terminal atom and a "2" an atom with exactly two non-hydrogen attachments.

Screen Number		Fragment Definition	Frequency Percent
513	CS	1 - 2 - 2 - 2 - 1	0.16
514	CS	1 - 2 - 2 - 2 - 2	5.75
515	CS	1 - 2 - 2 - 2 - 3	3.74
516	CS	1 - 2 - 2 - 2 - 3	5.04
517	CS	1 2 2 2 4	0.88
518	CS	1 - 2 - 2 - 3 - 1	5.12
519	CS	1 - 2 - 2 - 3 * 2	3.51
520	CS	1 - 2 - 2 - 3 - 2	3.25
521	CS	1 - 2 - 2 - 3 * 3	2.60
522	CS	1 - 2 - 2 - 3 - 3	4.06
523	CS	1 2 2 3 4	0.61
524	CS	1 2 2 4 1	0.95
525	CS	1 2 2 4 2	1.19
526	CS	1 - 2 - 3 - 2 - 1	2.00
527	CS	1 - 2 - 3 - 2 - 2	3.69
528	CS	1 - 2 - 3 * 2 * 2 * 2	3.10
529	CS	1 - 2 - 3 * 2 * 2 * 3	7.71
530	CS	1 - 2 - 3 - 2 - 2 - 3	1.46
531	CS	1 - 2 - 3 * 2 * 3	9.36
532	CS	1 - 2 - 3 - 2 - 3	4.54
533	CS	1 - 2 - 3 * 3	12.00
534	CS	1 - 2 - 3 - 3	10.15
535	CS	1 - 2 - 3 - 3 - 1	4.42
536	CS	1 - 2 - 3 - 3 * 2	3.69
537	CS	1 - 2 - 3 - 3 - 2	4.54
538	CS	1 - 2 - 3 - 3 * 3	2.36
539	CS	1 - 2 - 3 - 3 - 3	3.11
540	CS	1 2 3 4	1.45
541	CS	1 2 4	3.93
518	CS	1 - 3 - 2 - 2 - 1	5.12
542	CS	1 - 3 - 2 - 2 - 2 - 2	8.38
543	CS	1 - 3 * 2 * 2 * 3 - 1	1.79
544	CS	1 - 3 - 2 - 2 - 3 - 1	5.14
545	CS	1 - 3 * 2 * 2 * 3 - 2	8.51
546	CS	1 - 3 - 2 - 2 - 3 - 2	5.61
547	CS	1 - 3 * 2 * 2 * 3 - 3	8.12
548	CS	1 - 3 * 2 * 2 * 3 - 4	# 3.16
549	CS	1 - 3 * 2 * 3 - 1	7.34
550	CS	1 - 3 - 2 - 3 - 1	4.92
551	CS	1 - 3 * 2 * 3 - 2	9.61
552	CS	1 - 3 - 2 - 3 * 2	16.48
553	CS	1 - 3 - 2 - 3 - 2	9.26
554	CS	1 - 3 - 2 - 3 - 2 - 2	5.66
555	CS	1 - 3 * 2 * 3 - 3	8.64
556	CS	1 - 3 - 2 - 3 * 3	10.21
557	CS	1 - 3 - 2 - 3 - 3	9.58
558	CS	1 - 3 * 2 * 3 * 3 - 1	5.64
559	CS	1 - 3 * 2 * 3 * 3 - 2	4.75
560	CS	1 - 3 * 2 * 3 * 3 - 3	3.92
548	CS	1 - 3 * 2 * 3 * 3 - 4	# 3.16
561	CS	1 3 2 3 4	4.25
562	CS	1 - 3 * 2 * 3 - 4	# 1.86
563	CS	1 3 2 4	6.81
564	CS	1 3 2 4 1	4.90
565	CS	1 - 3 * 3 - 1	9.71

Screen Number		Fragment Definition	Frequency Percent
566	CS	1 - 3 - 3 - 1	9.12
567	CS	1 - 3 * 3 - 2	19.66
535	CS	1 - 3 - 3 - 2 - 1	4.42
568	CS	1 - 3 - 3 - 2 - 2	8.72
_569	CS	1 - 3 - 3 * 2 * 2 * 2	11.24
570	CS	1 - 3 - 3 * 2 * 2 * 3	14.08
571	CS	1 - 3 - 3 * 2 * 3	14.13
572	CS	1 - 3 - 3 - 2 - 3	10.45
558	CS	1 - 3 * 3 * 2 * 3 - 1	5.64
573	CS	1 - 3 * 3 * 2 * 3 - 2	6.02
574	CS	1 - 3 * 3 * 2 * 3 - 3	5.24
548	CS	1 - 3 * 3 * 2 * 3 - 4	# 3.16
575	CS	1 - 3 * 3 - 3	15.42
576	CS	1 - 3 - 3 * 3	18.41
577 578	CS CS	1 - 3 - 3 - 3 1 - 3 * 3 * 3 - 1	9.33
576 579	CS	1 - 3 - 3 - 3 - 1	4.71
580	CS	1 - 3 * 3 * 3 - 2	7.26
581	CS	1 - 3 - 3 - 3 - 2	4.79
582	CS	1 - 3 - 3 - 3 - 2	6.31
583	CS CS	1 - 3 * 3 * 3 * 3 - 1	5.57
584	CS	1 - 3 * 3 * 3 * 3 - 2	6.50
585	CS	1 - 3 * 3 * 3 * 3 - 3	4.88
548	CS	1 - 3 * 3 * 3 * 3 - 4	# 3.16
562	CS	1 - 3 * 3 * 3 - 4	# 1.86
586	CS	1 - 3 * 3 - 4	1.75
587	CS	1 3 4	8.58
588	CS	1 4 1	27.09
589	CS	1 - 4 * 2	7.98
524	CS	1 4 2 2 1	0.95
590	CS	1 4 2 2 2	4.04
564	CS	1 4 2 3 1	4.90
591	CS	1 - 4 * 3	7.10
592	CS	1 4 3 2 3 2	7.50
593	CS	2 - 2 - 2 - 2 - 2	8.75
514	CS	2 - 2 - 2 - 2 - 1	5.75
594	CS	2 * 2 * 2 * 2 * 2 * 2	1.48
595	CS	2 - 2 - 2 - 2 - 2	6.35
596	CS	2 * 2 * 2 * 2 * 2 * 3	29.58
597	CS	2 - 2 - 2 - 2 - 3	7.57
542	CS	2 - 2 - 2 - 2 - 3 - 1	8.38
598	CS	2 * 2 * 2 * 2 * 3 - 2	20.16
599	CS	2 - 2 - 2 - 2 - 3 * 2	5.76
600	CS	2 * 2 * 2 * 2 * 3 * 3 2 * 2 * 2 * 2 * 3 - 3	21.07
601	CS	2 * 2 * 2 * 2 * 3 - 3	18.36
602	CS	2 2 2 2 4	3.60
603	CS	2 - 2 - 2 - 3 * 2 2 - 2 - 3 - 2	11.91
604 528	CS CS	2 - 2 - 2 - 3 - 2 2 * 2 * 2 * 3 - 2 - 1	10.91 3.10
605	CS	2 * 2 * 2 * 3 * 2 * 3	15.52
606	CS	2 - 2 - 2 - 3 * 3	7.09
607	CS	2 - 2 - 2 - 3 - 3	9.62
569	CS	2 * 2 * 2 * 3 - 3 - 1	11.24
608	CS	2 * 2 * 2 * 3 * 3 * 3	18.39
609	CS	2 2 2 3 4	9.00
-		- -	

Screen Number		Fragment Definition	Frequency Percent
590	CS	2 2 2 4 1	4.04
610	CS	2 2 2 4 2 2	2.71
527	CS	2 - 2 - 3 - 2 - 1	3.69
611	CS	2 - 2 - 3 - 2 - 2	6.69
612	CS	2 * 2 * 3 * 2 * 2 * 3	30.31
613	CS	2 - 2 - 3 - 2 - 2 - 3	4.05
614	CS	2 - 2 - 3 - 2 - 3	11.92
554	CS	2 - 2 - 3 - 2 - 3 - 1	5.66
615	CS	2 - 2 - 3 - 2 - 3 * 2	4.78
616	CS	2 * 2 * 3 * 2 * 3 * 3	26.19
617	CS	2 2 3 2 3 4	5.82
568	CS	2 - 2 - 3 - 3 - 1	8.72
618	CS	2 - 2 - 3 - 3 * 2	9.84
619	CS	2 - 2 - 3 - 3 - 2	7.18
620	CS	2 - 2 - 3 - 3 + 3	5.14
621	CS	2 - 2 - 3 - 3 - 3	3.49
622	CS	2 * 2 * 3 * 3 * 3 * 3	18.21
610	CS	2 2 4 2 2 2	2.71
623	CS	2 2 4 2 3	4.49
519	CS		3.51
520	CS CS	2 * 3 - 2 - 2 - 1 2 - 3 - 2 - 2 - 1	3.25
603	CS	2 * 3 - 2 - 2 - 2	11.91
604	CS	2 - 3 - 2 - 2 - 2	10.91
599		2 * 3 - 2 - 2 - 2 - 2	5.76
599	CS	2 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	20.16
<u>598</u> 624	CS	2 * 3 - 2 - 2 - 3	16.28
	CS		
545	CS		8.51
546	CS	2 - 3 - 2 - 2 - 3 - 1 2 * 3 - 2 - 2 - 3 * 2	5.61 # 7.26
625 626	CS	2 * 3 - 2 - 2 - 3 * 2 2 - 3 * 2 * 2 * 3 - 2	
627	CS	2 - 3 - 2 - 2 - 3 - 2	7.61 1.66
627 625	CS		
628	CS	2 * 3 - 2 - 2 - 3 * 3 2 - 3 * 2 * 2 * 3 - 3	# 7.26 12.20
628 629	CS	2 - 3 ^ 2 ^ 2 ^ 3 - 3	
552	CS		# 3.11 16.48
551	CS	2 * 3 - 2 - 3 - 1 2 - 3 * 2 * 3 - 1	9.61
553	CS CS		
		2 - 3 - 2 - 3 - 1	9.26
630	CS	2 * 3 - 2 - 3 * 2 2 * 3 - 2 - 3 -	8.16
631 632	CS	2 * 3 - 2 - 3 - 2 - 3 * 2 * 3 - 2	12.19 7.31
	CS	2 - 3 - 2 - 3 *	12.19
631 633	CS		4.05
633 615	CS		
	CS	2 * 3 - 2 - 3 - 2 - 2 2 * 3 * 2 * 3 * 2 * 3	4.78
634 635	CS		10.75
636	CS		8.27 12.48
	CS		
637 638	CS	2 - 3 * 2 * 3 - 3 2 - 3 - 2 - 3 * 3	9.61 5.52
	CS		7.60
639 573	CS CS		6.02
		2 - 3 * 2 * 3 * 3 - 1 2 * 3 - 2 - 3 * 3 - 2	
640 641	CS		# 2.57
641 642	CS		# 6.65
642	CS	2 - 3 * 2 * 3 * 3 - 2 2 * 3 * 2 * 3 * 3 * 3	6.04
643	CS		19.19
644	CS	2 * 3 - 2 - 3 * 3 - 3	# 1.81

Screen Number		Fragment Definition	Frequency Percent
641	CS	2 * 3 - 2 - 3 - 3 * 3	# 6.65
645	CS	2 - 3 * 2 * 3 * 3 - 3	3.14
629	CS	2 - 3 * 2 * 3 * 3 - 4	# 3.11
646	CS	2 - 3 * 2 * 3 - 4	# 2.00
592	CS	2 3 2 3 4 1	7.50
647	CS	2 3 2 4	11.56
567	CS	2 - 3 * 3 - 1	19.66
648	CS	2 * 3 - 3 * 2	16.88
649	CS	2 - 3 * 3 - 2	10.47
650	CS	2 - 3 - 3 - 2	10.14
536	CS	2 * 3 - 3 - 2 - 1	3.69
537	CS	2 - 3 - 3 - 2 - 1	4.54
618	CS	2 * 3 - 3 - 2 - 2	9.84
619	CS	2 - 3 - 3 - 2 - 2 2 2 * 3 - 3 - 2 - 3	7.18
651 652	CS CS	2 * 3 - 3 - 2 - 3 2 - 3 - 3 - 2 - 3	10.75 8.39
559	CS	2 - 3 - 3 - 2 - 3 2 - 3 * 3 * 2 * 3 - 1	4.75
641	CS	2 * 3 - 3 - 2 - 3 * 2	# 6.65
642	CS	2 - 3 * 3 * 2 * 3 - 2	6.04
640	CS	2 - 3 * 3 - 2 - 3 * 2	# 2.57
653	CS	2 * 3 * 3 * 2 * 3 * 3	15.08
641	CS	2 * 3 - 3 - 2 - 3 * 3	# 6.65
654	CS	2 - 3 * 3 * 2 * 3 - 3	5.08
640	CS	2 - 3 * 3 - 2 - 3 * 3	# 2.57
629	CS	2 - 3 * 3 * 2 * 3 - 4	# 3.11
655	CS	2 * 3 - 3 * 3	15.68
656	CS	2 * 3 - 3 - 3	11.02
657	CS	2 - 3 * 3 - 3	10.72
658	CS	2 - 3 - 3 * 3	11.95
659	CS	2 - 3 - 3 - 3	8.93
580	CS	2 - 3 * 3 * 3 - 1	7.26
581	CS	2 - 3 - 3 - 3 - 1	4.79
660	CS	2 * 3 - 3 * 3 - 2	4.50
661	CS	2 * 3 - 3 - 3 * 2	4.23
662	CS	2 - 3 * 3 * 3 - 2	4.50
660	CS	2 - 3 * 3 - 3 * 2	4.50
663	CS	2 - 3 - 3 - 2	2.35
664	CS	2 * 3 - 3 * 3 - 3 2 * 3 - 3 - 3 * 3	3.93
665 666	CS CS	2 * 3 - 3 - 3 * 3 2 - 3 * 3 * 3 - 3	2.75 4.43
667	CS CS	2 - 3 * 3 - 3 * 3	1.37
584	CS	2 - 3 * 3 * 3 * 3 - 1	6.50
668	CS	2 * 3 - 3 - 3 * 3 - 2	# 0.60
669	CS	2 * 3 - 3 - 3 * 2	# 0.80
670	CS	2 - 3 * 3 * 3 * 3 - 2	2.95
668	CS	2 - 3 * 3 - 3 - 3 * 2	# 0.60
671	CS	2 * 3 * 3 * 3 * 3	15.97
672	CS	2 * 3 - 3 - 3 * 3 - 3	# 0.96
669	CS	2 * 3 - 3 - 3 - 3 * 3	# 0.80
673	CS	2 - 3 * 3 * 3 * 3 - 3	3.75
668	CS	2 - 3 * 3 - 3 - 3 * 3	# 0.60
629	CS	2 - 3 * 3 * 3 * 3 - 4	# 3.11
646	CS	2 - 3 * 3 * 3 - 4	# 2.00
674	CS	2 - 3 * 3 - 4	1.37
675	CS	2 * 3 * 4	7.98

Screen Number		Fragment Definition	Frequency Percent
676	CS	2 * 3 - 4	14.83
677	CS	2 - 3 * 4	2.36
678	CS	2 - 3 - 4	4.44
589	CS	2 * 4 - 1	7.98
679	CS	2 * 4 - 2	3.49
679	CS	2 - 4 * 2	3.49
525	CS	2 4 2 2 1	1.19
680	CS	2 4 2 3	8.39
681	CS	2 * 4 * 3	7.86
682	CS	2 * 4 - 3	3.23
683	CS	2 - 4 * 3	2.54
684	CS	2 - 4 - 3	6.98
516	CS	3 - 2 - 2 - 2 - 1	5.04
515	CS	3 - 2 - 2 - 2 - 2 - 1	3.74
596	CS	3 * 2 * 2 * 2 * 2 * 2	29.58
597	CS	3 - 2 - 2 - 2 - 2 - 2	7.57
685	CS	3 - 2 - 2 - 2 - 3	4.23
686	CS	3 - 2 - 2 - 2 - 3	6.76
687	CS	3 2 2 2 4	2.05
624	CS	3 - 2 - 2 - 3 * 2	16.28
529	CS	3 * 2 * 2 * 3 - 2 - 1	7.71
530	CS	3 - 2 - 2 - 3 - 2 - 1	1.46
612	CS	3 * 2 * 2 * 3 * 2 * 2	30.31
613	CS	3 - 2 - 2 - 3 - 2 - 2	4.05
688	CS	3 - 2 - 2 - 3 - 2 - 3	6.96
689	CS	3 - 2 - 2 - 3 * 3	9.91
690	CS	3 - 2 - 2 - 3 - 3	9.42
570	CS	3 * 2 * 2 * 3 - 3 - 1	14.08
691 692	CS CS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.08 8.19
531	CS	3 * 2 * 3 - 2 - 1	9.36
532	CS CS	3 - 2 - 3 - 2 - 1	4.54
614	CS CS	3 - 2 - 3 - 2 - 1	11.92
605	CS	3 * 2 * 3 * 2 * 2 * 2	15.52
688	CS	3 - 2 - 3 - 2 - 2 - 3	6.96
693	CS	3 - 2 - 3 - 2 - 3	7.87
634	CS	3 * 2 * 3 * 2 * 3 * 2	10.75
694	CS	3 2 3 2 3 4	3.99
571	CS	3 * 2 * 3 - 3 - 1	14.13
572	CS	3 - 2 - 3 - 3 - 1	10.45
651	CS	3 - 2 - 3 - 3 * 2	10.75
652	CS	3 - 2 - 3 - 3 - 2	8.39
695	CS	3 - 2 - 3 - 3 - 3	5.68
680	CS	3 2 4 2	8.39
623	CS	3 2 4 2 2	4.49
533	CS	3 * 3 - 2 - 1	12.00
534	CS	3 - 3 - 2 - 1	10.15
521	CS	3 * 3 - 2 - 2 - 1	2.60
522	CS	3 - 3 - 2 - 2 - 1	4.06
606	CS	3 * 3 - 2 - 2 - 2	7.09
607	CS	3 - 3 - 2 - 2 - 2	9.62
600	CS	3 * 3 * 2 * 2 * 2 * 2	21.07
601	CS	3 - 3 * 2 * 2 * 2 * 2	18.36
689	CS	3 * 3 - 2 - 2 - 3	9.91
690	CS	3 - 3 - 2 - 2 - 3	9.42

Screen Number		Fragment Definition	Frequency Percent
547	CS	3 - 3 * 2 * 2 * 3 - 1	8.12
625	CS	3 * 3 - 2 - 2 - 3 * 2	# 7.26
628	CS	3 - 3 * 2 * 2 * 3 - 2	12.20
625	CS	3 * 3 - 2 - 2 - 3 * 3	# 7.26
696	CS	3 - 3 * 2 * 2 * 3 - 3	4.81
697	CS	3 - 3 * 2 * 2 * 3 - 4	# 2.13
556	CS	3 * 3 - 2 - 3 - 1	10.21
555	CS	3 - 3 * 2 * 3 - 1	8.64
557	CS	3 - 3 - 2 - 3 - 1	9.58
635	CS	3 * 3 - 2 - 3 * 2	8.27
638	CS	3 * 3 - 2 - 3 - 2	5.52
637	CS	3 - 3 * 2 * 3 - 2	9.61
636	CS	3 - 3 - 2 - 3 * 2	12.48
639	CS	3 - 3 - 2 - 3 - 2	7.60
616	CS	3 * 3 * 2 * 3 * 2 * 2 3 * 3 3 3 3 3 3 3	26.19
698 699	CS		2.62
700	CS CS	3 * 3 - 2 - 3 - 3 3 - 3 * 2 * 3 - 3	5.51 5.43
699	CS		5.43
701	CS CS		5.59
574	CS	3 - 3 - 2 - 3 - 3	5.24
653	CS	3 * 3 * 2 * 3 * 3 * 2	15.08
640	CS	3 * 3 - 2 - 3 * 3 - 2	# 2.57
641	CS	3 * 3 - 2 - 3 - 3 * 2	# 6.65
654	CS	3 - 3 * 2 * 3 * 3 - 2	5.08
644	CS	3 * 3 - 2 - 3 * 3 - 3	# 1.81
641	CS	3 * 3 - 2 - 3 - 3 * 3	# 6.65
702	CS	3 - 3 * 2 * 3 * 3 - 3	2.80
697	CS	3 - 3 * 2 * 3 * 3 - 4	# 2.13
703	CS	3 3 2 3 4	7.93
704	CS	3 - 3 * 2 * 3 - 4	# 1.89
705	CS	3 3 2 4	9.47
576	CS	3 * 3 - 3 - 1	18.41
575	CS	3 - 3 * 3 - 1	15.42
577	CS	3 - 3 - 3 - 1	9.33
655	CS	3 * 3 - 3 * 2	15.68
658	CS	3 * 3 - 3 - 2	11.95
657	CS	3 - 3 * 3 - 2	10.72
656	CS	3 - 3 - 3 * 2	11.02
659	CS	3 - 3 - 3 - 2	8.93
538	CS	3 * 3 - 3 - 2 - 1	2.36
539	CS	3 - 3 - 3 - 2 - 1	3.11
620	CS	3 * 3 - 3 - 2 - 2	5.14
621	CS	3 - 3 - 3 - 2 - 2 3 * 3 * 3 * 2 * 2 * 2	3.49
608	CS	3 - 3 - 3 - 2 - 2	18.39
695 560	CS CS	3 - 3 - 3 - 2 - 3 3 - 3 * 3 * 2 * 3 - 1	5.68 3.92
643	CS	3 * 3 * 3 * 2 * 3 * 2	19.19
641	CS	3 * 3 - 3 - 2 - 3 * 2	# 6.65
645	CS	3 - 3 * 3 * 2 * 3 - 2	3.14
644	CS	3 - 3 * 3 - 2 - 3 * 2	# 1.81
641	CS	3 * 3 - 3 - 2 - 3 * 3	# 6.65
702	CS	3 - 3 * 3 * 2 * 3 - 3	2.80
644	CS	3 - 3 * 3 - 2 - 3 * 3	# 1.81
697	CS	3 - 3 * 3 * 2 * 3 - 4	# 2.13

Screen Number		Fragment Definition	Frequency Percent
706	CS	3 * 3 - 3 * 3	3.65
707	CS	3 * 3 - 3 - 3	6.09
708	CS	3 - 3 * 3 - 3	7.00
707	CS	3 - 3 - 3 * 3	6.09
709	CS	3 - 3 - 3 - 3	2.79
582	CS	3 - 3 * 3 * 3 - 1	6.31
667	CS	3 * 3 - 3 * 3 - 2	1.37
665	CS	3 * 3 - 3 - 3 * 2	2.75
666	CS	3 - 3 * 3 * 3 - 2	4.43
664	CS	3 - 3 * 3 - 3 * 2	3.93
622	CS	3 * 3 * 3 * 3 * 2 * 2	18.21
710	CS	3 * 3 - 3 * 3 - 3	1.08
711	CS	3 * 3 - 3 - 3 * 3	0.75
712	CS	3 - 3 * 3 * 3 - 3	2.35
710	CS	3 - 3 * 3 - 3 * 3	1.08
585	CS	3 - 3 * 3 * 3 * 3 - 1	4.88
671	CS	3 * 3 * 3 * 3 * 3 * 2	15.97
668	CS	3 * 3 - 3 - 3 * 3 - 2	# 0.60
669	CS	3 * 3 - 3 - 3 - 3 * 2	# 0.80
673	CS	3 - 3 * 3 * 3 * 3 - 2	3.75
672	CS	3 - 3 * 3 - 3 - 3 * 2	# 0.96
713	CS	3 * 3 * 3 * 3 * 3 * 3	7.52
672	CS	3 * 3 - 3 - 3 * 3 - 3	# 0.96
669	CS	3 * 3 - 3 - 3 * 3	0.80
714	CS	3 - 3 * 3 * 3 * 3 - 3	1.64
672	CS	3 - 3 * 3 - 3 - 3 * 3	# 0.96
697	CS	3 - 3 * 3 * 3 * 3 - 4	# 2.13
704	CS	3 - 3 * 3 * 3 - 4	# 1.89
715	CS	3 3 3 4	10.43
716	CS	3 - 3 * 3 - 4	# 1.02
717	CS		15.49 7.10
591	CS	3 * 4 - 1 3 * 4 * 2	
681 683	CS CS	3 * 4 * 2 3 * 4 - 2	7.86 2.54
682	CS CS	3 - 4 * 2	3.23
684	CS CS	3 - 4 - 2	6.98
718	CS	3 4 3	13.57
719	CS	3 * 4 - 3	2.12
719	CS	3 - 4 * 3	2.12
541	CS	4 2 1	3.93
517	CS	4 2 2 2 1	0.88
602	CS	4 2 2 2 2	3.60
720	CS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	# 3.12
687	CS	4 2 2 2 3	2.05
720	CS	4 2 2 2 3 4	# 3.12
721	CS	4 2 2 2 4	# 5.18
692	CS	4 2 2 3	8.19
720	CS	4 2 2 3 2 4	# 3.12
720	CS	4 2 2 3 3 4	# 3.12
721	CS	4 2 2 3 4	# 5.18
722	CS	4 2 2 4	# 3.29
563	CS	4 2 3 1	6.81
647	CS	4 2 3 2	11.56
720	CS	4 2 3 2 2 4	# 3.12
720	CS	4 2 3 2 3 4	# 3.12

Screen Number		Fragment Definition	Frequency Percent
721	CS	4 2 3 2 4	# 5.18
705	CS	4 2 3 3	9.47
720	CS	4 2 3 3 2 4	# 3.12
720	CS	4 2 3 3 3 4	# 3.12
721	CS	4 2 3 3 4	# 5.18
722	CS	4 2 3 4	# 3.29
723	CS	4 2 4	2.20
587	CS	4 3 1	8.58
675	CS	4 * 3 * 2	7.98
677	CS	4 * 3 - 2	2.36
676	CS	4 - 3 * 2	14.83
678	CS	4 - 3 - 2	4.44
540	CS	4 3 2 1	1.45
523	CS	4 3 2 2 1	0.61
609	CS	4 3 2 2 2	9.00
720	CS	4 3 2 2 2 4	# 3.12
691	CS	4 3 2 2 3 4 - 3 * 2 * 2 * 3 - 1	10.08
548	CS	1 3 2 2 3 1	# 3.16
629 697	CS	1 3 2 2 3 2	# 3.11
720	CS CS	4 - 3 * 2 * 2 * 3 - 3 4	# 2.13
720 724	CS CS	4 - 3 * 2 * 2 * 3 - 4	# 0.32
721	CS	4 3 2 2 4	# 5.18
561	CS	4 3 2 3 1	4.25
562	CS	4 - 3 * 2 * 3 - 1	# 1.86
646	CS	4 - 3 * 2 * 3 - 2	# 2.00
617	CS	4 3 2 3 2 2	5.82
694	CS	4 3 2 3 2 3	3.99
720	CS	4 3 2 3 2 4	# 3.12
703	CS	4 3 2 3 3	7.93
704	CS	4 - 3 * 2 * 3 - 3	# 1.89
548	CS	4 - 3 * 2 * 3 * 3 - 1	# 3.16
629	CS	4 - 3 * 2 * 3 * 3 - 2	# 3.11
697	CS	4 - 3 * 2 * 3 * 3 - 3	# 2.13
720	CS	4 3 2 3 3 4	# 3.12
724	CS	4 - 3 * 2 * 3 * 3 - 4	# 0.32
721	CS	4 3 2 3 4	# 5.18
725	CS	4 - 3 * 2 * 3 - 4	0.78
722	CS	4 3 2 4	# 3.29
717	CS	4 3 3	15.49
586	CS	4 - 3 * 3 - 1	1.75
674	CS	4 - 3 * 3 - 2	1.37
720	CS	4 3 3 2 2 4	# 3.12
548	CS	4 - 3 * 3 * 2 * 3 - 1 4 - 3 * 3 * 2 * 3 - 2	# 3.16
629	CS		# 3.11
697	CS		# 2.13
720 724	CS CS	4 3 3 2 3 4 4 - 3 * 3 * 2 * 3 - 4	# 3.12 # 0.32
72 4 721	CS	4 - 3 ^ 3 ^ 2 ^ 3 - 4	# 0.32 # 5.18
715	CS CS	4 3 3 3	10.43
716	CS	4 - 3 * 3 - 3	# 1.02
562	CS	4 - 3 * 3 * 3 - 1	# 1.86
646	CS	4 - 3 * 3 * 3 - 2	# 2.00
720	CS	4 3 3 3 2 4	# 3.12
704	CS	4 - 3 * 3 * 3 - 3	# 1.89

Screen Number		Fragment Definition	Frequency Percent
548	CS	4 - 3 * 3 * 3 * 3 - 1	# 3.16
629	CS	4 - 3 * 3 * 3 * 3 - 2	# 3.11
697	CS	4 - 3 * 3 * 3 * 3 - 3	# 2.13
720	CS	4 3 3 3 4	# 3.12
724	CS	4 - 3 * 3 * 3 * 3 - 4	# 0.32
721	CS	4 3 3 3 4	# 5.18
725	CS	4 - 3 * 3 * 3 - 4	0.78
722	CS	4 3 3 4	# 3.29
716	CS	4 - 3 * 3 - 4	# 1.02
726	CS	4 3 4	1.90
727	CS	4 4	5.62

Atom Count

AC Screens

The 19 **atom count (AC)** screens specify the number of atoms "or more" present.

AC Screen Definitions

These screens specify the minimum number of atoms having at least a specified number of non-hydrogen atoms attached to them. AC screens are provided which specify non-hydrogen connectivities from three or more to six or more.

Atom Count

Screen Number			Fragment Definition	Frequency Percent
1899	AC	1		98.15
1900	AC	6		92.64
1901	AC	8		91.95
1902	AC	10		90.59
1903	AC	12		88.21
1904	AC	14		84.50
1905	AC	16		79.75
1906	AC	18		73.85
1907	AC	20		67.45
1908	AC	22		60.62
1909	AC	24		53.61
1910	AC	26		46.59
1911	AC	28		40.01
1912	AC	30		33.97
1913	AC	35		21.92
1914	AC	40		14.78
1915	AC	50		8.50
1916	AC	70		4.27
1917	AC	90		2.45

Degree of Connectivity

DC Screens

The 17 **degree of connectivity (DC)** screens specify the minimum number of atoms having at least a specified number of non-hydrogen atoms attached to them.

DC Screen Definitions

The DC screens specify non-hydrogen connectivities from three or more to six or more.

The DC 6 3 screen, specifies the presence of six or more atoms having non-hydrogen connectivities of three or more atoms.

Degree of Connectivity

Screen Number				Fragment Definition	Frequency Percent
2111	DC		3		92.87
2112	DC	3	3		87.28
2113	DC	5	3		75.61
2114	DC	7	3		59.22
2115	DC	9	3		41.91
2116	DC	12	3		21.66
2117	DC	14	3		13.95
2118	DC	16	3		9.96
2119	DC	20	3		6.39
2120	DC		4		42.03
2121	DC	2	4		17.53
2122	DC	3	4		8.61
2123	DC	4	4		4.94
2124	DC	5	4		3.04
2125	DC	6	4		2.10
950	DC		5		5.63
2126	DC		6		4.73

Ring Count

RC Screens

The 10 **ring count (RC)** screens specify the minimum number "or more" of rings (not ring systems) present.

RC Screen Definitions

These screens specify the minimum number of rings present in the structure. Technically speaking, this is a count of the ring closure pairs present in the structure record, which is equal to the minimum number of bonds that would have to be broken to open all rings.

Ring Count

Screen Number			Fragment Definition	Frequency Percent
1838	RC	1		86.17
1839	RC	2		72.82
1840	RC	3		53.05
1841	RC	4		33.05
1842	RC	5		17.59
1843	RC	6		10.11
1844	RC	7		6.54
1845	RC	8		5.01
1846	RC	10		3.12
1847	RC	15		1.13

Type of Rings

TR Screens

The **type of ring (TR)** screens specify the rings that are present in terms of numbers of atoms and whether the atoms are part of a ring fusion site.

TR Screen Definitions

The TR screens describe the node sequences of rings of 3 to 7 atoms. The symbol "**D**" is used to indicate a non-fused ring atom (an atom attached to exactly two other ring atoms) and "**T**" to indicate a fusion point or bridgehead atom with three or more bonds to other ring atoms. The "smallest set of smallest rings" definition is used to define a "ring" here, so that the "envelope" rings circumscribing smaller rings are not considered; in the simple bridged ring shown here, there would be two DDTT rings but no DDTDDT ring -- the 6-membered envelope ring is not recognized by the TR screen generation procedure.

There is also a TR screen that simply provides an indicator that an 8-membered or larger ring is present.

Example: if a searcher were to specify that the two 6-membered rings were to be isolated (i.e., could not be part of larger ring systems) the TR 2 DDDDDD screen would be used to describe them.

Note that both D and T are exact node symbols -- if the searcher were to allow fusion to the benzene ring in a query for the example structure, then all fusion node possibilities would have to be specified or a loss of retrieval would occur.

Type of Ring

Screen Number				Fragment Definition	Frequency Percent
1848	TR		DDD		2.06
1849	TR	2	DDD		0.21
1850	TR		DDT		0.26
1851	TR		DTT		# 2.46
1851	TR		TTT		# 2.46
1852	TR		DDDD		0.97
1853	TR		DDDT		# 2.17
1853	TR		DDTT		# 2.17
1854	TR	2	DDTT		0.04
1853	TR		DTDT		# 2.17
1853	TR		DTTT		# 2.17
1853	TR		TTTT		# 2.17
1855	TR		DDDDD		21.27
1856	TR	2	DDDDD		4.03
1857	TR	3	DDDDD		0.93
1858	TR		DDDDT		1.30
1859	TR	0	DDDTT		17.81
1860	TR	2	DDDTT		3.68
1861	TR	3	DDDTT		0.68
$\frac{1862}{1062}$	TR		DDTDT		1.60
1863	TR		DDTTT		2.02
1864	TR		DTDTT		0.62 3.57
1865 1866	TR TR		$egin{aligned} ext{DTTTT} \ ext{TTTTT} \end{aligned}$		1.04
1867	TR		DDDDDD		64.12
1868	TR	2	DDDDDDD		36.55
1869	TR	3	DDDDDDD		15.00
1870	TR	4	DDDDDDD		5.96
1871	TR	5	DDDDDDD		2.30
1872	TR	6	DDDDDDD		1.49
1873	TR		DDDDDT		1.07
1874	TR		DDDDTT		31.00
1875	TR	2	DDDDTT		16.61
1876	TR	3	DDDDTT		2.91
1877	TR	4	DDDDTT		1.76
1878	TR		DDDTDT		1.04
1879	TR	2	DDDTDT		0.34
1880	TR		DDDTTT		2.10
1881	TR	2	DDDTTT		1.32
1882	TR	3	DDDTTT		0.53
1883	TR		DDTDDT		0.66
1884	TR		DDTDTT		0.64
1885	TR		DDTTTT		4.57
1886	TR	2	DDTTTT		2.20
1887	TR		DTDTDT		0.53
1888	TR		DTDTTT		0.35
1889	TR		DTTDTT		3.09
1890	TR	2	DTTDTT		0.66
1891	TR		DTTTTT		1.26
1892	TR		TTTTTT		0.59
1893	TR		DDDDDDD		0.67
1894	TR	2	DDDDDDD		0.03
1895	TR		DDDDDDT		# 0.49
1896	TR		DDDDDTT		0.94
1895	TR		DDDDTDT		# 0.49

Type of Ring

Screen Number		Fragment Definition	Fre	equency Percent
1895	TR	DDDDTTT	#	0.49
1895	TR	DDDTDDT	#	0.49
1895	TR	DDDTDTT	#	0.49
1897	TR	DDDTTTT	#	0.64
1895	TR	DDTDDTT	#	0.49
1895	TR	DDTDTDT	#	0.49
1895	TR	DDTDTTT	#	0.49
1897	TR	DDTTDTT	#	0.64
1895	TR	DDTTTTT	#	0.49
1895	TR	DTDTDTT	#	0.49
1895	TR	DTDTTTT	#	0.49
1895	TR	DTTDTTT	#	0.49
1895	TR	DTTTTTT	#	0.49
1895	TR	TTTTTT	#	0.49
1898	TR	8-membered ring or larger		2.61

Element Count and Graph Modifier Fragments

Introduction

As a result of extensive screen number sharing, most elements do not have specific screen numbers for element count (EC) and graph modifier (GM) fragments. Accordingly, three tables of fragments are provided instead of the screen dictionary listings:

- Table I --- Specific Element Count and Graph Modifier Fragments
- Table II --- Generic Element Count and Graph Modifier Fragments
- Table III --- Generic Element Count and Graph Modifier Fragments in Screen Number order
- Special-purpose Graph Modifier Screens
- Periodic Table of the Elements Showing Fragment Numbers

Table I

Table I lists EC and GM fragments in element order. These fragments fall into three classes:

- Element Count (EC) --- (CT Graph)
- Graph Modifier (GM) --- (Single Atom Fragment (SAF))
- EC or GM --- (SAF + CT Graph)

Most elements can be specified only as present in the structure as a whole, either in the connection table (CT) itself or in a single atom fragment (SAF).

EC or GM (Common Elements)

The more common elements, such as Al or Br, have a dedicated screen number to specify the presence of one or more atoms of the element in the CT and/or as a SAF.

The very common elements, such as Br, can be specified as present in the connection table or as present as an SAF. Here, the fragment for a count of one ("one or more") is always a composite CT + SAF fragment, while fragments for counts of two or higher, in the column headed "Element Count (CT Graph)", refer to atoms of the element present in the connection table graph itself. The <u>nine elements</u> that most frequently occur as SAFs have dedicated fragments specifying the presence of the element as an SAF. These fragments are in the column headed "Graph Modifier (SAF)", and are provided for Br, Ca, Cl, H, I, K, N, Na and O.

EC or GM (Less Common Elements)

The less common elements, such as Ag, are specified by combining two generic fragments with AND logic, one fragment specifying the elements in a vertical group from the periodic table and the other those in a horizontal series. These fragments are listed in Tables II and III. Note that the frequency of occurrence cited for such an element is a maximum value, not an actual value, and is the lower of the frequencies for the two ANDed fragments. As a reminder, the frequency cited is followed by the abbreviation "max."

EC or GM (Rarest Elements)

The rarest elements, such as Ac, can be specified only via a generic fragment for a periodic series. Here again, the frequency of occurrence cited for such an element is a maximum value, not an actual value, and is simply the frequency of occurrence of structures containing one or more atoms of any element in the series. Again, the frequency cited is followed by the abbreviation "max.".

Note (Table I)

Table I also provides fragments for the specification of "halogen" in the CT graph. These fragments, found under the generic halogen element symbol "X", specify the total "or more" count of halogen atoms present in the CT, whether F, Cl, Br or I.

Note (Table II)

Table II lists the generic EC/GM fragments by category. These fragments simply record the presence of one or more atoms of any of the cited elements, whether in CT or SAF. Two special generic fragments should be mentioned:

- 1918 "metals" specifies the presence of any metal atom
- 2029 "SAFs" specifies the presence as a single atom fragment of any element except Br, Ca, Cl, H, I, K, N, Na and O, the nine elements with specific SAF screens

Note (Table III)

Table III lists the generic EC/GM fragments in screen number order, and is provided for the convenience of the searcher.

Table I -- Specific Element Count and Graph Modifier Fragments - Element Order

	more" ount	Co	nent unt Graph)	Mod	aph lifier AF)	EC or GM (CT + SAF)
Ac	1					1919 0.19% max.
Ag	1					1920 AND 1921 2.20% max.
Al	1					1922 1.27%
Am	1					1919 0.19% max.
Ar	1					1924 0.03% max.
As	1 2	1928	0.08%			1927 0.28%
At	1					1929 AND 1930 0.76% max.
Au	1					1920 AND 1931 1.90% max.
В	1 2 3	1933 1934	0.26% 0.17%			1932 1.36%
Ва	1					1935 AND 1936 1.24% max.
Ве	1					1937 0.05%
Bi	1					1925 AND 1930 0.76% max.
Bk	1					1919 0.19% max.
Br	1 2 3 4	1939 1940 1941	1.12% 0.30% 0.18%	2030	0.55%	1938 5.30%
С	1 4 6 8 10 12 14 16 18 20 25 30 35 40	1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954	91.88% 90.62% 87.91% 83.53% 77.56% 70.23% 61.95% 53.38% 44.93% 26.45% 15.81% 10.30% 7.56%			2110 93.59%

"Or-more" Count		Elen Cou (CT G	unt	Mo	raph odifier SAF)	EC or GM (CT + SAF)							
Ca	1			2031	0.06%	1955	0.34%						
Cd	1					1935	AND 1956 1.03% max.						
Ce	1					1957	1.31% max.						
Cf	1					1919	0.19% max.						
Cl	1 2 3 4 5	1959 1960 1961 1962	6.14% 2.93% 0.93% 0.39%	2032	2.95%	1958	18.33%						
Cm	1					1919	0.19% max.						
Со	1					1963	1.32%						
Cr	1					1964	AND 1966 2.44% max.						
Cs	1					1935	AND 1967 1.75% max.						
Cu	1					1920	AND 1964 2.10% max.						
Dy	1					1957	1.31% max.						
Er	1					1957	1.31% max.						
Es	1					1919	0.19% max.						
Eu	1					1957	1.31% max.						
F	1 2 3 4 5 6 7	1969 1970 1971 1972 1973	6.99% 5.71% 2.67% 1.96% 1.70% 0.85%			1968	10.62%						
Fe	1					1975	2.96%						
Fm	1					1919	0.19% max.						
Fr	1					1930	AND 1967 0.76% max.						
Ga	1					1923	AND 1926 2.27% max.						
Gd	1					1957	1.31% max.						

"Or-more" Count		Elen Cor (CT G		Мо	raph difier SAF)	EC or GM (CT + SAF)							
Ge	1					1926 AND 1983 2.27% max.							
Н	1			2033	3.85%								
Не	1					1924 0.03% max.							
Нf	1					1931 AND 1984 1.39% max.							
Нд	1					1930 AND 1956 0.76% max.							
Но	1					1957 1.31% max.							
I	1 2	1986	0.33%	2034	0.45%	1985 1.71%							
In	1					1923 AND 1935 1.75% max.							
Ir	1					1931 AND 1965 1.90% max.							
K	1			2035	0.30%	1987 0.42%							
Kr	1					1924 AND 1926 0.03% max.							
La	1					1957 AND 1988 0.53% max.							
Li	1					1989 0.40%							
Lu	1					1957 1.31% max.							
Lr	1					1919 0.19% max.							
Md	1					1919 0.19% max.							
Mg	1					1990 0.52%							
Mn	1					1964 AND 1991 1.96% max.							
Мо	1					1921 AND 1966 2.44% max.							
N	1 2 3 4 6 8 10 14	1993 1994 1995 1996 1997 1998	53.96% 35.41% 23.08% 9.30% 5.03% 3.47% 2.13%	2036	0.15%	1992 71.10%							
Na	1			2037	0.95%	2000 1.11%							

"Or-more" Count		Elen Cor (CT G	unt	Mod	aph difier AF)	EC or GM (CT + SAF)								
Nb	1					1921	AND 2001	1.12%	max.					
Nd	1					1957	1.31% max	ζ.						
Ne	1					1924	0.03% max	ζ.						
Ni	1					2002	1.81%							
No	1					1919	0.19% max	ζ.						
qN	1					1919	0.19% max	ζ.						
0	1 2 3 4 5 6 7 8 10 12 15	2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	70.64% 53.74% 39.45% 25.77% 18.58% 12.97% 10.08% 6.70% 5.07% 3.37% 2.40%	2038	0.50%	2004	83.63%							
Os	1					1931	AND 1965	1.90%	max.					
P	1 2 3	2017 2018	1.90% 0.76%			2016	5.44%							
Pa	1					1919	0.19% ma	ax.						
Pb	1					1930	AND 1983	0.76%	max.					
Pd	1					1921	AND 1965	3.35%	max.					
Pm	1					1957	1.31% ma	ax.						
Ро	1					1930	AND 2019	0.66%	max.					
Pr	1					1957	1.31% ma	ax.						
Pt	1					2020	0.50%							
Pu	1					1919	0.19% ma	ax.						
Ra	1					1930	AND 1936	0.76%	max.					
Rb	1					1926	AND 1967	2.00%	max.					

"Or-more" Count		Elen Coi (CT G	unt	Graph Modifier (SAF)	EC or (CT + S								
Re	1				1931	AND 1991	1.90% ։	max.					
Rh	1				1921	AND 1965	3.35% 1	max.					
Rn	1				1924	AND 1930	0.03% 1	max.					
Ru	1				1921	AND 1965	3.35% 1	max.					
S	1 2 3 4 5	2022 2023 2024 2025	7.69% 2.16% 1.14% 0.44%		2021	26.05%							
Sb	1				1925	AND 1935	1.75%						
Sc	1				1988	0.53% m	ax.						
Se	1				1926	AND 2019	0.66% 1	max.					
Si	1 2 3	2027 2028	0.86%		2026	4.55%							
Sm	1				1957	1.31% m	ax.						
Sn	1				1935	AND 1983	1.75% 1	max.					
Sr	1				1926	AND 1936	1.24% 1	max.					
Ta	1				1931	AND 2001	1.12% រ	max.					
Tb	1				1957	1.31% m	ax.						
Tc	1				1921	AND 1991	1.96% 1	max.					
Te	1				1935	AND 2019	0.66% 1	max.					
Th	1				1919	0.19% m	ax.						
Ti	1				1964	AND 1984	1.39% 1	max.					
Tl	1				1923	AND 1930	0.76% ា	max.					
Tm	1				1957	1.31% m	ax.						
U	1				1919	0.19% m	ax.						
V	1				1964	AND 2001	1.12% 1	max.					

_	more" ount	Co	nent unt Graph)	Graph Modifier (SAF)	EC o (CT +	_			
W	1				1931	AND	1966	1.90%	max.
X	2 3 4 5 6 8 10	1976 1977 1978 1979 1980 1981 1982	15.15% 8.64% 4.76% 2.84% 2.22% 0.95% 0.64%						
Хe	1				1924	AND	1935	0.03%	max.
Y	1				1926	AND	1988	0.53%	max.
Yb	1				1957	1	.31% ma	ax.	
Zn	1				1926	AND	1956	1.03%	max.
Zr	1				1921	AND	1984	1.35%	max.

Table II -- Generic Element Count and Graph Modifier Screens

Screen	Freq.	Description	Elements
1918	14.51%	"metals"	all <u>except</u> Ar As At B Br C Cl F H He I Kr N Ne O P Rn S Se Si Te Xe
1967	2.00%	group Ia	Cs Fr K Li Na Rb
1936	1.24%	group IIa	Ba Be Ca Mq Ra Sr
1988	0.53%	group IIIa	La Sc Y
1984	1.39%	group IVa	Hf Ti Zr
2001	1.12%	group Va	Nb Ta V
1966	2.44%	group VIa	Cr Mo W
1991	1.96%	group VIIa	Mn Re Tc
1965	6.72%	group VIII	Co Fe Ir Ni Os Pd Pt Rh Ru
1920	2.10%	group Ib	Ag Au Cu
1956	1.03%	group IIb	Cd Hg Zn
1923	2.93%	group IIIb	Al B Ga In Tl
1983	5.61%	group IVb	Ge Pb Si Sn
1925	6.12%	group Vb	As Bi P Sb
2003	86.62%		O S
2019	0.66%		Po Se Te
1929	31.99%	group VIIb	At Br Cl F I
1924	0.03%	group 0	Ar He Kr Ne Rn Xe
1964	7.39%	transition series I	Co Cr Cu Fe Mn Ni Ti V
1926	2.27%		As Ga Ge Kr Rb Se Sr Y Zn
1921	3.35%	transition series II	Ag Mo Nb Pd Rh Ru Tc Zr
1935	1.75%		Ba Cd Cs In Sb Sn Te Xe
1957	1.31%	lanthanide series	Ce Dy Er Eu Gd Ho La Lu Nd
			Pm Pr Sm Tb Tm Yb
1931	1.90%	transition series III	Au Hf Ir Os Pt Re Ta W
1930	0.76%		At Bi Fr Hg Pb Po Ra Rn Tl
1919	0.19%	actinide series	Ac Am Bk Cf Cm Es Fm Lr Md
			No Np Pa Pu Th U
2029	0.61%	"SAFs"	all except Br Ca Cl H I K N
			Na O

Table III -- Generic Element Count and Graph Modifier Screens in Screen Number Order

Screen	Freq.	Description	Elements
1918	14.84%	"metals"	all <u>except</u> Ar As At B Br C Cl F H He I Kr N Ne O P Rn S Se Si Te Xe
1919	0.19%	actinide series	Ac Am Bk Cf Cm Es Fm Lr Md No Np Pa Pu Th U
1920	1.10%	group Ib	Ag Au Cu
1921	3.35%	transition series II	Ag Mo Nb Pd Rh Ru Tc Zr
1923	2.93%	group IIIb	Al B Ga In Tl
1924	0.03%	group 0	Ar He Kr Ne Rn Xe
1925	6.12%	group Vb	As Bi P Sb
1926	2.27%		As Ga Ge Kr Rb Se Sr Y Zn
1929	31.99%	group VIIb	At Br Cl F I
1930	0.76%		At Bi Fr Hg Pb Po Ra Rn Tl
1931	1.90%	transition series III	Au Hf Ir Os Pt Re Ta W
1935	1.75%		Ba Cd Cs In Sb Sn Te Xe
1936	1.24%	group IIa	Ba Be Ca Mg Ra Sr
1956	1.03%	group IIb	Cd Hg Zn
1957	1.31%	lanthanide series	Ce Dy Er Eu Gd Ho La Lu Nd Pm Pr Sm Tb Tm Yb
1964	7.39%	transition series I	Co Cr Cu Fe Mn Ni Ti V
1965	6.72%	group VIII	Co Fe Ir Ni Os Pd Pt Rh Ru
1966	2.44%	group VIa	Cr Mo W
1967	2.00%	group Ia	Cs Fr K Li Na Rb
1983	5.61%	group IVb	Ge Pb Si Sn
1984	1.39%	group IVa	Hf Ti Zr
1988	0.53%	group IIIa	La Sc Y
1991	1.96%	group VIIa	Mn Re Tc
2001	1.12%	group Va	Nb Ta V
2003	86.62%		O S
2019	0.66%		Po Se Te
2029	0.61%	"SAFs"	all <u>except</u> Br Ca Cl H I K N Na O

Periodic Table of the Elements Showing Fragment Numbers

	0	Не	1924	ı		Ne '	1924		1 1	Ar	ļı	1924		Kr	ı	1924	1926	ı	Xe	1 6	1924	1955	Rn	1	1924	1930														
	qIIA	>= 2X	1976-1982	ı	ı	F 1968-1974	1929	ı	1	CJ	1958-1962	1929	1 1	Br	1938-1941	1929	ı	ı	Н	1985-1986	1929	1 1	At	ı	1929	1930														
mon Metal	αIV					0 004-2015	2003	,	ı	Ø	2021-2025	2003	1 1	Se	ı	2019	1926	-	Пe	1 7	2019	C 2 & T	Ро	1	2019	1930 1918						Tan	1 '	ı	1957	9	īr	1	1 1	1919 1918
rtical Group Number 3. line = Horizontal Group Number 1918 = Common Metal	٩٨					N 1992-1999	1	1	ı	Д	2016-2018	1925	1 1	As	1927-1928	1925	1926	ı	Sp	1 0	1925	1933	Bi	ı	1925	1930 1918						ź	} .	ı	1957	011111111111111111111111111111111111111	No	ı	1	1919 1918
up Number	qΛI					C 1942_1954	1	1	1	Si	2026-2028	1983	1 1	Ge	ı	1983	1926	1918	Sn	1 0	1983	1933	Pb	1	1983	1930 1918	Uug	1	ı	ı	•	Ę	-	ı	1957	04	Md	ı	1 ;	1919 1918
orizontal Gro	q					B 1932_1934	1923		ı	Al	1922	1923	1918	Ga	1	1923	1926	1918	ď	1 0	1923	1918	Tl	1	1923	1930 1918						Ţ	; '	ı	1957	9	Fm	ı	1 1	1919 1918
ine = Ho	qII				- 4									Zn		1956	1926	1918	g	1 0	1956	1933	Hg	,	1956	1930	Qnn	ı	ı	ı		C H	} '	,	1957	2	ន		. ;	1919 1918
ber 3.1	qı													Ç	ı	1920	1964	1918	Ag	1 0	1920	1921	Au	,	1920	1931 1918	ղող	ı	ı	ı		è	٠ ۲	ı	1957	2 1 1 1	ÇĘ	1	1	1919 1918
up Num														Ni	1975	1965	1964	1918	Ъф	1 6	1965	1921	Pt	2020	1965	1931 1918	Ds	1	,	ı		Ę	} ,	1	1957	21	滋	,	1	1919 1918
ical Gro	III													ဥ	1963	1965	1964	1918	柘		1965	1921	Ir	,	1965	1931 1918	Mt			ı		3	; i	,	1957	24.74	Ą	ı		1919 1918
e = Vert														ы	1975	1965	1964	1918	Ru	1 6	1965	1921	80	,	1965	1931 1918	HS			ı		Ē	į ,	ı	1957	21	Am	,	1	1919 1918
Element Number 2. line = Ver	VIIa													Mn	1	1991	1964	1918	E G		1991	1921	Re	ı	1991	1931 1918	ВЪ	ı		ı		E	1 1		1957	2	Pu	ı		1919 1918
ot Numb	Via													ង	ı	1966	1964	1918	Q Q		1966	1921	W	ı	1966	1931 1918	Sg		,	ı		Ę.		ı	1957	2	ďN	٠,	1	1919 1918
: Elemer	Va													٥	1	2001	1964	1918	Q N		2001	1921	Та		2001	1931 1918	Dβ			ı		PN PN	į ,	1	1957	2	Þ	,	1	1919 1918
1. line =	IVa													Ti	ı	1984	1964	1918	Zr		1984	1921	H£			1931 1918	_			ı		Ď.	: '	,	1957	2	Pa		1	1919 1918
	IIIa I													ນູດ	ı	1988		1918	≯		1988		La*			1957 1918		,		1919	1910	٥) 1	ı	1957	21	Th		1	1919 1918
	lla				-	Be 1037	1936		1918	Mg	1990	1936	1918	Ca		1936		1918	Sr			1918	Ва	ı		1935 1918		1		1930	-	1,70)				de			
	la					Li			1918	Na		1967	1918			1961		8	d d			1926		ı		1935 1918				1930	_	*T.anthanide	Series				**Actinide	Series		
										<u> </u>				1																										

Special-purpose Graph Modifier Screens

Screen	Description	Freq.
	Structural feature screens	
2039 2045 2046 2047	abnormal mass all isotopic specifications deuterium isotope tritium and higher H isotopes (e.g., ⁴ H, ⁵ H, etc.) isotope at unknown location (IUL)	0.97% 0.49% 0.06% 0.05%
2041 2040	abnormal valence charge all charges: fixed, tautomeric	32.34%
2042 2076	or delocalized delocalized charge only tautomer	12.50% 0.10% 39.88%
	Multi-component substance screens	
2127 2077 2078 2079	<pre>2 or more components 3 or more components 4 or more components single atom fragment (SAF)</pre>	18.61% 7.24% 4.55% 6.69%
	Chemical substance class identifier screens	
	Note that these screens are not mutually exclusive substance may belong to as many classes as are appropr	
2050 2082 2049 2048 2071 2072 2073 2074	alloy CASREACT compound coordination compound incompletely defined (ID) substance ID - unknown structure (ID molform) ID - unknown point of attachment ID - ester ID - hydrogen (bond)	3.22% 14.04% 8.16% 1.43% 0.21% 0.99% 0.14% 0.10%
2053 2052 2051	<pre>manual registration mineral mixture (substance named as "mixt. with" in CA)</pre>	221.62% ¹ 0.05% 0.29%
2043 2067 2068 2069 2070	polymer (general category) homopolymers and copolymers [$(A)_x$, $(A.B)_x$, etc.] polymers defined as structural repeating units(SRUs) SRU with end groups [$X-(-Y-)_n-Z$] SRU without end groups [$-(-Y-)_n-Z$]	4.18% 3.20% 1.48% 0.52% 1.00%
2054	radical ion	0.23%

_

¹ The high percentage of manual registrations is due to the many sequence registrations (peptides and nucleotides)

Screen Number		Fragment Definition	Frequency Percent
1	AS	C * C - C * C	13.51
2	AS AS	C * C - C - C C - C - C * C	34.96
3	AS	C - C * C - C	14.19
4	AS	C - C - C - C	32.65
5	AS	C * C * C * C * C	78.62
6	AS A	Br- C * C - C * C C * C - C * C - Br C * C - C * C - C C - C * C - C C - C * C - C * C C * C - C * C - Cl C * C - C * C - F C * C - C * C - I C * C - C * C - N C * C - C * C - N C * C - C * C - S Cl- C * C - C * C F - C * C - C * C N - C * C - C * C S - C * C - C * C	7.08
7	AS	C * C - C * C - C C - C * C - C * C C - C * C - C * C C * C - C - C * C C - C * C - C - C * C C - C * C - N - C * C C - C * C - N - C * C C - C * C - S - C * C C * C - N - C * C C * C - N - C * C - C C * C - N - C * C - C C * C - S - C * C - C C * C - S - C * C - C	6.85
8	AS	C * C - C - C * C	6.91
9	AS AS	C * C - C - C - C C - C - C - C * C	17.57
10	AS	C - C * C * C - C	12.64
11	AS AS	C - C * C - C - C C - C - C * C - C	6.14
12	AS	C - C - C - C	19.16
13	AS	C * C * C * C * C * C	74.51

Screen Number		Fragment Definition	Frequency Percent
14	AS A	Br- C * C - C - C * C C * C - C - C * C - Br C * C - C - C - C * C - Br C * C - C - C - C * C - C C - C * C - C - C * C - C C * C - C - C * C - C C * C - C - C * C - C C * C - C - C * C - T C * C - C - C * C - I C * C - C - C * C - N C * C - C - C * C - N C * C - C - C * C - S Cl- C * C - C - C * C F - C * C - C - C * C N - C * C - C - C * C S - C * C - C - C * C S - C * C - C - C * C	3.46
15	AS	C * C - C - C - C * C	1.98
16	AS AS	C * C - C - C - C - C C - C - C - C - C * C	6.81
17	AS	C - C * C * C * C - C	11.88
18	AS AS	C - C * C * C - C - C C - C - C * C * C - C	4.49
19	AS	C - C - C * C - C - C	1.06
20	AS	C - C - C - C - C	12.15
21	AS A	Br- C * C - C * C Br- C * C - C - C * C Br- C * C - N - C * C Br- C * C - N - C * C Br- C * C - S - C * C Br- C * C - S - C * C C * C - C * C - Br C * C - C * C - Br C * C - C - C * C - Br C * C - C - C * C - F C * C - C - C * C - F C * C - C * C - C C * C - C * C - F C * C - C * C - F C * C - C * C - F C * C - C * C - F C * C - C * C - I C * C - N - C * C - Br C * C - N - C * C - F C * C - N - C * C - Br C * C - N - C * C - F C * C - N - C * C - F C * C - N - C * C - F C * C - N - C * C - F C * C - N - C * C - F C * C - O - C * C - Br C * C - O - C * C - F C * C - O - C * C - F C * C - O - C * C - F C * C - O - C * C - F C * C - O - C * C - F C * C - O - C * C - F C * C - S - C * C - Br C * C - S - C * C - Br C * C - S - C * C - C1	1.70

Screen Number		Fragment Definition	Frequency Percent	
21	AS	C * C - S - C * C - I C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - N - C * C C1- C * C - N - C * C C1- C * C - O - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - N - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C C1- C * C - C - C * C	1.70	(continued)
22	AS CAS CAS AS AS AS AS AS AS AS	Br- C * C * C * C - C C - C * C * C * C - Br C - C * C * C * C - Cl C - C * C * C * C - F C - C * C * C * C - I Cl- C * C * C * C - C F - C * C * C * C - C	5.91	
23	AS CAS CAS AS A	Br- C - C - C - C - C - C - C - C - C - C	0.96	
24		C * C * C * C * C * N N * C * C * C * C * C	27.22	
25		C * C - C * C * C * N	4.17	
26	AS CAS AS A	C * C - C - C * C - N C * C - C * C - N C * C - N - C * C - N C * C - N - C * C - N C * C - O - C * C - N C * C - S - C * C - N N - C * C - C * C N - C * C - N - C * C N - C * C - N - C * C N - C * C - S - C * C N - C * C - S - C * C	1.63	
27		C * C - C - C - C - N N - C - C - C - C * C	5.29	

Screen Number		Fragment Definition	Frequency Percent
28	AS AS	C - C * C * C * C * N N * C * C * C * C - C	11.69
29	AS AS	C - C * C * C * C - N N - C * C * C * C - C	8.40
30	AS AS	C - C * C * C - C - N N - C - C * C * C - C	2.36
31	AS AS	C - C * C - C - C - N N - C - C - C * C - C	0.41
32	AS AS	C - C - C * C * C - N N - C * C * C - C - C	0.92
33	AS AS	C - C - C * C - C - N N - C - C * C - C - C	0.34
34	AS AS	C - C - C - C - C - N N - C - C - C - C - C	7.98
35	AS AS AS	C * C * C * C * C * O C * C * C * C * C * S O * C * C * C * C * C S * C * C * C * C * C	14.10
36	AS AS AS	C * C - C * C * C * O C * C - C * C * C * S O * C * C * C - C * C S * C * C * C - C * C	1.56
37	AS AS AS	C * C - C * C * C - O C * C - C * C * C - S O - C * C * C - C * C S - C * C * C - C * C	2.60
38	AS A	C * C - C - C * C - O C * C - C - C * C - S C * C - C - C * C - S C * C - C * C - O C * C - C * C - S C * C - C * C - S C * C - N - C * C - S C * C - N - C * C - S C * C - N - C * C - S C * C - O - C * C - S C * C - O - C * C - S C * C - S - C * C - S C * C - S - C * C - S C * C - S - C * C - S O - C * C - C - C * C O - C * C - N - C * C O - C * C - S - C * C S - C * C - C - C * C S - C * C - C - C * C S - C * C - C - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C	5.99

Screen Number			Fragment Definition		Frequency Percent
39	AS AS AS AS	C * C -	C - C - C - C - C - C -	C - S C * C	7.78
40	AS AS AS AS	C - C *	C * C * C * C * C * C *	C * S C - C	9.53
41	AS AS AS	C - C *	C * C * C * C * C * C *	C - S C - C	19.86
42	AS AS AS AS	C - C * O - C -	C * C - C * C - C * C *	C - S C - C	4.15
43	AS AS AS AS	C - C * O - C -	C - C - C - C * C - C *	C - S C - C	1.01
44	AS AS AS AS	C - C - O - C *	C * C * C * C - C * C -	C - S C - C	4.16
45	AS AS AS AS	C - C - O - C -	C * C - C * C - C * C -	C - S C - C	1.26
46	AS AS AS	C - C -	C - C - C - C - C - C -	C - S C - C	12.64
47	AS	As C B C C C C C C C C C C C C C C C C C C		C C C C C As C B C P C Se C Si C Te C C C C C C C C	3.83

Screen Number		Fragment Definition	Frequency Percent
48	AS AS AS AS AS AS AS	Br- C - C - C * C C * C - C - C - Br C * C - C - C - Cl C * C - C - C - F C * C - C - C - I Cl- C - C - C * C F - C - C - C * C I - C - C - C * C	0.77
49	AS AS AS AS AS AS AS	Br- C * C * C - C C - C * C * C - Br C - C * C * C - Cl C - C * C * C - F C - C * C * C - I Cl- C * C * C - C F - C * C * C - C I - C * C * C - C	4.52
50	AS AS AS AS AS AS AS	Br- C * C - C - C C - C - C * C - Br C - C - C * C - Cl C - C - C * C - F C - C - C * C - I Cl- C * C - C - C I - C * C - C - C	1.14
51	AS AS AS AS AS AS	Br- C - C - C - C C - C - C - C - Br C - C - C - C - Cl C - C - C - C - F C - C - C - C - I Cl- C - C - C - C F - C - C - C - C I - C - C - C - C	1.49
52	AS AS	C * C * C * C * N N * C * C * C * C	31.81
53	AS AS	C * C - C * C * N N * C * C - C * C	2.97
54	AS AS	C * C - C - C * N N * C - C - C * C	1.62
55	AS AS	C * C - C - C - N N - C - C - C * C	8.56
56	AS AS	C - C * C * C * N N * C * C * C - C	13.91
57	AS AS	C - C * C * C - N N - C * C * C - C	6.09

Screen Number		Fragment Definition	Frequency Percent
58	AS AS	C - C * C - C - N N - C - C * C - C	2.87
59	AS AS	C - C - C * C * N N * C * C - C - C	7.01
60	AS AS	C - C - C * C - N N - C * C - C - C	1.24
61	AS AS	C - C - C - C - N N - C - C - C - C	14.08
62	AS AS	C * C - C - C - N * C C * N - C - C - C * C	1.14
63	AS AS	C * C - C - C - N - C C - N - C - C - C * C	5.95
64	AS AS	C - C * C * C * N - C C - N * C * C * C - C	5.71
65	AS AS	C - C * C * C - N - C C - N - C * C * C - C	2.97
66	AS AS	C - C * C - C - N - C C - N - C - C * C - C	1.27
67	AS AS	C * C * C * C * N * N N * N * C * C * C * C	2.26
68	AS AS	C * C - C - C - N - N N - N - C - C - C * C	0.23
69	AS AS	C - C * C * C - N - N N - N - C * C * C - C	0.49
70	AS AS AS	C * C - C - C - N - O C * C - C - C - N - S O - N - C - C - C * C S - N - C - C - C * C	0.32
71	AS AS AS	C - C * C * C - N - O C - C * C * C - N - S O - N - C * C * C - C S - N - C * C * C - C	1.36
72	AS AS AS	C * C * C * C * O C * C * C * C * S O * C * C * C * C S * C * C * C * C	19.48
73	AS AS AS	C * C - C * C * O C * C - C * C * S O * C * C - C * C S * C * C - C * C	2.01

Screen Number		Fragment Definition	Frequency Percent
74	AS AS AS AS	C * C - C - C * O C * C - C - C * S O * C - C - C * C S * C - C - C * C	1.34
75	AS AS AS AS	C * C - C - C - O C * C - C - C - S O - C - C - C * C S - C - C - C * C	6.25
76	AS AS AS AS	C - C * C * C * O C - C * C * C * S O * C * C * C - C S * C * C * C - C	7.10
77	AS AS AS AS	C - C * C * C - O C - C * C * C - S O - C * C * C - C S - C * C * C - C	14.59
78	AS AS AS	C - C * C - C - O C - C * C - C - S O - C - C * C - C S - C - C * C - C	6.22
79	AS AS AS	C - C - C * C - O C - C - C * C - S O - C * C - C - C S - C * C - C - C	6.96
80	AS AS AS	C - C - C - C - O C - C - C - C - S O - C - C - C - C S - C - C - C - C	21.57
81	AS AS AS	C * C - C - C - O - C C * C - C - C - S - C C - O - C - C - C * C C - S - C - C - C * C	2.56
82	AS AS AS	C - C * C * C - O - C C - C * C * C - S - C C - O - C * C * C - C C - S - C * C * C - C	7.34
83	AS AS AS	C - C * C - C - O - C C - C * C - C - S - C C - O - C - C * C - C C - S - C - C * C - C	2.79
84	AS AS AS AS	C - C - C * C - O - C C - C - C * C - S - C C - O - C * C - C - C C - S - C * C - C - C	1.91

Screen Number		Fragment Definition	Frequency Percent
85	AS AS AS	C - C * C * C - O - N C - C * C * C - S - N N - O - C * C * C - C N - S - C * C * C - C	0.42
86	AS AS AS AS AS AS AS	C - C * C * C - O - O C - C * C * C - O - S C - C * C * C - S - O C - C * C * C - S - S O - O - C * C * C - C O - S - C * C * C - C S - O - C * C * C - C S - S - C * C * C - C	0.75
87	AS AS AS AS AS AS AS	Br- C - C * C C * C - C - Br C * C - C - Cl C * C - C - F C * C - C - I Cl- C - C * C F - C - C * C I - C - C * C	3.30
88	AS AS AS AS AS AS AS	Br- C * C - C C - C * C - Br C - C * C - Cl C - C * C - F C - C * C - I Cl- C * C - C F - C * C - C	4.80
89	AS AS AS AS AS AS AS	Br- C - C - C C - C - C - Br C - C - C - Cl C - C - C - F C - C - C - I Cl- C - C - C F - C - C - C	2.86
90	AS AS	C * C - C * N N * C - C * C	8.61
91	AS AS	C * C - C - N N - C - C * C	22.25 22.25
92	AS AS	C - C * C * N N * C * C - C	16.85 16.85
93	AS AS	C - C * C - N N - C * C - C	6.37
94	AS AS	C - C - C * N N * C - C - C	6.85

Screen Number		Fragment Definition	Frequency Percent
95	AS AS	C - C - C - N N - C - C - C	24.66
96	AS AS	C * C - C - N * C C * N - C - C * C	4.61
97	AS AS	C * C - C - N - C C - N - C - C * C	12.91
98	AS AS	C - C * C * N - C C - N * C * C - C	5.92
99	AS AS	C - C * C - N - C C - N - C * C - C	1.84
100	AS AS	C - C - C - N * C C * N - C - C - C	7.00
101	AS AS	C * C - C - N - C * C C * C - N - C - C * C	4.57
102	AS A	Br- C * C - N - C * C C - C * C - N - C * C C * C - N - C * C - Br C * C - N - C * C - C C * C - N - C * C - C C * C - N - C * C - Cl C * C - N - C * C - F C * C - N - C * C - I C * C - N - C * C - N C * C - N - C * C - N C * C - N - C * C - S Cl- C * C - N - C * C F - C * C - N - C * C N - C * C - N - C * C N - C * C - N - C * C S - C * C - N - C * C	0.92
103	AS AS	C * C * C * N * C * N N * C * N * C * C * C	9.30
104	AS AS	C * C - C - N - C - N N - C - N - C - C * C	0.88
105	AS AS	C - C * C - N - C - N N - C - N - C * C - C	0.37
106	AS AS AS	C * C * C * N * C * O C * C * C * N * C * S O * C * N * C * C * C S * C * N * C * C * C	2.79
107	AS AS AS	C * C - C - N * C - O C * C - C - N * C - S O - C * N - C - C * C S - C * N - C - C * C	1.02

Screen Number		Fragment Definition	Frequency Percent
108	AS AS AS	C * C - C - N - C - O C * C - C - N - C - S O - C - N - C - C * C S - C - N - C - C * C	3.00
109	AS AS AS	C - C * C - N - C - O C - C * C - N - C - S O - C - N - C * C - C S - C - N - C * C - C	2.05
110	AS AS	C * C * C * N * N N * N * C * C * C	4.61
111	AS AS	C * C - C - N - N N - N - C - C * C	2.65
112	AS AS	C - C * C - N - N N - N - C * C - C	0.55
113	AS AS	C - C - C - N - N N - N - C - C - C	1.14
114	AS AS AS	C * C - C - N - O C * C - C - N - S O - N - C - C * C S - N - C - C * C	1.22
115	AS AS AS	C - C * C - N - O C - C * C - N - S O - N - C * C - C S - N - C * C - C	0.94
116	AS AS AS	C * C - C * O C * C - C * S O * C - C * C S * C - C * C	4.30
117	AS AS AS	C * C - C - O C * C - C - S O - C - C * C S - C - C * C	33.04
118	AS AS AS	C - C * C * O C - C * C * S O * C * C - C S * C * C - C	9.42
119	AS AS AS	C - C * C - O C - C * C - S O - C * C - C S - C * C - C	18.18
120	AS AS AS	C - C - C * O C - C - C * S O * C - C - C S * C - C - C	5.21

Screen Number		Fragment Definition	Frequency Percent
121	AS AS AS	C - C - C - O C - C - C - S O - C - C - C S - C - C - C	32.90
122	AS AS AS	C * C - C - O - C C * C - C - S - C C - O - C - C * C C - S - C - C * C	13.92
123	AS AS AS AS	C - C * C - O - C C - C * C - S - C C - O - C * C - C C - S - C * C - C	6.93
124	AS AS AS AS	C - C - C - O - C C - C - C - S - C C - O - C - C - C C - S - C - C - C	16.58
125	AS AS AS	C * C - C - O - C * C C * C - C - S - C * C C * C - O - C - C * C C * C - S - C - C * C	4.07
126	AS A	Br- C * C - O - C * C Br- C * C - S - C * C C - C * C - O - C * C C - C * C - S - C * C C - C * C - S - C * C C - C * C - S - C * C C - C * C - S - C * C C * C - O - C * C - Br C * C - O - C * C - C C * C - O - C * C - T C * C - O - C * C - T C * C - O - C * C - T C * C - O - C * C - N C * C - O - C * C - Br C * C - O - C * C - Br C * C - O - C * C - Br C * C - S - C * C - Br C * C - S - C * C - Br C * C - S - C * C - C C * C - S - C * C - Br C * C - S - C * C - C C * C - S - C * C - T C * C - S - C * C - T C * C - S - C * C - T C * C - S - C * C - T C * C - S - C * C - S C1 - C * C - S - C * C - S C1 - C * C - S - C * C T - C * C - S - C * C N - C * C - S - C * C N - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C S - C * C - S - C * C	2.20

Screen Number		Fragment Definition	Frequency Percent
127	AS AS AS AS	C - C - C - O - C * C C - C - C - S - C * C C * C - O - C - C - C C * C - S - C - C - C	5.20
128	AS AS AS AS AS AS AS	C * C - C - O - C - O C * C - C - O - C - S C * C - C - S - C - O C * C - C - S - C - S O - C - O - C - C * C O - C - S - C - C * C S - C - S - C - C * C	3.28
129	AS AS AS AS	C * C - C - O - N C * C - C - S - N N - O - C - C * C N - S - C - C * C	0.35
130	AS AS AS AS	C - C * C - O - N C - C * C - S - N N - O - C * C - C N - S - C * C - C	0.32
131	AS AS AS AS AS AS AS	C * C - C - O - O C * C - C - O - S C * C - C - S - O C * C - C - S - S O - O - C - C * C O - S - C - C * C S - O - C - C * C	0.48
132	AS AS AS AS AS AS AS	C - C * C - O - O C - C * C - O - S C - C * C - S - O C - C * C - S - S O - O - C * C - C O - S - C * C - C S - O - C * C - C S - S - C * C - C	0.71
133	AS AS AS AS AS AS AS	C - C - C - O - O C - C - C - O - S C - C - C - S - O C - C - C - S - S O - O - C - C - C O - S - C - C - C S - O - C - C - C S - S - C - C - C	1.20

Screen Number		Fragment Definition	Frequency Percent
134	AS	As C C C C B C C C C C C As C C C B C C C B C C C Se C C C Si C C C Te P C C C C Se C C C Se C C C Te C C C	4.57
135	AS AS	C * C - N * C C * N - C * C	8.07
136	AS AS	C * C - N - C C - N - C * C	18.27
137	AS AS	C - C * N - C C - N * C - C	8.60
138	AS AS	C - C - N * C C * N - C - C	14.80
139	AS AS	C - C - N - C C - N - C - C	29.65
140	AS	C * C * N * C * C	30.93
141	AS AS	C * C - N * C - C C - C * N - C * C	1.71
142	AS	C * C - N - C * C	1.80
143	AS AS	C * C - N - C - C C - C - N - C * C	12.19
144	AS	C - C * N * C - C	3.03
145	AS	C - C - N - C - C	15.23
146	AS AS	C * C * N * C * C * N N * C * C * N * C * C	6.79
147	AS AS	C * C - N - C - C - N N - C - C - N - C * C	1.84
148	AS AS AS	C * C * N * C * C * O C * C * N * C * C * S O * C * C * N * C * C S * C * C * N * C * C	3.85

Screen Number					Fragr Defin					Frequency Percent
149	AS AS AS	C 0	* C * C - C	- N - C	- C	-	C C	*	S C	2.49
150	AS AS		* C * C							12.29
151	AS AS	_	* C * C		_					1.72
152	AS AS		* C - C							2.36
153	AS AS		- C * C							5.44
154	AS AS		- C							2.20
155	AS AS		- C							3.79
156	AS AS		* C - N							1.65
157	AS AS AS	C 0	* C * C * C	* N * N		*	0 S C C			6.29
158	AS AS AS	C 0	* C * C - C	- N		- *				3.59
159	AS AS AS	C 0	* C * C * C	- N	- C	*	S C			0.71
160	AS AS AS	C 0	* C * C - C	- N	- C	- *	S C			11.07
161	AS AS AS	C 0	- C - C * C	* N	* C	*	S C			3.21
162	AS AS AS	C 0	- C - C - C	* N * N	* C	-	S C			4.84

Screen Number		Fragment Definition	Frequency Percent
163	AS AS AS AS	C - C * N - C - O C - C * N - C - S O - C - N * C - C S - C - N * C - C	2.74
164	AS AS AS AS	C - C - N - C - O C - C - N - C - S O - C - N - C - C S - C - N - C - C	13.37
165	AS AS AS AS	C * C - N - C - O - C C * C - N - C - S - C C - O - C - N - C * C C - S - C - N - C * C	0.83
166	AS AS	C * C - N * N N * N - C * C	1.79
167	AS AS	C * C - N - N N - N - C * C	2.67
168	AS AS	C - C * N * N N * N * C - C	4.81
169	AS AS	C - C - N - N N - N - C - C	3.78
170	AS AS	C - C * N * N - C C - N * N * C - C	1.83
171	AS AS	C - C - N - N - C C - N - N - C - C	2.85
172	AS	C * C - N - N - C * C	1.18
173	AS AS AS	C * C * N * O C * C * N * S O * N * C * C S * N * C * C	1.32
174	AS AS AS AS	C * C - N - O C * C - N - S O - N - C * C S - N - C * C	6.36
175	AS AS AS	C - C * N - O C - C * N - S O - N * C - C S - N * C - C	0.56
176	AS AS AS AS	C - C - N - O C - C - N - S O - N - C - C S - N - C - C	3.06

Screen Number		Fragment Definition	Frequency Percent
177	AS AS AS AS	C * C - N - O - C C * C - N - S - C C - O - N - C * C C - S - N - C * C	1.40
178	AS AS AS AS	C - C - N - O - C C - C - N - S - C C - O - N - C - C C - S - N - C - C	2.11
179	AS AS AS AS AS AS AS AS	C * C - N - O - O C * C - N - O - S C * C - N - S - O C * C - N - S - S O - O - N - C * C O - S - N - C * C S - O - N - C * C S - S - N - C * C	1.31
180	AS AS AS AS	C * C - O - C C * C - S - C C - O - C * C C - S - C * C	26.47
181	AS AS	C * C * O * C * C C * C * S * C * C	17.85
182	AS AS	C * C - O - C * C C * C - S - C * C	3.48
183	AS AS AS AS	C * C - O - C - C C - C - O - C * C C * C - S - C - C C - C - S - C * C	14.37
184	AS AS	C - C * O * C - C C - C * S * C - C	2.61
185	AS AS	C - C - O - C - C C - C - S - C - C	13.52
186	AS A	Br C C O C C Br C C S C C C C O C C Br C C O C C F C C O C C I C C S C C Br C C S C C C C C S C C I C C S C C I C C S C C C F C C S C C I C C S C C I C C S C C	2.66

Screen Number		Fragment Definition	Frequency Percent
187	AS AS AS AS AS AS AS	C * C - O - C - C - O C * C - O - C - C - S C * C - S - C - C - O C * C - S - C - C - S O - C - C - O - C * C O - C - C - S - C * C S - C - C - S - C * C	3.29
188	AS AS AS AS	C * C - O - C * N C * C - S - C * N N * C - O - C * C N * C - S - C * C	0.61
189	AS AS AS AS	C * C - O - C - N C * C - S - C - N N - C - O - C * C N - C - S - C * C	0.58
190	AS AS AS	C - C * O * C * N C - C * S * C * N N * C * O * C - C N * C * S * C - C	2.79
191	AS AS AS AS	C - C * O * C - N C - C * S * C - N N - C * O * C - C N - C * S * C - C	2.04
192	AS AS AS AS AS AS AS	C * C - O - C * O C * C - O - C * S C * C - S - C * O C * C - S - C * S O * C - O - C * C O * C - S - C * C S * C - O - C * C S * C - S - C * C	1.20
193	AS AS AS AS AS AS AS	C * C - O - C - O C * C - O - C - S C * C - S - C - O C * C - S - C - S O - C - O - C * C O - C - S - C * C S - C - O - C * C S - C - S - C * C	4.71
194	AS AS AS AS AS AS AS AS	C - C * O * C - O C - C * O * C - S C - C * S * C - O C - C * S * C - S O - C * S * C - C O - C * S * C - C S - C * O * C - C S - C * S * C - C	3.38

Screen Number		Fragment Definition	Frequency Percent
195	AS AS AS AS AS AS AS	C - C - O - C - O C - C - O - C - S C - C - S - C - O C - C - S - C - S O - C - O - C - C O - C - S - C - C S - C - O - C - C S - C - S - C - C	13.48
196	AS A	Br O C C Br S C C C C O Br C C O Cl C C O F C C O I C C S Br C C S Cl C C S I Cl O C C F O C C F O C C I S C C I S C C I O C C I S C C I O C C I S C C I O C C I S C C I O C C I S C C	0.10
197	AS AS AS	C * C - O - N C * C - S - N N - O - C * C N - S - C * C	3.51
198	AS AS AS AS	C - C * O * N C - C * S * N N * O * C - C N * S * C - C	0.77
199	AS AS AS AS	C - C - O - N C - C - S - N N - O - C - C N - S - C - C	1.12
200	AS AS AS AS	C * C - O - N - C C * C - S - N - C C - N - O - C * C C - N - S - C * C	2.34
201	AS AS AS AS AS AS AS AS	C * C - O - O C * C - O - S C * C - S - O C * C - S - S O - O - C * C O - S - C * C S - O - C * C S - S - C * C	6.11

Screen Number		Fragment Definition	Frequency Percent
202	AS AS AS AS AS AS AS	C - C - O - O C - C - O - S C - C - S - O C - C - S - S O - O - C - C O - S - C - C S - O - C - C	2.21
203	AS AS AS AS	C * C - O - O - C * C C * C - O - S - C * C C * C - S - O - C * C C * C - S - O - C * C C * C - S - S - C * C	0.20
204	AS AS	C * N - C * C * C * N N * C * C * C - N * C	0.75
205	AS AS	C * N - C - C - C - N N - C - C - C - N * C	0.86
206	AS AS	C - N * C * C - C - N N - C - C * C * N - C	1.01
207	AS AS	C - N - C * C * C - N N - C * C * C - N - C	0.82
208	AS AS AS AS	C - N * C * C * C - O C - N * C * C * C - S O - C * C * C * N - C S - C * C * C * N - C	3.76
209	AS AS AS	C - N - C * C * C - O C - N - C * C * C - S O - C * C * C - N - C S - C * C * C - N - C	2.16
210	AS AS AS	C - N - C * C - C - O C - N - C * C - C - S O - C - C * C - N - C S - C - C * C - N - C	1.11
211	AS AS AS	C - N - C - C * C - O C - N - C - C * C - S O - C * C - C - N - C S - C * C - C - N - C	1.57
212	AS AS AS AS AS AS AS	Br C C N C C N C C Br C N C C Cl C N C C F C N C C I Cl C C N C F C C N C I C C N C	4.26

Screen Number		Fragment Definition	Frequency Percent
213	AS AS	C * N - C * C * N N * C * C - N * C	0.36
214	AS AS	C * N - C - C - N N - C - C - N * C	3.24
215	AS AS	C - N * C * C * N N * C * C * N - C	6.81
216	AS AS	C - N * C * C - N N - C * C * N - C	1.18
217	AS AS	C - N * C - C - N N - C - C * N - C	2.43
218	AS AS	C - N - C * C - N N - C * C - N - C	0.85
219	AS AS	C - N - C - C - N N - C - C - N - C	7.91
220	AS	C - N * C * C * N - C	2.77
221	AS AS	C N C C N N N N C C N C	2.85
222	AS AS AS	C - N - C * C - N - O C - N - C * C - N - S O - N - C * C - N - C S - N - C * C - N - C	0.32
223	AS AS AS	C * N - C * C - O C * N - C * C - S O - C * C - N * C S - C * C - N * C	0.96
224	AS AS AS	C * N - C - C - O C * N - C - C - S O - C - C - N * C S - C - C - N * C	2.89
225	AS AS AS	C - N * C * C * O C - N * C * C * S O * C * C * N - C S * C * C * N - C	3.33
226	AS AS AS	C - N * C * C - O C - N * C * C - S O - C * C * N - C S - C * C * N - C	1.88
227	AS AS AS	C - N * C - C - O C - N * C - C - S O - C - C * N - C S - C - C * N - C	2.68

Screen Number		Fragment Definition	Frequency Percent
228	AS AS AS AS	C - N - C * C - O C - N - C * C - S O - C * C - N - C S - C * C - N - C	3.06
229	AS AS AS AS	C - N - C - C - O C - N - C - C - S O - C - C - N - C S - C - C - N - C	12.06
230	AS AS AS AS	C - N - C * C - O - C C - N - C * C - S - C C - O - C * C - N - C C - S - C * C - N - C	1.28
231	AS AS	C * N - C * N N * C - N * C	1.29
232	AS AS	C * N - C - N N - C - N * C	0.93
233	AS AS	C - N * C * N N * C * N - C	7.12
234	AS AS	C - N - C * N N * C - N - C	4.77
235	AS AS	C - N - C - N N - C - N - C	5.46
236	AS	C - N * C * N - C	1.19
237	AS	C - N - C - N - C	2.24
238	AS AS	C * N * C * N * C * N N * C * N * C * N * C	2.92
239	AS AS AS AS	C * N - C * O C * N - C * S O * C - N * C S * C - N * C	1.30
240	AS AS AS AS	C * N - C - O C * N - C - S O - C - N * C S - C - N * C	5.80
241	AS AS AS	C - N * C * O C - N * C * S O * C * N - C S * C * N - C	1.96
242	AS AS AS AS	C - N * C - O C - N * C - S O - C * N - C S - C * N - C	8.74

Screen Number		Fragment Definition	Frequency Percent
243	AS AS AS	C - N - C - O C - N - C - S O - C - N - C S - C - N - C	23.15
244	AS AS AS AS	C * N - C - O - C C * N - C - S - C C - O - C - N * C C - S - C - N * C	1.06
245	AS AS AS AS	C - N * C - O - C C - N * C - S - C C - O - C * N - C C - S - C * N - C	1.08
246	AS AS AS AS	C - N - C - O - C C - N - C - S - C C - O - C - N - C C - S - C - N - C	3.12
247	AS	C - N * N - C	0.23
248	AS	C - N - N - C	4.27
249	AS AS AS	C - N * N * C - O C - N * N * C - S O - C * N * N - C S - C * N * N - C	0.35
250	AS AS	C N N N N N C	1.47
251	AS AS AS AS	C * N - O - C C * N - S - C C - O - N * C C - S - N * C	1.09
252	AS AS AS AS	C - N - O - C C - N - S - C C - O - N - C C - S - N - C	3.76
253	AS AS AS AS AS AS AS	C * N - O - O C * N - O - S C * N - S - O C * N - S - S O - O - N * C O - S - N * C S - O - N * C	0.97

Screen Number		Fragment Definition	Frequency Percent
254	AS AS AS AS AS AS AS	C - N - O * O C - N - O * S C - N - S * O C - N - S * S O * O - N - C O * S - N - C S * S - N - C	0.00
255	AS AS AS AS AS AS AS	C - N - O - O C - N - O - S C - N - S - O C - N - S - S O - O - N - C O - S - N - C S - O - N - C	2.96
256	AS A	Br C C C C O C Br C C C S C C O C C S C C O C C C Br C O C C C F C O C C C I C S C C C Br C S C C C Br C S C C C C Br C S C C C C I C S C C C C I C S C C C C I C S C C C C I C S C C C C I C S C C C C I C S C C C C I C S C C C C I C S C C C C I C S C C C C I C C C C C C C I C C C C C C I C C C C	3.02
257	AS AS AS AS	C - O - C * C * C - N C - S - C * C * C - N N - C * C * C - O - C N - C * C * C - S - C	1.86
258	AS AS AS AS	C - O - C * C - C - N C - S - C * C - C - N N - C - C * C - O - C N - C - C * C - S - C	1.12
259	AS AS AS AS	C - O - C - C * C - N C - S - C - C * C - N N - C * C - C - O - C N - C * C - C - S - C	0.72
260	AS AS AS AS	C - O - C - C - C - N C - S - C - C - C - N N - C - C - C - C - C N - C - C - C - S - C	2.88

Screen Number		Fragment Definition	Frequency Percent
261	AS AS AS AS AS AS AS	C - O - C * C * C - O C - O - C * C * C - S C - S - C * C * C - S O - C * C * C - S O - C * C * C - S - C S - C * C * C - S - C S - C * C * C - S - C S - C * C * C - S - C	4.46
262	AS AS AS AS AS AS AS	C - O - C * C - C - O C - O - C * C - C - S C - S - C * C - C - S C - S - C * C - C - S O - C - C * C - O - C O - C - C * C - S - C S - C - C * C - S - C S - C - C * C - S - C	2.33
263	AS AS AS AS AS AS AS	C - O - C - C * C - O C - O - C - C * C - S C - S - C - C * C - S C - S - C - C * C - S O - C * C - C - C - S O - C * C - C - C - C S - C * C - C - S - C S - C * C - C - S - C	2.05
264	AS AS AS AS AS AS AS	C - O - C - C - C - O C - O - C - C - C - S C - S - C - C - C - S O - C - C - C - C - S O - C - C - C - C - C S - C - C - C - C - C S - C - C - C - C - C S - C - C - C - C - C S - C - C - C - S - C	3.09
265	AS A	Br- C * C - O - C Br- C * C - S - C C - O - C * C - Br C - O - C * C - Br C - O - C * C - F C - O - C * C - F C - O - C * C - I C - S - C * C - Br C - S - C * C - Cl C - S - C * C - I C - S - C * C - F C - S - C * C - F C - S - C * C - F C - S - C * C - F C - S - C * C - I Cl- C * C - O - C F - C * C - S - C I - C * C - S - C I - C * C - S - C I - C * C - S - C	1.77

Screen Number		Fragment Definition	Frequency Percent
266	AS C	C - O - C * C * N C - S - C * C * N N * C * C - O - C N * C * C - S - C	1.56
267	AS C	C - O - C * C - N C - S - C * C - N N - C * C - O - C N - C * C - S - C	2.37
268	AS C	C - O - C - C * N C - S - C - C * N N * C - C - O - C N * C - C - S - C	1.79
269	AS C	C - O - C - C - N C - S - C - C - N N - C - C - O - C N - C - C - S - C	6.99
270	AS C	COCCNN CSCNN NNCCCOC	2.19
271	AS CAS CAS AS CAS AS CAS AS CAS CAS CAS	C - O - C * C - N - O C - O - C * C - N - S C - S - C * C - N - O C - S - C * C - N - S O - N - C * C - O - C O - N - C * C - O - C S - N - C * C - O - C S - N - C * C - S - C	0.42
272	AS CAS CAS AS AS AS AS AS	C - O - C * C - O C - O - C * C - S C - S - C * C - O C - S - C * C - S O - C * C - O - C O - C * C - S - C S - C * C - S - C	6.16
273	AS CAS CAS AS CAS C	C - O - C - C - O C - O - C - C - S C - S - C - C - O C - S - C - C - S O - C - C - O - C O - C - C - S - C S - C - C - S - C	8.01
274	AS G	C - O - C * N C - S - C * N N * C - O - C N * C - S - C	3.68

Screen Number		Fragi Defin	ment nition	Frequency Percent
275	AS AS AS AS	C - O - C - N C - S - C - N N - C - O - C N - C - S - C	N C	4.54
276	AS AS AS	C - O - C * N C - S - C * N N * N * C - C	O - C	1.23
277	AS AS AS AS AS AS AS	C - O - C * C C - O - C * S C - S - C * S O * C - O - C S * C - S - C S * C - S - C S * C - S - C		2.86
278	AS AS AS	C - O - C - C C - O - C - S C - S - C - S	S - C O - C	1.42
279	AS AS AS AS AS AS AS AS	C O N C C C S N C C S N C C C S N C C C C C		0.17
280	AS AS AS	C - O - O - C C - O - S - C C - S - O - C C - S - S - C		0.81
281	AS AS AS AS AS AS AS	C O O N C O S N C S O N C S S N N O O O N O S O N S O O N S S S	N N N C C	0.09
282	AS AS AS AS AS AS AS	C O O O C C O C O C O C O C O C C O C	S D S D S	1.03

Screen Number		Fra De	agment finition	Frequency Percent	
282	AS AS AS AS AS AS AS	O O O O O O O O O O O O O O O O O O O		1.03 (continue	ed)
283	AS A	Br- C * C * Br- C * C * Br- C * C * C * Br- C * C * C * C * C * C * C * C * C * C	C * C - Cl C * C - F C * C - I C * C - Br C * C - Cl C * C - F C * C - Br C * C - F C * C - F	1.11	
284	AS A	Br- C - C - Br- C - C - Br- C - C - C - C - C - C - C - C - C - C	C - C - Cl C - C - F C - C - F C - C - Br C - C - Cl C - C - F C - C - I C - C - F C - C - E C - C - Br C - C - F C - C - F C - C - F C - C - F C - C - F	0.36	
285	AS AS AS AS AS AS AS	Br C C C C C C C C C C C C C C C C C C C	C C N C C N C C N C C N C C S C C F C C I	7.02	

Screen Number		Fragment Definition	Frequency Percent
286	AS AS AS AS AS AS AS AS	Br- C * C * C * C - N Cl- C * C * C * C - N F - C * C * C * C - N I - C * C * C * C - N N - C * C * C * C - Br N - C * C * C * C - F N - C * C * C * C - I	2.55
287	AS AS AS AS AS AS AS AS	Br- C * C * C - C - N Cl- C * C * C - C - N F - C * C * C - C - N I - C * C * C - C - N N - C - C * C * C - C - Br N - C - C * C * C - C - Cl N - C - C * C * C - F N - C - C * C * C - I	1.22
288	AS A	Br C C C C C O Br C C C C S Cl C C C C S Cl C C C C S F C C C C C S F C C C C C S I C C C C C S I C C C C C S O C C C C S O C C C C S O C C C C S O C C C C S O C C C C S O C C C C S O C C C C S S C C C C C S S C C C C C S S C C C C	6.39
289	AS A	Br- C * C * C * C - O Br- C * C * C * C - S Cl- C * C * C * C - S Cl- C * C * C * C - S F - C * C * C * C - S F - C * C * C * C - S I - C * C * C * C - S I - C * C * C * C - S O - C * C * C * C - S O - C * C * C * C - S O - C * C * C * C - S O - C * C * C * C - S O - C * C * C * C - Br O - C * C * C * C - F O - C * C * C * C - Br S - C * C * C * C - C1 S - C * C * C * C - C1 S - C * C * C * C - C1 S - C * C * C * C - T	3.00

Screen Number		Fragment Definition	Frequency Percent
290	AS A	Br- C * C * C - C - O Br- C * C * C - C - S Cl- C * C * C - C - S Cl- C * C * C - C - S F - C * C * C - C - S F - C * C * C - C - S I - C * C * C - C - S I - C * C * C - C - S O - C - C * C * C - C - S O - C - C * C * C - C - S O - C - C * C * C - C - S S - C - C * C * C - C - S S - C - C * C * C - C - C S - C - C * C * C - C - C S - C - C * C * C - C - C S - C - C * C * C - C - C S - C - C * C * C - C - C S - C - C * C * C - C - C S - C - C * C * C - C - C	1.30
291	AS A	As C C C C C B As C C C C C B As C C C C C B As C C C C C C B As C C C C C C B As C C C C C C C C As C C C C C C I As C C C C C C I As C C C C C C N As C C C C C C P As C C C C C S As C C C C C S As C C C C C S As C C C C C C B B C C C C C C B B C C C C	0.79

Screen Number				Fr De	agmer efinitio	nt on		Frequency Percent		
291	AS AS	F F	C C	C C	C C	C C	As B	0.79 (continued)		
	AS	F	C	C	C	C	P			
	AS	F	C	C	C	C	Se			
	AS	F	С	С	С	C	Si			
	AS	F	C	C	C	C	Te			
	AS	I	C	C	С	C	As			
	AS AS	I I	C C	C C	C C	C C	B P			
	AS AS	I	C	C	C	C	Se			
	AS	I	C	C	C	C	Si			
	AS	I	C	C	C	C	Te			
	AS	N	С	С	С	C	As			
	AS	N	C	C	C	C	В			
	AS	N	C	C	C	C	P			
	AS	N	C	C	C	C	Se			
	AS	N	C	C	C	C	Si			
	AS	N	C	C	C	C	Te			
	AS AS	0	C C	C C	C C	C C	As B			
	AS AS	0	C	C	C	C	Р			
	AS	0	C	C	C	C	Se			
	AS	0	C	C	C	C	Si			
	AS	0	C	C	C	С	Te			
	AS	P	C	C	С	C	As			
	AS	P	С	С	С	C	В			
	AS	P	C	C	C	С	Br			
	AS	Р	С	С	С	С	Cl			
	AS	P	C	C	C	C	F			
	AS AS	P P	C C	C C	C C	C C	I N			
	AS	P	C	C	C	C	0			
	AS	P	C	C	C	C	P			
	AS	P	C	C	C	C	S			
	AS	P	C	C	C	C	Se			
	AS	P	C	C	C	C	Si			
	AS	P	С	С	C	C	Te			
	AS	S	C	C	C	C	As			
	AS	S	С	С	С	C	В			
	AS AS	S S	C C	C C	C C	C C	P Se			
	AS	S	C	C	C	C	Si			
	AS	S	C	C	C	C	Te			
	AS	Se	C	C	C	C	As			
	AS	Se	C	C	C	С	В			
	AS	Se	C	C	C	C	Br			
	AS	Se	C	C	C	C	Cl			
	AS	Se	С	С	С	C	F			
	AS	Se	C	C	C	C	I			
	AS	Se	C	C	C	C	N			
	AS AS	Se Se	C C	C C	C C	C C	O P			
	AS AS	Se	C	C	C	C	S			
	AS	Se	C	C	C	C	Se			
	AS	Se	C	C	C	C	Si			

Screen Number		Fragment Definition	Frequency Percent	
291	AS A	Se C C C C Te Si C C C C As Si C C C C Br Si C C C C C C Si C C C C C I Si C C C I Si C C C C I Si C C C C C I Si C C C C C D N Si C C C C C D N Si C C C C C N Si C C C C C C Si C C C C C C Si C C C C C C C C C C C C C C		continued)
292	AS A	Br- C * C * C - Br Br- C * C * C - Cl Br- C * C * C - F Br- C * C * C - I Cl- C * C * C - Br Cl- C * C * C - Br Cl- C * C * C - F Cl- C * C * C - I F - C * C * C - Cl F - C * C * C - Cl I - C * C * C - F F - C * C * C - F I - C * C * C - I I - C * C * C - I I - C * C * C - I I - C * C * C - I I - C * C * C - I	3.37	
293	AS	Br- C * C - C - Br Br- C - C * C - Br Br- C - C * C - C1 Br- C - C * C - C1 Br- C - C * C - C1 Br- C - C * C - F Br- C - C * C - F Br- C - C * C - I C1- C * C - C - Br C1- C - C * C - Br	0.20	

Screen Number		Fragment Definition	Frequency Percent
293	AS A	C1- C * C - C - C1 C1- C - C * C - C1 C1- C - C * C - C - F C1- C - C * C - I F - C * C - C - Br F - C - C * C - Br F - C - C * C - C1 F - C * C - C - C1 F - C * C - C - F F - C - C * C - F F - C - C * C - F F - C - C * C - Br I - C - C * C - Br I - C - C * C - C I - C - C * C - I I - C - C * C - C - C1 I - C - C * C - C - C1 I - C - C * C - C - C1 I - C - C * C - C - F I - C - C * C - C - F I - C - C * C - C - F I - C - C * C - C - I I - C - C * C - C - I I - C - C * C - C - I I - C - C * C - C - I I - C - C * C - C - I I - C - C * C - C - I I - C - C * C - C - I I - C - C * C - C - I	0.20 (continued)
294	AS A	Br- C - C - C - Br Br- C - C - C - C1 Br- C - C - C - C - F Br- C - C - C - T C1- C - C - C - Br C1- C - C - C - C - Br C1- C - C - C - C - C1 C1- C - C - C - C - F C1- C - C - C - C - F C1- C - C - C - C - F T - C - C - C - C - T T - C - C - C - C - T T - C - C - C - C - T T - C - C - C - C - T T - C - C - C - C - T T - C - C - C - C - T T - C - C - C - C - T T - C - C - C - C - T T - C - C - C - C - T	0.74
295	AS AS AS AS AS AS AS	Br C C C N Cl C C C N F C C C N I C C C N N O C C C C N N O C C C Br N C C C C F N C C C I	5.58

Screen Number			Fragment Definition		Frequency Percent
296	AS AS AS AS AS AS AS	Br- C * Cl- C * F - C * I - C * N * C * N * C * N * C *	* C * C * * C * C * * C * C * * C * C * * C * C	_	1.36
297	AS AS AS AS AS AS AS		* C * C - * C * C - * C * C - * C * C -	N N N Br	1.96
298	AS AS AS AS AS AS AS		* C - C - - C * C - - C * C - - C * C -	N N N Br	1.26
299	AS AS AS AS AS AS AS	Cl- C - F - C - I - C -	- C - C -	N N N Br	0.37
300	AS AS AS AS AS AS AS	Br CCCl CF CCI CCN N N N N N N N N		N N N N N N C Br C Cl C F C I	0.84
301	AS	Br C Br C Cl C Cl C F C F C I C I C O N O N		N O N S N O N S N O N S N O N S C Br C Cl	0.55

Screen Number				Fragi Defin	ment nition		Frequency Percent		
301	AS AS AS AS AS	S S S	N C			F I Br Cl F I	0.55	(continued)	
302	AS A	As A			N N N N A B B C C C C C C C C C C C C C C C C C	e i e s r As BrCl INOPS Sei e AS BPSi e i e E IS Te	0.44		
	AS AS	B B		C N		9			

Screen Number				Fra De	agmen finitior	t 1		Frequency Percent		
302	AS A	B	C C N N N N N N N N N N N N N N N N N N	00000000000000000000000000	N N C C C C C C C C C C C C C C C C C C	Si e s B B C C C C C C C C C C C C C C C C C	As B Br Cl F I N O P S Se Si Te	0.44	(continued)	
	AS A	B B B B B B B B B B B B B B B B B B B	\mathbf{N} \mathbf{N} \mathbf{C}	000000000000000	C C C C C C C N N N N N N N	Si Te N N N N As B P Si Te	As B P Se Si Te			
	AS A	C1 C1 C1 C1 C1 C1 C1 C1 C1 F F				N N N N As B P Si Te N N	As B P Se Si Te As B P			

302	Screen Number				Fi De	ragme efinitio	nt on		Frequency Percent		
AS	302	AS	F	С	C	С	N	Se	0.44 (continued)		
AS F C C N As AS F C C N B AS F C C N B AS F C C N B AS F C C N Se AS F C C N Se AS F C C N Si AS I C C C N B AS I C C C N Si AS I C C C N Si AS I C C C N B AS I C C N B AS N C C C N		AS	F				N	Si			
AS F C C N B AS F C C N Se AS F C C N Se AS F C C N Te AS I C C C N B AS F C C C N Se AS F C C C N Se AS I C C C N B AS I C C C N Se AS I C C C N Se AS I C C C N Te AS I C C C N B AS I C C N B AS I C C C N Se AS I C C C N B AS N C C C C N B AS N			F			С	N	Te			
AS			F			N	As				
AS F C C N Se AS F C C N TE AS I C C C N TE AS I C C C N B AS I C C C N Si AS I C C C N B AS I C C N Si AS I C C N B AS I C C N B AS I C C N B AS I C C N Si AS I C C N B AS N C C C N Si AS N C C C N Si AS O C C C N Si AS O C C C N Si AS O C C C N Si AS P C C C N Se						N					
AS F C C N Si AS F C C N Te AS I C C C N Te AS I C C C N AS AS I C C C N B AS I C C C N Si AS I C C C N Si AS I C C C N Si AS I C C C N B AS I C C N B AS N C C C C N B AS N C C C C N B AS N C C C N B AS N C C C N B AS N C C C N B AS N C C C N B AS N C C C C N B											
AS											
AS											
AS								70			
AS											
AS											
AS											
AS											
AS I C C N B B AS I C C N Si AS I C C N TE AS N C C C N B B AS N C C C N B AS N C C C N B AS AS N C C C N TE AS N C C C N TE AS N C C C N TE AS N C C C N B AS AS N C C C N B AS AS N C C C N B AS AS O C C C N B AS AS P C C C N B B AS AS AS P C C C N B B AS AS AS P C C											
AS											
AS I C C N P AS I C C N Se AS I C C N Se AS I C C N N TE AS N C C C N TE AS N C C C N B AS N C C C N B AS P C C C N B AS P C C C N Si AS P C C C N Si AS P C C C N B											
AS											
AS			I	С		N	Se				
AS			I	C	C	N	Si				
AS		AS	I	С	C	N	Te				
AS		AS	N	C	C	C	N	As			
AS			N	C	C	С	N				
AS			N				N				
AS											
AS											
AS								Te			
AS											
AS											
AS											
AS											
AS											
AS								As			
AS											
AS O C C C N Si AS O C C C N Te AS O C C N As AS O C C N B AS O C C N B AS O C C N P AS O C C N Se AS O C C N Te AS O C C N Te AS O C C N B AS O C C N Si AS P C C N B AS P C C N B AS P C C N B AS P C C N Se AS P C C N Se AS P C C N Te AS P C C N B AS P C C N Se AS P C C C N Si AS P C C C N Se AS P C C C N Te AS P C C C N Se AS P C C C N Te AS P C C C N Te AS P C C C N Se AS P C C C N B							N				
AS O C C C N TE AS O C C N AS AS O C C N B AS O C C N P AS O C C N SE AS O C C N SE AS O C C N TE AS O C C N B AS O C C N SE AS P C C C N B AS P C C C N SE AS P C C C N SE AS P C C C N SE AS P C C C N TE AS P C C C N E AS P C C C N TE AS P C C C N SE AS P C C C N TE AS P C C C N TE		AS	0	C	C	С	N	Se			
AS		AS	0	C	C	C	N	Si			
AS O C C N B AS O C C N P AS O C C N Se AS O C C N Si AS O C C N Te AS P C C N B AS P C C N B AS P C C N Se AS P C C N B AS P C C N Se AS P C C N Te AS P C C N SE AS P C C N Si AS P C C N AS AS P C C N TE			0			C		Te			
AS O C C N P AS O C C N Se AS O C C N Si AS O C C N Te AS P C C C N B AS P C C C N P AS P C C N P AS P C C N P AS P C C N B AS P C C N Si AS P C C N Si AS P C C N Te AS P C C N Si AS P C C N B AS P C C N B AS P C C N P											
AS O C C N Se AS O C C N Si AS O C C N Te AS P C C C N As AS P C C C N B AS P C C C N P AS P C C C N Se AS P C C C N Si AS P C C C N Te AS P C C C N Si AS P C C C N Te AS P C C N P AS P C C N P											
AS O C C N Si AS O C C N Te AS P C C C N As AS P C C C N B AS P C C C N P AS P C C C N Se AS P C C C N Si AS P C C C N Te AS P C C N Te											
AS O C C N TE AS P C C C N AS AS P C C C N B AS P C C C N P AS P C C C N Se AS P C C C N TE AS P C C C N TE AS P C C N TE AS P C C N B AS P C C N P											
AS P C C C N AS AS P C C C N B AS P C C C N P AS P C C C N Se AS P C C C N Si AS P C C N Te AS P C C N B AS P C C N P											
AS P C C C N B AS P C C C N P AS P C C C N Se AS P C C C N Si AS P C C C N Te AS P C C N As AS P C C N B AS P C C N B AS P C C N P								7\ <			
AS P C C C N P AS P C C C N Se AS P C C C N Si AS P C C C N Te AS P C C N As AS P C C N B AS P C C N P											
AS P C C C N Se AS P C C C N Si AS P C C C N Te AS P C C N As AS P C C N B AS P C C N P											
AS P C C C N Si AS P C C C N Te AS P C C N AS AS P C C N B AS P C C N P											
AS P C C N Te AS P C C N As AS P C C N B AS P C C N P											
AS P C C N As AS P C C N B AS P C C N P											
AS P C C N B AS P C C N P											
AS P C C N P											
AS P C C N Se		AS		C	C						
		AS	P	С	C	N	Se				

Screen Number				Fr De	agmer efinitio	nt on		Frequency Percent		
302	AS AS	P P	C C	C C	N N	Si Te			0.44	(continued)
	AS	P	N	С	С	As				
	AS	P	N	C	C	В				
	AS AS	P	N N	C C	C C	Br C	7. ~			
	AS AS	P P	N	C	C	C	As B			
	AS	P	N	C	C	C	Br			
	AS	P	N	C	C	C	Cl			
	AS	P	N	C	C	C	F			
	AS	P	N	C	C	C	I			
	AS	P	N	C	C	C	N			
	AS	P	N	C	C	C	0			
	AS	Р	N	C	С	С	Р			
	AS	P	N	C	C	C	S			
	AS	P P	N N	C C	C C	C C	Se Si			
	AS AS	P P	N	C	C	C	Te			
	AS	P	N	C	C	Cl	16			
	AS	P	N	C	C	F				
	AS	P	N	С	C	I				
	AS	P	N	С	C	N				
	AS	P	N	C	C	0				
	AS	P	N	C	С	P				
	AS	P	N	С	C	S				
	AS	P	N	C	C	Se				
	AS	P	N	C C	С	Si				
	AS AS	P S	N C	C	C C	Te N	As			
	AS	S	C	C	C	N	B			
	AS	S	C	C	C	N	P			
	AS	S	C	C	C	N	Se			
	AS	S	C	C	С	N	Si			
	AS	S	C	C	C	N	Te			
	AS	S	C	С	N	As				
	AS	S	C	C	N	В				
	AS	S	C	C	N	P				
	AS AS	S S	C C	C C	N N	Se Si				
	AS	S	C	C	N	Te				
	AS	Se	C	C	C	N	As			
	AS	Se	C	C	С	N	В			
	AS	Se	C	C	C	N	P			
	AS	Se	C	C	C	N	Se			
	AS	Se	С	C	C	N	Si			
	AS	Se	C	C	C	N	Te			
	AS	Se	C	C	N	As				
	AS AS	Se Se	C C	C C	N	B P				
	AS AS	Se	C	C	N N	Se				
	AS	Se	C	C	N	Si				
	AS	Se	C	C	N	Te				
	AS	Se	N	С	С	As				
	AS	Se	N	C	С	В				
	AS	Se	N	С	С	Br				

Screen Number				Fr De	agmer efinitio	nt n		Frequency Percent		
302	AS	Se	N	С	С	С	As	0.44 (continued)		
	AS	Se	N	C	С	C	В			
	AS	Se	N	С	С	С	Br			
	AS	Se	N	C	C	C	Cl			
	AS	Se	N	C	C	C	F			
	AS	Se	N	C	C	C	I			
	AS	Se	N	C	C	C	N			
	AS	Se	N	C	C	C	0			
	AS	Se	N	C	C	C	P			
	AS	Se	N	C	C	C	S			
	AS	Se	N	C	C	C	Se			
	AS	Se	N	C	C	C	Si			
	AS	Se	N	C	С	C	Te			
	AS	Se	N	C	С	Cl				
	AS	Se	N	C	С	F				
	AS	Se	N	С	С	I				
	AS	Se	N	C	C	N				
	AS	Se	N	C	C	0				
	AS	Se	N	C	C	P				
	AS	Se	N	C	C	S				
	AS	Se	N	C	C	Se				
	AS	Se	N	C	C	Si				
	AS	Se Si	N	C	C	Te	7. ~			
	AS	Si Si	C C	C C	C C	N	As			
	AS AS	Si	C	C	C	N N	B P			
	AS AS	Si	C	C	C	N	Se			
	AS AS	Si	C	C	C	N	Si			
	AS	Si	C	C	C	N	Te			
	AS	Si	C	C	N	As	10			
	AS	Si	C	C	N	В				
	AS	Si	C	C	N	P				
	AS	Si	C	C	N	Se				
	AS	Si	С	С	N	Si				
	AS	Si	C	C	N	Te				
	AS	Si	N	C	C	As				
	AS	Si	N	C	C	В				
	AS	Si	N	C	C	Br				
	AS	Si	N	C	C	C	As			
	AS	Si	N	C	C	C	В			
	AS	Si	N	C	С	C	Br			
	AS	Si	N	С	С	C	Cl			
	AS	Si	N	C	C	C	F			
	AS	Si	N	C	C	C	I			
	AS	Si	N	C	C	C	N			
	AS	Si	N	C	C	C	0			
	AS	Si Si	N	C C	C C	C C	P S			
	AS	Si	N							
	AS AS	Si	N N	C C	C C	C C	Se Si			
	AS AS	Si	N	C	C	C	Te			
	AS AS	Si	N	C	C	Cl	16			
	AS AS	Si	N	C	C	F				
	AS	Si	N	C	C	I				
	AS	Si	N	C	C	N				
		~ -		~	_					

Screen Number			Fragment Definition					Frequency Percent		
302	AS A	S S S S S S T T T T T T T T T T T T T T	\mathbf{n}	000000000000000000000000000000000000000	0000000000000NNNN000000000000000000000	O P S S I E N N N N N N A B P S I E A B B C C C C C C C C C C C C C F I N O P S S I E	As B P Se Si Te As B B Cl F I N O P S Se Si Te		0.44	(continued)
303	AS	Br Cl Cl F F I O	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	O S O S O S Br Cl			5.10	

Screen Number		Fragment Definition	Frequency Percent	
303	AS AS AS AS AS	C C C F C C C I C C C Br C C C C Cl C C C I	5.10	(continued)
304	AS A	Sr- C * C * C * C * O Sr- C * C * C * S Sl- C * C * C * C * S Sl- C * C * C * C * S Sl- C * C * C * C * S Sl- C * C * C * C * S Sl- C * C * C * C * S Sl- C * C * C * C * S Sl- C * C * C * C * C * S Sl- C * C * C * C * C * C Sl- C * C * C * C * C * C Sl- C * C * C * C * C * C Sl- C * C * C * C * C * C Sl- C * C * C * C * C * C Sl- C * C * C * C * C * C Sl- C * C * C * C * C * C Sl- C * C * C * C * C * C Sl- C * C * C * C * C * C Sl- C * C * C * C * C Sl- C * C * C * C * C Sl- C * C * C * C * C Sl- C * C * C * C * C Sl- C * C * C * C * C Sl- C * C * C * C * C Sl- C * C * C * C * C Sl- C * C * C * C * C Sl- C * C * C * C * C Sl- C * C * C * C * C Sl- C * C * C * C * C Sl- C * C * C * C * C Sl- C * C * C * C Sl- C * C * C * C * C Sl- C * C Sl- C * C * C Sl- C * C Sl- C * C * C Sl- C * C Sl- C * C * C Sl- C * C Sl- C * C Sl- C * C * C Sl- C * C	0.64	
305	AS A	Sr- C * C * C - O Sr- C * C * C - S Sr- C * C * C - S Sr- C * C * C - O Sr- C * C * C - O Sr- C * C * C - S Sr- C * C * C * C - S Sr- C * C * C * C - S Sr- C * C * C * C - S Sr- C * C * C * C - S Sr- C * C * C * C - S Sr- C * C * C * C - S Sr- C	1.72	
306	AS	Sr- C * C - C - O Sr- C * C - C - S Sl- C - C * C - C - S Sl- C - C * C - C - S Sl- C - C * C - C - S Sl- C - C * C - C - S Sl- C - C * C - C - S Sl- C - C * C - C - C - C	1.61	

Screen Number		Fragment Definition	Frequency Percent
306	AS AS AS AS	O - C - C * C - I S - C - C * C - Br S - C - C * C - Cl S - C - C * C - F S - C - C * C - I	1.61 (continued)
307	AS A	Br- C - C - C - O Br- C - C - C - S Cl- C - C - C - S Cl- C - C - C - S F - C - C - C - S F - C - C - C - S I - C - C - C - S I - C - C - C - S O - C - C - C - S O - C - C - C - S O - C - C - C - C - S O - C - C - C - C - S S - C - C - C - C - I S - C - C - C - C - T S - C - C - C - C - T S - C - C - C - C - T	0.86
308	AS A	Br C C C O N Br C C C S N Cl C C C O N Cl C C C S N F C C C S N I C C C S N I C C C S N I C C C S N I C C C S N I C C C S N I C C C S N I C C C C Br N O C C C F N O C C C C I N S C C C C I <t< td=""><td>0.26</td></t<>	0.26
309	AS A	Br C C C C O O Br C C C S O S Br C C C S S S Cl C C C S O Cl C C S S S Cl C C C C S S S Cl C C C C	0.37

Screen Number			F	ragmei Definitio	nt on		Frequency Percent
309	AS A			00000000000000000	80000000000000000	S Br Cl F I Br Cl F I Br Cl F I I I	0.37 (continued)
310	AS A	As () As		000000000000000000000000000000000000000	O O O O O O S S S S S S A B P S S T A B P S S T A B B C C C C C C C C C C C C C C C C C	AS B P S S I T E AS B P S E I N O P S	2.38

Screen Number				Fi De	ragme efinitio	nt on		Frequency Percent
310	AS	As	0	С	С	С	Se	2.38 (continued)
	AS	As	0	C	C	C	Si	,
	AS	As	0	C	С	C	Te	
	AS	As	0	С	C	Cl		
	AS	As	0	С	C	F		
	AS	As	0	C	С	I		
	AS	As	0	C	C	N		
	AS	As	0	С	C	0		
	AS	As	0	С	C	P		
	AS	As	0	С	C	S		
	AS	As	0	C	С	Se		
	AS	As	0	C	C	Si		
	AS	As	0	C	C	Te		
	AS	As	S	C	C	As		
	AS	As	S	C	C	В		
	AS AS	As	S S	C C	C C	Br C	7\ ~	
	AS AS	As As	s S	C	C	C	As B	
	AS	As	S	C	C	C	Br	
	AS	As	S	C	C	C	Cl	
	AS	As	S	C	C	C	F	
	AS	As	S	C	C	C	I	
	AS	As	S	C	C	C	N	
	AS	As	S	C	C	C	0	
	AS	As	S	C	C	C	P	
	AS	As	S	C	С	C	S	
	AS	As	S	C	C	C	Se	
	AS	As	S	С	C	С	Si	
	AS	As	S	C	C	C	Te	
	AS	As	S	C	С	Cl		
	AS	As	S	C	C	F		
	AS	As	S	С	C	I		
	AS	As	S	C	C	N		
	AS	As	S	C	C	0		
	AS	As	S	C	C	P		
	AS	As	S S	C C	C C	S		
	AS	As	S	C	C	Se Si		
	AS AS	As As	S	C	C	Te		
	AS	В	C	C	C	0	As	
	AS	В	C	C	C	0	В	
	AS	В	C	C	C	0	P	
	AS	В	C	C	C	0	Se	
	AS	В	C	C	С	0	Si	
	AS	В	C	С	C	0	Te	
	AS	В	C	C	С	S	As	
	AS	В	C	C	C	S	В	
	AS	В	C	C	С	S	P	
	AS	В	C	C	C	S	Se	
	AS	В	С	С	C	S	Si	
	AS	В	С	С	С	S	Te	
	AS	В	С	C	0	As		
	AS	В	C	C	0	В		
	AS	В	C	C	0	P		
	AS	В	С	С	0	Se		

Screen Number				Fragr Defin	ment nition		Frequency Percent	
310	AS A	B B B B B B B B B B B B B B B B B B B	\$ \$ \$ \$ \$ \$ \$ 0 0 0 0 0 0 0 0 0 0 0 0 0		S S S S S S S S S S S S S S S S S S S	As B P Se Si Te As B P Se Si Te	2.38	(continued)
	AS A	C1 C			O O O O O O S S S S S S S B P E E E E E E E E E E E E E E E E E E	As B P Se Si Te As B P Se Si Te		

Screen Number	Fragme Definiti	ent on	Frequency Percent	
310 AS AS AS	F C C C C C C C C C C C C C C C C C C C	ON P O Se O Si O Te S As S B S P S Se S Si Te As B P Se Si Te As B P Se Si Te O As B P Se Si Te O Se S Si E	Frequency Percent 2.38	(continued)
AS A	I C C C C I C C C I C C C C C I C C C C	S Se S Si S Te As B P Se Si Te As B P Se Si Te O As O D O Se O Te S S B P		

Screen Number			Fragment Definition					Frequency Percent		
310	AS AS AS AS AS	N N N N N	C C C C C	0 0 0 0 0	C C C O O	S S As B P	Se Si Te		2.38	(continued)
	AS AS AS AS AS AS AS	N N N N N	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 5 5 5	Se Si Te As B P				
	AS AS AS AS AS	N O O O	C C C C C	C C C C C	S S C C C C	Si Te O O O	As B P Se			
	AS AS AS AS AS	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 5 5 5 5	Si Te As B P Se Si			
	AS AS AS AS AS AS AS	0 0 0 0 0			0 0 0 0	S As B P Se Si	Te			
	AS AS AS AS AS	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 5 5 5 5	Te As B P Se Si				
	AS AS AS AS AS	O P P P P	0 0 0 0 0	0 0 0 0 0	S C C C C C	Te 0 0 0 0 0 0	As B P Se Si			
	AS AS AS AS AS	P P P P	0 0 0 0 0	0 0 0 0 0	C C C C C	0 5 5 5 5	Te As B P Se Si			
	AS AS AS AS	P P P P	C C C C	C C C C	C O O O	S As B P Se	Te			

Screen Fragment Definition	Frequency Percent		
Sample S	2.38	(continued)	

Screen Number				Fr De	agmer efinitio	nt on		Frequency Percent
310	AS AS	Se Se	0	C C	C C	Br C	As	2.38 (continued)
	AS	Se	0	C	C	C	В	
	AS	Se	0	C	C	C	Br	
	AS	Se	0	C	C	C	Cl	
	AS	Se	0	C	C	C	F	
	AS	Se	0	С	C	C	I	
	AS	Se	0	C	С	C	N	
	AS	Se	0	C	C	C	0	
	AS	Se	0	C	C	C	P	
	AS	Se	0	C	C	C	S	
	AS	Se	0	C	C	C	Se	
	AS	Se	0	C	C	C	Si	
	AS	Se	0	C	C	C	Te	
	AS	Se	0	C	C	Cl		
	AS	Se	0	C C	C C	F		
	AS AS	Se Se	0	C	C	I N		
	AS	Se	0	C	C	0		
	AS	Se	0	C	C	P		
	AS	Se	0	C	C	S		
	AS	Se	0	C	С	Se		
	AS	Se	0	C	C	Si		
	AS	Se	0	C	C	Te		
	AS	Se	S	C	C	As		
	AS	Se	S	C	С	В		
	AS	Se	S	C	C	Br	_	
	AS	Se	S S	C C	C C	C C	As B	
	AS AS	Se Se	s S	C	C	C	Вr	
	AS	Se	S	C	C	C	Cl	
	AS	Se	S	C	C	C	F	
	AS	Se	S	C	С	C	I	
	AS	Se	S	С	C	C	N	
	AS	Se	S	C	C	C	0	
	AS	Se	S	C	C	C	P	
	AS	Se	S	C	C	C	S	
	AS	Se	S	C	C	C	Se	
	AS	Se	S	C	C	C	Si	
	AS AS	Se Se	S S	C C	C C	C Cl	Te	
	AS	Se	S	C	C	F		
	AS	Se	S	C	C	I		
	AS	Se	S	C	С	N		
	AS	Se	S	C	C	0		
	AS	Se	S	C	C	P		
	AS	Se	S	C	C	S		
	AS	Se	S	C	C	Se		
	AS	Se	S	C	С	Si		
	AS	Se Si	S C	C	C	Te	7\ ~	
	AS AS	Si	C	C C	C C	0	As B	
	AS	Si	C	C	C	0	P	
	AS	Si	C	C	C	0	Se	
	AS	Si	С	С	С	0	Si	

Screen Number				Fr De	agmer efinitio	nt n		Frequency Percent		
310	AS AS	Si Si	C C	C C	C C	0 S	Te As	2.38 (continued)		
	AS	Si	C	C	C	S	В			
	AS	Si	C	C	C	S	P			
	AS	Si	C	C	C	S	Se			
	AS	Si	C	C	C	S	Si			
	AS	Si	С	С	С	S	Te			
	AS	Si	С	С	0	As				
	AS	Si	С	C	0	В				
	AS	Si	C	C	0	P				
	AS	Si	C	C	0	Se				
	AS	Si	C	C	0	Si				
	AS	Si	C	C	0	Te				
	AS	Si	C	C	S	As				
	AS	Si	C	С	S	В				
	AS	Si	C	C	S	P				
	AS	Si	C	C	S	Se				
	AS	Si	C	C	S	Si				
	AS	Si	C	C	S	Te				
	AS	Si Si	0	C C	С	As				
	AS AS	Si	0	C	C C	B Br				
	AS AS	Si	0	C	C	С	As			
	AS	Si	0	C	C	C	В			
	AS	Si	0	C	C	C	Br			
	AS	Si	0	C	C	C	Cl			
	AS	Si	0	C	C	C	F			
	AS	Si	0	C	C	C	I			
	AS	Si	0	С	С	С	N			
	AS	Si	0	C	C	C	0			
	AS	Si	0	C	C	C	P			
	AS	Si	0	C	C	C	S			
	AS	Si	0	C	C	C	Se			
	AS	Si	0	C	C	C	Si			
	AS	Si	0	С	С	C	Te			
	AS	Si	0	C	C	Cl				
	AS	Si	0	C	C	F				
	AS	Si Si	0	C C	C C	I				
	AS AS	Si	0	C	C	N O				
	AS	Si	0	C	C	P				
	AS	Si	0	C	C	S				
	AS	Si	0	C	C	Se				
	AS	Si	0	C	C	Si				
	AS	Si	0	C	C	Te				
	AS	Si	S	C	С	As				
	AS	Si	S	C	C	В				
	AS	Si	S	C	C	Br				
	AS	Si	S	C	C	C	As			
	AS	Si	S	C	С	C	В			
	AS	Si	S	C	C	C	Br			
	AS	Si	S	С	С	С	Cl			
	AS	Si	S	C	C	C	F			
	AS	Si	S	C	C	C	I			
	AS	Si	S	С	С	С	N			

Screen Number			Fragme Definiti	ent ion		Frequency Percent		
310	AS A	Si S S Si S Si S Si S Si S Si S Si S S		C C C C C F I N O P S e	O P S Se Si Te	2.38	(continued)	
	AS A	Si S Si S Te C		Si Te O O O O O O S S S S S S S S S E P S E S I T E	As B P Se Si Te As B P Se Si Te			
	AS A	Te C Te O			As B Br Cl F I N O P S Si Se			

Screen Number			Fragr Defin	ment iition		Frequency Percent		
	AS A	Te O O O O O O O O O O O O O O O O O O O		ition CCI F I N O P S S T A S B B C C C C C C C C C C C C C C C C C	As B Br Cl F I N O P S Se Si Te	Percent 2.38	(continued)	
311	AS AS AS AS AS AS AS AS AS	As C		C As B Br Cl F I N		1.14		
	AS	As C As C As C As C B C B C B C B C		P S Se Si Te As B Br Br				

Screen Number				Fr De	agmer efinitio	nt n	Frequency Percent		
311	AS	В	С	С	С	F	1.14 (continued)		
	AS	В	C	C	C	I			
	AS AS	B B	C C	C C	C C	N			
	AS AS	В	C	C	C	O P			
	AS AS	В	C	C	C	S			
	AS	В	C	C	C	Se			
	AS	В	C	C	C	Si			
	AS	В	C	C	C	Te			
	AS	Br	C	C	C	As			
	AS	Br	C	C	C	В			
	AS	Br	С	С	С	P			
	AS	Br	C	C	C	Se			
	AS	Br	C	C	C	Si			
	AS	Br	C	C	C	Te			
	AS	Cl	C	C	C	As			
	AS	Cl	C	C	C	В			
	AS	Cl	C	C	C	P			
	AS	Cl	С	C	C	Se			
	AS	Cl	С	С	С	Si			
	AS	Cl	C	C	C	Te			
	AS	F	C	C	C	As			
	AS	F F	C C	C C	C C	B P			
	AS AS	F	C	C	C	se			
	AS AS	F	C	C	C	Si			
	AS	F	C	C	C	Te			
	AS	I	C	C	C	As			
	AS	I	C	C	C	В			
	AS	I	C	C	C	Р			
	AS	I	C	C	C	Se			
	AS	I	C	C	C	Si			
	AS	I	C	C	C	Te			
	AS	N	С	C	C	As			
	AS	N	С	С	C	В			
	AS	N	С	С	С	Р			
	AS	N	C	C	C	Se			
	AS	N	C	C	C	Si			
	AS AS	N O	C C	C C	C C	Te As			
	AS	0	C	C	C	B			
	AS	0	C	C	C	P			
	AS	0	C	C	C	Se			
	AS	0	C	C	C	Si			
	AS	0	C	C	С	Te			
	AS	P	C	C	C	As			
	AS	P	C	C	C	В			
	AS	P	C	C	C	Br			
	AS	P	C	C	C	Cl			
	AS	P	C	C	C	F			
	AS	Р	С	С	С	I			
	AS	P	C	C	C	N			
	AS	P	C	C	С	0			
	AS	P	C	C	C	P			
	AS	Р	С	С	С	S			

Screen Number				Fr De	agmer efinitio	nt n	Frequency Percent		
311	AS	P	С	С	С	Se	1.14 (continued)		
	AS	P	С	С	C	Si			
	AS	P	C	C	C	Te			
	AS	S	С	С	C	As			
	AS	S	С	C	C	В			
	AS	S	С	C	C	P			
	AS	S	C	C	C	Se			
	AS	S	C	С	C	Si			
	AS	S	С	С	C	Te			
	AS	Se	С	С	C	As			
	AS	Se	C	C	C	В			
	AS	Se	C	C C	C	Br			
	AS	Se	C C	C	C C	Cl F			
	AS AS	Se Se	C	C	C	I			
	AS	Se	C	C	C	N			
	AS	Se	C	C	C	0			
	AS	Se	C	C	C	P			
	AS	Se	C	C	C	S			
	AS	Se	C	С	C	Se			
	AS	Se	C	C	C	Si			
	AS	Se	C	С	C	Te			
	AS	Si	С	С	C	As			
	AS	Si	C	C	C	В			
	AS	Si	C	C	C	Br			
	AS	Si	C	С	C	Cl			
	AS	Si	С	С	C	F			
	AS	Si	C	C	C	Ι			
	AS	Si	C	C	C	N			
	AS	Si Si	C C	C C	C C	O P			
	AS AS	Si	C	C	C	S			
	AS AS	Si	C	C	C	s Se			
	AS	Si	C	C	C	Si			
	AS	Si	C	C	C	Te			
	AS	Te	C	C	C	As			
	AS	Te	С	С	С	В			
	AS	Te	C	C	C	Br			
	AS	Te	C	C	C	Cl			
	AS	Te	C	C	C	F			
	AS	Te	C	C	C	I			
	AS	Te	C	С	C	N			
	AS	Te	C	C	C	0			
	AS	Te	C	C	C	P			
	AS	Te	C	C	C	S			
	AS AS	Te Te	C C	C C	C C	Se Si			
	AS AS	Te	C	C	C	Te			
	AU	16	C	C	C	16			
312	AS		C *				2.00		
	AS		C *						
	AS		C *						
	AS		C *						
	AS AS		C *						
	MD	CT-	<u> </u>	C -	CI				

Screen Number		Fragment Definition	Frequency Percent	
312	AS C1- AS F - AS F - AS F - AS I - AS I - AS I -	C * C - F C * C - I C * C - Br C * C - Cl C * C - F C * C - I C * C - Br C * C - Cl C * C - F C * C - I	2.00	(continued)
313	AS Br- AS Br- AS C1- AS C1- AS C1- AS C1- AS F- AS F- AS F- AS F- AS I- AS I- AS I-	C - C - Br C - C - Cl C - C - F C - C - I C - C - Br C - C - Cl C - C - F C - C - I C - C - Br C - C - Cl C - C - F C - C - F C - C - I C - C - I C - C - I C - C - I C - C - F C - C - I C - C - I	0.90	
314	AS C1- AS F - AS I - AS N * AS N *	C * C * N C * C * N C * C * N C * C * N C * C - Br C * C - Cl C * C - F C * C - I	1.48	
315	AS C1- AS F - AS I - AS N - AS N - AS N -	C * C - N C * C - N C * C - N C * C - N C * C - Br C * C - Cl C * C - F C * C - I	2.34	
316	AS C1- AS F - AS I - AS N * AS N *	C - C * N C - C * N C - C * N C - C * N C - C - Br C - C - Cl C - C - F C - C - I	0.64	

Screen Number		 	Fragment Definition	F	requency Percent
317	AS AS AS AS AS AS AS AS	I - C - C N - C - C N - C - C			1.12
318	AS AS AS AS AS AS AS AS	Br C C C C C C C C C C C C C C C C C C C	N C N C N C C C C C	N N N Br Cl F	1.48
319	AS A	Br C C C Br C C C C C C C C C C C C C C		O S O S O S Br Cl F I I Br Cl F I I Br Cl F I I I I I I I I I I I I I I I I I I	1.84
320	AS A		- N - C N - C N - C N - C N - C N - C C * C C * C C * C C * C C * C C * C C * C C * C C * C C * C C * C -	- S - O - S - O - S - Br - Cl - F - I - Br - Cl	0.72

Screen Number			Fragmo Definit	ent ion	Frequency Percent
321	AS AS AS AS AS AS AS	Br CCl CF CI CN NN	C N C N C C C C C C	N N N Br Cl F	0.82
322	AS A	Br CBr CCl CCl CCl CCl CCl CCl CCl CCl CCl CC		O S O S O S Br Cl F I Br Cl F I	0.39
323	AS A	C1- C 7 F - C 7 F - C 7 I - C 7 O * C 7 O * C 7 O * C 7 O * C 7	C * S C * C * S C * C * S C * C * S C * C *		0.61
324	AS		C - S C - O C - S C - O C - S C - O C - S C - O C - S C - O C - S C - C C - S C - F		2.95

Screen Number		Fragment Definition	Frequency Percent
324	AS AS AS AS	S - C * C - Br S - C * C - Cl S - C * C - F S - C * C - I	2.95 (continued)
325	AS A	Br- C - C * O Br- C - C * S Cl- C - C * S Cl- C - C * S F - C - C * S F - C - C * S I - C - C * S I - C - C * S O * C - C - Br O * C - C - F O * C - C - I S * C - C - Cl S * C - C - I S * C - C - I S * C - C - I	0.45
326	AS A	Br- C - C - O Br- C - C - S Cl- C - C - S Cl- C - C - S F - C - C - S F - C - C - S I - C - C - S I - C - C - S O - C - C - Br O - C - C - C O - C - C - F O - C - C - C S - C - C - Br S - C - C - C S - C - C S - C - C - T	2.53
327	AS A	Br C C O C N Br C C S C N Cl C C O C N Cl C C S C N F C C C C N F C C C C N I C C C N N I C C C C N I C C C C N I C C C C I N C O C C C I N C S C C C I N C S C C C I N C S C C C I N C S C C C I N C S C C C I	0.27

Screen Number				Fi De	ragme efinitio	nt on		Freque Pero	ncy ent
328	AS A	Br Br Cl Cl F F F I I I I O O O O O O O S S S S S S S		000000000000000000000000000000000000000	00 % % 00 % % 00 % % 00 % % 00 0 0 0 0		O S O S O S O S O S O S Br Cl F I Br		64
329	AS A	Br Br Cl F F I I N N N N	000000000000000000000000000000000000000	0000000000000000	0 3 0 3 0 3 0 3 0 3 0 0 0 0 0 0 0 0 0 0	N N N N N Br Cl F I Br Cl F		0.	30
330	AS AS AS AS	Br Br Br Cl	C C C C	C C C C	0 0 5 5 0	0 S 0 S		0.	43

Screen Number			F D	ragment efinition		Frequency Percent		
330	AS A	C1 C1 F F F I I I I I O O O O O O O S S S S S S	00000000000000000000000000000000000000		S O S O S O S O S Br Cl F I I I I I I I I I I I I I I I I I I	0.43	(continued)	
331	AS A	As As As As As As As B B B B B B B B B B		As BrCFINOPSSies BrCFINOPSSies As		1.39		

Screen Number				Fr De	agment efinition	Frequency Percent	
331	AS AS	Br Br	C C	C C	B P	1.39	(continued)
	AS	Br	C	C	Se		
	AS	Br	C	С	Si		
	AS	Br	C	C	Te		
	AS	Cl	C	С	As		
	AS	Cl	C	C	В		
	AS	Cl	C	C	P		
	AS	Cl	C	C	Se		
	AS	Cl	C	C	Si		
	AS	Cl	C	C	Te		
	AS	F	C	C	As		
	AS	F F	C C	C C	B P		
	AS AS	F	C	C	Se		
	AS	F	C	C	Si		
	AS	F	C	C	Te		
	AS	I	C	C	As		
	AS	I	C	C	В		
	AS	I	C	С	P		
	AS	I	C	С	Se		
	AS	I	C	С	Si		
	AS	I	C	C	Te		
	AS	N	C	C	As		
	AS	N	C	C	В		
	AS	N N	C C	C C	P		
	AS AS	N	C	C	Se Si		
	AS	N	C	C	Te		
	AS	0	C	C	As		
	AS	0	C	C	В		
	AS	0	C	C	P		
	AS	0	C	С	Se		
	AS	0	C	С	Si		
	AS	0	C	C	Te		
	AS AS	P P	C C	C C	As B		
	AS AS	P	C	C	Br		
	AS	P	C	C	Cl		
	AS	P	C	C	F		
	AS	P	C	C	I		
	AS	P	C	C	N		
	AS	P	C	C	0		
	AS	P	C	C	P		
	AS	P	C	C	S		
	AS	P	C C	C C	Se		
	AS AS	P P	C	C	Si Te		
	AS	S	C	C	As		
	AS	S	C	C	В		
	AS	S	C	C	P		
	AS	S	C	C	Se		
	AS	S	C	С	Si		
	AS	S	С	C	Te		
	AS	Se	С	С	As		

Screen Number				Fi D	ragmer efinitio	nt n	Fre	equency Percent	
331	AS AS	Se Se Se	C C C	C C C	B Br Cl			1.39	(continued)
	AS AS	Se	C	C	F				
	AS AS	Se	C	C	I				
	AS	Se	C	C	N				
	AS	Se	C	C	0				
	AS	Se	С	С	P				
	AS	Se	C	C	S				
	AS	Se	C	C	Se				
	AS	Se	C	C	Si				
	AS	Se	C	C	Te				
	AS	Si	C	C	As				
	AS AS	Si Si	C C	C C	B				
	AS AS	Si	C	C	Br Cl				
	AS	Si	C	C	F				
	AS	Si	C	C	I				
	AS	Si	С	С	N				
	AS	Si	C	C	0				
	AS	Si	C	С	P				
	AS	Si	C	C	S				
	AS	Si	C	C	Se				
	AS	Si	C	C	Si				
	AS AS	Si Te	C C	C C	Te As				
	AS	Te	C	C	B				
	AS	Te	C	C	Br				
	AS	Te	С	С	Cl				
	AS	Te	C	С	F				
	AS	Te	C	C	I				
	AS	Te	С	C	N				
	AS	Te	C	C	0				
	AS AS	Te Te	C C	C C	P S				
	AS AS	Te	C	C	s Se				
	AS	Te	C	C	Si				
	AS	Te	C	C	Te				
332	AS	Br	C	N	C	Br		0.12	
	AS	Br	C	N	C	Cl			
	AS	Br	С	N	C	F			
	AS	Br	C	N	C	I			
	AS AS	Cl Cl	C C	N N	C C	Br Cl			
	AS AS	Cl	C	N	C	F			
	AS	Cl	C	N	C	I			
	AS	F	C	N	C	Br			
	AS	F	C	N	C	Cl			
	AS	F	C	N	C	F			
	AS	F	C	N	C	I			
	AS	I	C	N	C	Br			
	AS	I	C	N	C	Cl			
	AS	I	C	N	C	F			
	AS	I	С	N	С	I			

Screen Number			Fr De	agmer efinitio	nt n	Frequency Percent
333	AS AS AS AS AS AS AS	Br CCl CF CI CN CCN CCN CCN CCN CCN CCN CCN CCN C	N N N N N	0 0 0 0 0 0 0	N N N Br Cl F	0.53
334	AS A	Br C Br C C C C C C C C C C C C C C C C	N N N N N N N N N N N N N N N N N N N	0000000000000000	O S O S O S Br Cl F I Br Cl F I	0.18
335	AS A	Br C C C C C C C C C C C C C C C C C C C	N N N N C C C C C	O S O S O S Br Cl F I Br Cl F I		0.09
336	AS	Br CBr CCl CCl CCl CCF CCF CF CF	0	0 8 0 8 0 8 0 8 0 8		0.37

Screen Number		Fragment Definition	Frequency Percent	
336	AS A	I C O O O I C O S I C S O I C S S O I C S S S O O C C I O S C D B C O S C D I S O C D B C S O C D I S S C D B C S C D I S C D I S	0.37 (conti	.nued)
337	AS	N C C C C N	14.57	
338	AS AS	N * C * C * C * C - N N - C * C * C * C * N	2.18	
339	AS AS	N * C * C * C - C * N N * C - C * C * C * N	0.58	
340	AS AS	N * C * C * C - C - N N - C - C * C * C * N	1.89	
341	AS	N * C * C - C * C * N	0.18	
342	AS	N - C * C * C * C - N	2.33	
343	AS AS	N - C * C * C - C - N N - C - C * C * C - N	1.25	
344	AS	N - C - C - C - N	3.17	
345	AS AS AS AS	N C C C C O N C C C C S O C C C N S C C C C N	25.91	
346	AS AS AS AS	N * C * C * C * C - O N * C * C * C * C - S O - C * C * C * C * N S - C * C * C * C * N	5.92	
347	AS AS AS AS	N - C * C * C * C * C * O N - C * C * C * C * S O * C * C * C * C - N S * C * C * C * C - N	2.82	

Screen Number		Fragment Definition	Frequency Percent
348	AS AS AS	N - C * C * C * C - O N - C * C * C * C - S O - C * C * C * C - N S - C * C * C * C - N	5.24
349	AS AS AS	N - C * C * C - C - O N - C * C * C - C - S O - C - C * C * C - N S - C - C * C * C - N	1.64
350	AS AS AS	N - C - C * C * C - O N - C - C * C * C - S O - C * C * C - C - N S - C * C * C - C - N	1.95
351	AS AS AS	N - C - C * C - C - O N - C - C * C - C - S O - C - C * C - C - N S - C - C * C - C - N	0.50
352	AS AS AS	N - C - C - C * C - O N - C - C - C * C - S O - C * C - C - C - N S - C * C - C - C - N	0.41
353	AS AS AS	N - C - C - C - C - O N - C - C - C - C - S O - C - C - C - C - N S - C - C - C - C - N	4.12
354	AS	N * C * C * C * N	11.18
355	AS AS	N * C * C * C - N	4.85
356	AS AS	N * C * C - C * N N * C - C * C * N	0.63
357	AS AS	N * C * C - C - N N - C - C * C * N	3.16
358	AS AS	N * C - C * C - N N - C * C - C * N	0.16
359	AS	N * C - C - C * N	0.19
360	AS AS	N * C - C - C - N N - C - C - C * N	1.65
361	AS	N - C * C * C - N	1.84
362	AS AS	N - C * C - C - N N - C - C * C - N	1.32
363	AS	N - C - C - C - N	3.46

Screen Number			Fragment Definition	Frequency Percent
364	AS AS	N C N N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.16
365	AS AS AS AS	N C N C O N S N	C C N O C C N S C C C N C C N	2.43
366	AS AS AS AS	O - N -	* C * C - N - O * C * C - N - S - C * C * C * N - C * C * C * N	0.35
367	AS AS AS AS	N - C		1.02
368	AS AS AS AS	N * C	* C * C * O * C * C * S * C * C * N	4.16
369	AS AS AS	N * C	* C * C - O * C * C - S * C * C * N * C * C * N	9.05
370	AS A	N * C * C * C * C * C * C * C * C * C *	- C * C * O - C - C * O * C - C * O - C * C * O - C - C * O * C - C * S	2.56

Screen Number				gment inition	Frequenc Percer	
371	AS AS AS	N * O -	C * C - C * C - C - C * C - C *	C - S C * N	4.7	3
372	AS AS AS	N *	C - C * C - C * C * C - C * C -	C - S C * N	0.7	3
373	AS AS AS	N *	C - C - C - C - C - C -	C - S C * N	1.0	7
374	AS AS AS	N -	C * C * C * C * C * C *	C * S	1.6	5
375	AS AS AS	O -	C * C * C * C * C * C *	C - S C - N	4.4	5
376	AS AS AS	O -	C * C - C * C - C - C *	C - S C - N	1.9	2
377	AS AS AS	N -	C - C * C - C * C * C - C * C -	C - S	2.9	3
378	AS AS AS	O -	C - C - C - C - C - C -	C - S C - N	7.2	1
379	AS AS AS	N N	C C C C C C S C	C O C C C	N 0.8 N N	0
380	AS AS AS AS AS AS AS	N N O O S	C C C C C C C C C C C C C C C C C C C	C O C S C C C C C C	O 1.7 S O S N N N N	4

Screen Number		Fragment Definition	Frequency Percent
381	AS AS AS AS AS AS AS	N - C * C * C - O - O N - C * C * C - O - S N - C * C * C - S - O N - C * C * C - S - S O - O - C * C * C - N S - O - C * C * C - N S - S - C * C * C - N	0.76
382	AS	N * C * C * N	12.36
383	AS AS	N * C * C - N N - C * C * N	4.10
384	AS	N * C - C * N	0.52
385	AS AS	N * C - C - N N - C - C * N	4.56
386	AS	N - C * C - N	1.42
387	AS	N - C - C - N	8.72
388	AS AS	N C C N C N N C N C C N	5.86
389	AS AS AS	N C C N C O N C C N C S O C N C C N S C N C C N	12.87
390	AS AS AS AS	N * C * C * N - C - O N * C * C * N - C - S O - C - N * C * C * N S - C - N * C * C * N	1.34
391	AS AS AS	N - C * C - N - C - O N - C * C - N - C - S O - C - N - C * C - N S - C - N - C * C - N	0.42
392	AS AS AS	N - C - C - N - C - O N - C - C - N - C - S O - C - N - C - C - N S - C - N - C - C - N	5.48
393	AS AS	N C C N N N N C C N	3.65
394	AS AS AS AS	N C C N O N C C N S O N C C N S N C C N	3.00

Screen Number		Fragment Definition	Frequency Percent
395	AS AS AS AS	N * C * C - N - O N * C * C - N - S O - N - C * C * N S - N - C * C * N	0.48
396	AS AS AS	N - C * C - N - O N - C * C - N - S O - N - C * C - N S - N - C * C - N	0.72
397	AS AS AS	N - C - C - N - O N - C - C - N - S O - N - C - C - N S - N - C - C - N	0.82
398	AS AS AS	N * C * C * O N * C * C * S O * C * C * N S * C * C * N	8.97
399	AS AS AS	N * C * C - O N * C * C - S O - C * C * N S - C * C * N	5.41
400	AS AS AS	N * C - C * O N * C - C * S O * C - C * N S * C - C * N	0.73
401	AS AS AS	N * C - C - O N * C - C - S O - C - C * N S - C - C * N	6.21
402	AS AS AS	N - C * C * O N - C * C * S O * C * C - N S * C * C - N	1.91
403	AS AS AS	N - C * C - O N - C * C - S O - C * C - N S - C * C - N	6.11
404	AS AS AS	N - C - C * O N - C - C * S O * C - C - N S * C - C - N	2.34
405	AS AS AS	N - C - C - O N - C - C - S O - C - C - N S - C - C - N	16.92

Screen Number			Fragment Definition	Frequency Percent
406	AS AS AS AS	N C C N C C N C O N C S	S C N C C N	4.07
407	AS AS AS AS	N - C - C	- O - C - N - S - C - N - C - C - N - C - C - N	0.13
408	AS AS AS AS AS AS AS	N C C C N C C C O C C O C S C S C S	O C S S C O S C C N C C N	4.14
409	AS AS AS AS AS AS AS	N - C * C N - C * C N - C * C N - C * C O - C - O O - C - S S - C - S	- S - C - O - S - C - S - C * C - N - C * C - N - C * C - N	0.36
410	AS AS AS AS AS AS AS	N - C - C N - C - C N - C - C N - C - C O - C - C O - C - S S - C - S	- S - C - O - S - C - S - C - C - N - C - C - N - C - C - N	1.42
411	AS AS AS AS	N C C N C C N C C N S C	S N C N	0.75
412	AS AS AS AS AS AS AS	N C C C N C C C N C C C C C C C C C C C	O S S O S S C N C N C N	1.53

Screen Number		Fragment Definition	Frequency Percent
413	AS AS AS AS AS AS AS	N * C * C - O - O N * C * C - O - S N * C * C - S - O N * C * C - S - S O - O - C * C * N S - O - C * C * N S - S - C * C * N	0.27
414	AS AS AS AS AS AS AS	N - C * C - O - O N - C * C - O - S N - C * C - S - O N - C * C - S - S O - O - C * C - N O - S - C * C - N S - S - C * C - N	0.52
415	AS AS AS	N C N C C O N C N C C S O C C N C N S C C N C N	7.06
416	AS AS AS	N * C * N * C * C - O N * C * N * C * C - S O - C * C * N * C * N S - C * C * N * C * N	1.32
417	AS AS AS AS	N * C * N * C - C - O N * C * N * C - C - S O - C - C * N * C * N S - C - C * N * C * N	0.56
418	AS AS AS AS	N - C - N - C * C - O N - C - N - C * C - S O - C * C - N - C - N S - C * C - N - C - N	0.25
419	AS AS AS AS	N - C - N - C - C - O N - C - N - C - C - S O - C - C - N - C - N S - C - C - N - C - N	0.42
420	AS	N C N C N	6.57
421	AS AS	N * C * N * C - N N - C * N * C * N	3.26
422	AS	N * C - N - C * N	0.08
423	AS	N - C * N * C - N	0.98
424	AS	N - C - N - C - N	0.19

Screen Number				Fra De	agmer finitio	nt n		Frequency Percent
425	AS AS AS	N N O	C C	N N N	C C C	O S N		9.70
	AS	S	С	N	С	N		
426	AS	N	* C *		C -	_		5.47
	AS AS	N	* C *	N *	_	-		
	AS		- C *					
427	AS	N	* C *	N -	C -	0		0.50
	AS	N	* C *		C -			
	AS		- C -		_			
	AS	S	- C -	N *	C *	N		
428	AS		* C -					1.59
	AS	N	_					
	AS AS		- C -					
	110	5	C	11	C	11		
429	AS		- C *					1.44
	AS AS		- C *		_			
	AS		- C *			N		
430	AS		- C -		C -			0.75
	AS AS		- C -		C -			
	AS		- C -		C -			
431	AS	N	С	N	N			3.67
	AS	N	N	C	N			
432	AS	N	* C *	N *	N			3.24
432	AS	N	* N *					3.21
422	7. C	3.7	+ 0	3.7	3.7			٥ . ٢ .
433	AS AS	N N	* C -	N -				0.55
434	AS		- C *					1.27
	AS	IN	* N *	C -	IN			
435	AS		- C -					0.73
	AS	N	- N -	C -	N			
436	AS	N	С	N	N	С	N	0.65
437	AS	N	С	N	0			1.66
	AS	N	C	N	S			
	AS AS	0 S	N N	C C	N N			
	AD	5	Ţ.V	C	IN			
438	AS	N			0			0.48
	AS AS	N O	* C *		S N			
	AS AS		* N *					

Screen Number			Fragment Definition	Frequency Percent
439	AS AS AS AS	N * C - N * C - O - N - S - N -	N - S C * N	0.35
440	AS AS AS AS	O - N -	N - S	0.51
441	AS AS AS AS AS AS AS AS	N C N C N C O C S C S C	O C C C C C C C C C C C C C C C C C C C	O 4.35 S O S N N N N N
442	AS AS	N C	O C N S C N	1.12
443	AS AS AS AS AS AS AS AS	N C N C N C O C O C S C	O C O O C S S C O S C S O C N S C N O C N	0.95
444	AS AS AS AS	N * C * N * C * N * O * N * S *	S * N C * N	0.42
445	AS AS AS AS	N - C - N - C - N - O - N - S -	S - N C - N	0.06
446	AS AS AS AS AS AS AS	N C N C N C O O S S S S	O O O S S S O S S C N C N C N	0.48
447	AS AS AS	N N N O C S C	C C C C C C C C N C N	O 3.35 S N

Screen Number		Fragment Definition	Frequency Percent
448	AS AS AS	N - N - C * C * C - O N - N - C * C * C - S O - C * C * C - N - N S - C * C * C - N - N	0.33
449	AS	N N C C N N	0.42
450	AS AS AS	N N C C N O N N C C N S O N C C N N S N C C N N	0.51
451	AS AS AS	N N C C O N N C C S O C C N N S C C N N	4.22
452	AS AS AS	N * N * C * C - O N * N * C * C - S O - C * C * N * N S - C * C * N * N	0.46
453	AS AS AS	N * N * C - C - O N * N * C - C - S O - C - C * N * N S - C - C * N * N	0.74
454	AS AS AS	N - N - C * C - O N - N - C * C - S O - C * C - N - N S - C * C - N - N	0.91
455	AS AS AS	N - N - C - C - O N - N - C - C - S O - C - C - N - N S - C - C - N - N	0.80
456	AS AS AS AS AS AS	N N C C O O N N C C O S N N C C S O N N C C S S O O C C N N O S C C N N S S C C N N	0.36
457	AS	N N C N N	1.08
458	AS AS AS AS	N N C N O N N C N S O N C N N S N C N N	0.17

Screen Number				Fragment Definition		Frequency Percent
459	AS	N I	v C	0		6.66
	AS	N I	1 C	S		
	AS		C N	N		
	AS	S (C N	N		
460	AS		1 * C	* 0		1.19
	AS		1 * C	* S		
	AS		2 * N	* N		
	AS	S * (C * N	* N		
461	AS		1 * C	- 0		2.61
	AS		_	- S		
	AS	0 - (* N		
	AS	S - (C * N	* N		
462	AS		1 - C			0.41
	AS		1 - C			
	AS		C - N C - N			
	AS	5 - (N	* N		
463	AS	N - 1	1 - C	- 0		2.57
	AS		1 - C			
	AS		C - N			
	AS	S - (C - N	- N		
464	AS	N I	N N	N		0.60
465	AS	N I	1 O	Ο		0.17
	AS	N I		S		
	AS	N I	N S	0		
	AS	N I	N S	S		
	AS		N C	N		
	AS		S N	N		
	AS		и с	N		
	AS	S S	S N	N		
466	AS) C		C O	0.71
	AS) C	C	C S	
	AS		S C	C	C 0	
	AS		S C	C	C S N	
	AS AS		C C	C C	O N S N	
	AS AS		C C	C	O N	
	AS		C C	C	S N	
467	AS	N () C	С	0	0.63
	AS) C	C	S	0.03
	AS		S C	C	0	
	AS		S C	C	S	
	AS	0 (C C	0	N	
	AS		C C		N	
	AS		C C		N	
	AS	S (C C	S	N	

Screen Number		Fragment Definition	Frequency Percent
468	AS AS AS AS AS AS AS	N O C O N O C S N S C O N S C S O C O N O C S N S C S N S C S N	0.58
469	AS AS AS AS AS AS AS	O * C * C * C * C - O O - C * C * C * C * C * O O * C * C * C * C * C - S O - C * C * C * C * C * S S * C * C * C * C * C - O S - C * C * C * C * C * S S * C * C * C * C * S	5.73
470	AS AS AS AS	0 - C * C * C * C - 0 0 - C * C * C * C - S S - C * C * C * C - 0 S - C * C * C * C - S	7.27
471	AS AS AS AS AS AS AS	O - C * C * C - C - O O - C - C * C * C - C - O O - C * C * C - C - S O - C - C * C * C - S S - C * C * C - C - O S - C - C * C * C - C - S S - C * C * C - C - S S - C * C * C - C - S	4.77
472	AS AS AS AS	O - C * C - C * C - O O - C * C - C * C - S S - C * C - C * C - O S - C * C - C * C - S	0.22
473	AS AS AS AS AS AS AS	O - C * C - C - C - O O - C - C - C - C - O O - C * C - C - C - S O - C - C - C - C - S S - C * C - C - C - O S - C * C - C - C - S S - C * C - C - C - S S - C * C - C - C - S	0.86
474	AS AS AS	O - C - C * C - C - O O - C - C * C - C - S S - C - C * C - C - O S - C - C * C - C - S	1.17
475	AS AS AS	O - C - C - C - C - O O - C - C - C - C - S S - C - C - C - C - O S - C - C - C - C - S	4.56

Screen Number		Fragment Definition	Frequency Percent
476	AS AS AS AS AS AS AS	O C C C N O O C C C N S O N C C C C O O N C C C S S C C C N O S C C C N S S N C C C S	2.08
477	AS AS AS AS AS AS AS	O - C * C * C - N - O O - C * C * C - N - S O - N - C * C * C - O O - N - C * C * C - S S - C * C * C - N - O S - C * C * C - N - S S - N - C * C * C - S	0.52
478	AS AS AS AS	0 * C * C * C * O 0 * C * C * C * S S * C * C * C * O S * C * C * C * S	2.29
479	AS AS AS AS AS AS AS	O * C * C * C - O O - C * C * C * C * O O * C * C * C - S O - C * C * C * S S * C * C * C - O S - C * C * C * C - S S - C * C * C * S S - C * C * C * S	7.38
480	AS AS AS AS AS AS AS	O * C * C - C - O O - C - C * C * O O * C * C - C - S O - C - C * C * S S * C * C - C - O S - C - C * C * O S * C * C - C - S C * C * C * S	3.12
481	AS AS AS AS	0 * C - C - C * 0 0 * C - C - C * S S * C - C - C * 0 S * C - C - C * S	0.19
482	AS AS AS	O - C * C * C - O O - C * C * C - S S - C * C * C - O S - C * C * C - S	6.67

Screen Number		Fragment Definition	Frequency Percent
483	AS AS AS AS AS AS AS	O - C * C - C - O O - C - C * C - O O - C * C - C - S O - C - C * C - S S - C * C - C - O S - C - C * C - O S - C - C * C - S S - C * C - C - S S - C * C - C - S	6.12
484	AS AS AS	O - C - C - C - O O - C - C - C - S S - C - C - C - O S - C - C - C - S	6.65
485	AS A	O C C C O O O O O O O O O O O O O O O O	1.62
486	AS AS AS AS AS AS AS	O C C N C O O C C N C S O C N C C O O C N C C S S C C N C C S S C C N C S S C N C C S S C N C C S	14.96
487	AS AS AS AS AS AS AS	O - C * C - N - C - O O - C * C - N - C - S O - C - N - C * C - O O - C - N - C * C - O S - C * C - N - C - S S - C * C - N - C - S S - C * C - N - C - S S - C - N - C * C - O S - C - N - C * C - S	2.07
488	AS AS AS AS AS AS AS	O - C - C - N - C - O O - C - C - N - C - S O - C - N - C - C - O O - C - N - C - C - S S - C - C - N - C - O S - C - N - C - C - S S - C - C - N - C - S S - C - C - N - C - S S - C - N - C - S	7.07

Screen Number		Fragment Definition	Frequency Percent
489	AS AS AS AS AS AS AS	O C C N O O C C N S O N C C O O N C C S S C C N O S C C N S S N C C S	2.88
490	AS AS AS AS AS AS AS	O - C * C - N - O O - C * C - N - S O - N - C * C - O O - N - C * C - S S - C * C - N - O S - C * C - N - S S - N - C * C - S S - N - C * C - S	0.94
491	AS AS AS AS AS AS AS	O - C - C - N - O O - C - C - N - S O - N - C - C - O O - N - C - C - S S - C - C - N - O S - C - C - N - S S - N - C - C - S	1.05
492	AS AS AS AS	0 * C * C * O 0 * C * C * S S * C * C * O S * C * C * S	4.00
493	AS AS AS AS AS AS AS	O * C * C - O O - C * C * O O * C * C - S O - C * C * S S * C * C - O S - C * C * O S * C * C - S C * C * C * S	6.17
494	AS AS AS AS	O * C - C * O O * C - C * S S * C - C * O S * C - C * S	0.42
495	AS AS AS AS AS AS AS	O * C - C - O O - C - C * O O * C - C - S O - C - C * S S * C - C - O S - C - C * O S * C - C - S S - C - C * S	5.40

Screen Number		Fragment Definition	Frequency Percent
496	AS AS AS AS	O - C * C - O O - C * C - S S - C * C - O S - C * C - S	7.98
497	AS AS AS	O - C - C - O O - C - C - S S - C - C - O S - C - C - S	9.90
498	AS A	O C C O C O C O O C O O C O C O C S C O O C S C O O C O O C S C O O C S C C O O C S C C O O C S C C O C S C C O C S C C O C S C C O C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C C S C S C C S C S C C S C C S	7.30
499	AS A	O C C O O O O O O O O O O O O O O O O O	1.31
500	AS AS AS	O C N C O O C N C S S C N C O S C N C S	8.18
501	AS AS AS	O - C * N * C - O O - C * N * C - S S - C * N * C - O S - C * N * C - S	4.24

Screen Number		Fragment Definition	Frequency Percent
502	AS AS AS AS AS AS AS	O - C * N - C - O O - C - N * C - O O - C * N - C - S O - C - N * C - S S - C * N - C - O S - C - N * C - O S - C - N * C - S S - C * N - C - S	0.50
503	AS AS AS AS	O - C - N - C - O O - C - N - C - S S - C - N - C - O S - C - N - C - S	0.77
504	AS AS AS AS	O C N N C O O C N N C S S C N N C O S C N N C S	1.09
505	AS AS AS AS AS AS AS	O C N O O C N S O N C O O N C S S C N O S C N S S N C O S N C S	1.66
506	AS AS AS AS AS AS AS	O * C * N * O O * C * N * S O * N * C * O O * N * C * S S * C * N * O S * C * N * S S * N * C * S	0.08
507	AS AS AS AS AS AS AS	O * C - N - O O * C - N - S O - N - C * O O - N - C * S S * C - N - O S * C - N - S S - N - C * S S - N - C * S	0.24
508	AS AS AS AS AS AS AS AS	O - C * N * O O - C * N * S O * N * C - O O * N * C - S S - C * N * O S - C * N * S S * N * C - O S * N * C - S	0.24

Screen Number		Fragment Definition	Frequency Percent
509	AS AS AS AS AS AS AS	O - C - N - O O - C - N - S O - N - C - O O - N - C - S S - C - N - O S - C - N - S S - N - C - S	0.83
510	AS AS AS AS AS AS AS	O C O C O O C S C S O C S C S S C O C S S C O C S S C S C S S C S C S	1.46
511	AS A	O C O O O O O O C O S O C S S C O O S C S S S C S S S C S S S S	0.48
512	AS AS AS AS	O N C C N O O N C C N S S N C C N O S N C C N S	0.33
513	CS	1 - 2 - 2 - 2 - 2 - 1	0.16
514	CS CS	1 - 2 - 2 - 2 - 2 - 2 2 - 2 - 2 - 2 - 2 -	5.75
515	CS CS	1 - 2 - 2 - 2 - 2 - 3 3 - 2 - 2 - 2 - 2 - 1	3.74
516	CS CS	1 - 2 - 2 - 2 - 3 3 - 2 - 2 - 2 - 1	5.04
517	CS CS	1 2 2 2 4 4 2 2 2 1	0.88

Screen Number					Fr De	agm efini	ent tion	: 1		Frequency Percent
518	CS CS		- 2 - 3							5.12
519	CS CS		- 2 * 3							3.51
520	CS CS		- 2 - 3							3.25
521	CS CS		- 2 * 3							2.60
522	CS CS	1	- 2 - 3							4.06
523	CS CS	1 4	2		2	3 2		4		0.61
524	CS CS	1 1	2 4		2	4 2		1		0.95
525	CS CS	1 2	2 4		2	4 2		2		1.19
526	CS	1	- 2	-	3 -	- 2	-	1		2.00
527	CS CS		- 2 - 2							3.69
528	CS CS	1 2	- 2 * 2			2 3			2 1	3.10
529	CS CS	1	- 2 * 2							7.71
530	CS CS		- 2 - 2							1.46
531	CS CS		- 2 * 2							9.36
532	CS CS		- 2 - 2							4.54
533	CS CS		- 2 * 3							12.00
534	CS CS		- 2 - 3							10.15
535	CS CS		- 2 - 3							4.42
536	CS CS		- 2 * 3							3.69

Screen Number					Fra De	agm finit	ent	:			Frequency Percent
537	CS CS		- 2 - 3								4.54
538	CS CS	1	- 2 * 3								2.36
539	CS CS	1 3	- 2 - 3								3.11
540	CS CS	1 4	2		3 2	4 1					1.45
541	CS CS	1 4	2		4 1						3.93
542	CS CS		- 3 - 2								8.38
543	CS	1	- 3	*	2 *	2	*	3	-	1	1.79
544	CS	1	- 3	-	2 -	2	-	3	-	1	5.14
545	CS CS		- 3 - 3							2 1	8.51
546	CS CS		- 3 - 3		2 - 2 -						5.61
547	CS CS	1	- 3 - 3			2	*	3		3 1	8.12
548	CS CS CS CS CS CS CS	4	- 3 - 3 - 3 - 3 - 3 - 3	* * * * * * *		3 2 3 2 3 2	* * * * * * *		- - - - -	4 4 1 1	3.16
549	CS	1	- 3	*	2 *	3	-	1			7.34
550	CS	1	- 3	-	2 -	3	-	1			4.92
551	CS CS		- 3 - 3								9.61
552	CS CS		- 3 * 3								16.48
553	CS CS		- 3 - 3								9.26
554	CS CS		- 3 - 2								5.66

Screen Number		Fragment Definition	Frequency Percent
555	CS CS	1 - 3 * 2 * 3 - 3 3 - 3 * 2 * 3 - 1	8.64
556	CS CS	1 - 3 - 2 - 3 * 3 3 * 3 - 2 - 3 - 1	10.21
557	CS CS	1 - 3 - 2 - 3 - 3 3 - 3 - 2 - 3 - 1	9.58
558	CS CS	1 - 3 * 2 * 3 * 3 - 1 1 - 3 * 3 * 2 * 3 - 1	5.64
559	CS CS	1 - 3 * 2 * 3 * 3 - 2 2 - 3 * 3 * 2 * 3 - 1	4.75
560	CS CS	1 - 3 * 2 * 3 * 3 - 3 3 - 3 * 3 * 2 * 3 - 1	3.92
561	CS CS	1 3 2 3 4 4 3 2 3 1	4.25
562	CS CS CS	1 - 3 * 2 * 3 - 4 1 - 3 * 3 * 3 - 4 4 - 3 * 2 * 3 - 1 4 - 3 * 3 * 3 - 1	1.86
563	CS CS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.81
564	CS CS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.90
565	CS	1 - 3 * 3 - 1	9.71
566	CS	1 - 3 - 3 - 1	9.12
567	CS CS	1 - 3 * 3 - 2 2 - 3 * 3 - 1	19.66
568	CS CS	1 - 3 - 3 - 2 - 2 2 - 2 - 3 - 3 - 1	8.72
569	CS CS	1 - 3 - 3 * 2 * 2 * 2 2 * 2 * 2 * 3 - 3 - 1	11.24
570	CS CS	1 - 3 - 3 * 2 * 2 * 3 3 * 2 * 2 * 3 - 3 - 1	14.08
571	CS CS	1 - 3 - 3 * 2 * 3 3 * 2 * 3 - 3 - 1	14.13
572	CS CS	1 - 3 - 3 - 2 - 3 3 - 2 - 3 - 3 - 1	10.45

Screen Number							igm finit					Frequency Percent
573	CS CS				· 3						2 1	6.02
574	CS CS				· 3						3 1	5.24
575	CS CS				3							15.42
576	CS CS				- 3		3 1					18.41
577	CS CS				- 3							9.33
578	CS	1	- :	3 *	3	*	3	-	1			9.40
579	CS	1	- :	3 -	- 3	-	3	-	1			4.71
580	CS CS				3							7.26
581	CS CS				3							4.79
582	CS CS				3							6.31
583	CS	1	- :	3 *	3	*	3	*	3	-	1	5.57
584	CS CS				3						2 1	6.50
585	CS CS				· 3							4.88
586	CS CS				3							1.75
587	CS CS	1 4		3	4 1							8.58
588	CS	1		4	1							27.09
589	CS CS	1 2			2 1							7.98
590	CS CS	1 2		4 2	2		2 4		2			4.04
591	CS CS				3							7.10
592	CS CS	1 2		4 3	3		2		3 4		2	7.50

Screen Number								ıgm finit					Frequency Percent
593	CS	2	-	2	-	2	-	2	-	2			8.75
594	CS	2	*	2	*	2	*	2	*	2	*	2	1.48
595	CS	2	-	2	-	2	-	2	-	2	-	2	6.35
596	CS CS	2		2	*		*	2	*	2	*	3 2	29.58
597	CS CS			2							- -		7.57
598	CS CS			2				2			- *	2	20.16
599	CS CS			2				2					5.76
600	CS CS	2	*	2	*			2		3		3	21.07
601	CS CS	2	*	_	*			2				3 2	18.36
602	CS CS	2 4		2		2		2		4			3.60
603	CS CS	2		2				3					11.91
604	CS CS			2									10.91
605	CS CS	2		2	*	2		3		2	*	3	15.52
606	CS CS			2						3			7.09
607	CS CS	2		2									9.62
608	CS CS	2	*	2	*	2	*	3	*	3		3	18.39
609	CS CS	2 4		2		2		3		4			9.00
610	CS CS	2		2		2 4		4 2		2		2	2.71
611	CS	2	-	2	-	3	-	2	-	2			6.69
612	CS CS	2	*	2	*	3	*	2	*			3 2	30.31

Screen Number					Fr De	agm efinit	ent tion	:			Frequency Percent
613	CS CS		- 2 - 2		3 - 2 -				-		4.05
614	CS CS	2	- 2 - 2								11.92
615	CS CS	2			3 - 2 -				*		4.78
616	CS CS	2		*	3 * 2 *	2	*	3 2		3	26.19
617	CS CS	2			3 2	2		3		4 2	5.82
618	CS CS	2	- 2 * 3	- -	3 -		*	2			9.84
619	CS CS		- 2 - 3								7.18
620	CS CS		- 2 * 3		3 -						5.14
621	CS CS		- 2 - 3			3 2	- -				3.49
622	CS CS	2			3 * 3 *	_	*	3	*	3	18.21
623	CS CS	2			4	2		3			4.49
624	CS CS		* 3 - 2		2 -		- *	3			16.28
625	CS CS CS	2 2 3 3	* 3	- -	2 - 2 -	2 2	- -	3	*	3 2	7.26
626	CS	2	- 3	*	2 *	2	*	3	-	2	7.61
627	CS	2	- 3	-	2 -	2	-	3	-	2	1.66
628	CS CS		- 3 - 3								12.20
629	CS CS CS CS CS CS	2 2 2 4 4 4	- 3 - 3 - 3 - 3 - 3 - 3	* * * * *	3 * 2 * 2 *	3 2 3 2 3 2	* * * *	3 3 3 3 3		4 4 2 2 2	3.11

Screen Number						Fra Def	gm finit	ent	:			Frequency Percent
630	CS	2	* 3	-	2	-	3	*	2			8.16
631	CS CS		* 3 - 3					- *				12.19
632	CS	2	- 3	*	2	*	3	-	2			7.31
633	CS	2	- 3	-	2	-	3	-	2			4.05
634	CS CS	_	* 3 * 2		_		_				3	10.75
635	CS CS		* 3 * 3	- -								8.27
636	CS CS		* 3 - 3			- -						12.48
637	CS CS	2 -			2		3	-				9.61
638	CS CS		- 3 * 3									5.52
639	CS CS		- 3 - 3			- -						7.60
640	CS CS CS	2 -	* 3 - 3 - 3	*	2 3 3 2	- - -	3 2 2 3	* - - *		- * * -	2 2 3 2	2.57
641	CS CS CS CS CS CS CS	2 2 2 3 3	* * * * * * * * * * * * * * * * * * * *	- - - -	2 3 3 2 2 3	- - -	3 2 2 3 3 2	- - - - -	3 3 3 3 3 3	*	2	6.65
642	CS CS		- 3 - 3									6.04
643	CS CS		* 3 * 3									19.19
644	CS CS CS	3	* 3 * 3 - 3	- *	2	-	3 2	*	3 3	- *	3 2	1.81
645	CS CS		- 3 - 3									3.14

Screen Number						 	Fra Def	gm	ent	:			Frequency Percent
646	CS CS CS	2	2 - 2 - 1 - 1 -	3	*	3 2	* * *	3	- - -	4 4 2 2			2.00
647	CS CS		2 1	3 2		2		4					11.56
648	CS	2	2 *	3	-	3	*	2					16.88
649	CS	2	2 –	3	*	3	-	2					10.47
650	CS	2	2 –	3	-	3	-	2					10.14
651	CS CS		2 *	3			-		- *	3			10.75
652	CS CS		2 –		- -				<u>-</u>				8.39
653	CS CS		2 *	3	*		*	2	*	3	*	3	15.08
654	CS CS		2 –		*		*	_	*	3	- -	3 2	5.08
655	CS CS		2 *	3				3					15.68
656	CS CS		2 * 3 -			3	- *	3					11.02
657	CS CS			3			- -	3					10.72
658	CS CS			3									11.95
659	CS CS		2 –										8.93
660	CS CS		2 *										4.50
661	CS	2	2 *	3	-	3	-	3	*	2			4.23
662	CS	2	2 –	3	*	3	*	3	-	2			4.50
663	CS	2	2 –	3	-	3	-	3	-	2			2.35
664	CS CS		2 *										3.93
665	CS CS		2 *										2.75

Screen Number		Fragment Definition	Frequency Percent
666	CS CS	2 - 3 * 3 * 3 - 3 3 - 3 * 3 * 3 - 2	4.43
667	CS CS	2 - 3 * 3 - 3 * 3 3 * 3 - 3 * 3 - 2	1.37
668	CS CS CS	2 * 3 - 3 - 3 * 3 - 2 2 - 3 * 3 - 3 - 3 * 2 2 - 3 * 3 - 3 - 3 * 3 3 * 3 - 3 - 3 * 3 - 2	0.60
669	CS CS CS	2 * 3 - 3 - 3 - 3 * 2 2 * 3 - 3 - 3 - 3 * 3 3 * 3 - 3 - 3 - 3 * 2 3 * 3 - 3 - 3 - 3 * 3	0.80
670	CS	2 - 3 * 3 * 3 * 3 - 2	2.95
671	CS CS	2 * 3 * 3 * 3 * 3 * 3 3 * 3 * 3 * 3 * 3 *	15.97
672	CS CS CS	2 * 3 - 3 - 3 * 3 - 3 3 - 3 * 3 - 3 - 3 * 2 3 * 3 - 3 - 3 * 3 - 3 3 - 3 * 3 - 3 - 3 * 3	0.96
673	CS CS	2 - 3 * 3 * 3 * 3 - 3 3 - 3 * 3 * 3 * 3 - 2	3.75
674	CS CS	2 - 3 * 3 - 4 4 - 3 * 3 - 2	1.37
675	CS CS	2 * 3 * 4 4 * 3 * 2	7.98
676	CS CS	2 * 3 - 4 4 - 3 * 2	14.83
677	CS CS	2 - 3 * 4 4 * 3 - 2	2.36
678	CS CS	2 - 3 - 4 4 - 3 - 2	4.44
679	CS CS	2 * 4 - 2 2 - 4 * 2	3.49
680	CS CS	2 4 2 3 3 2 4 2	8.39
681	CS CS	2 * 4 * 3 3 * 4 * 2	7.86
682	CS CS	2 * 4 - 3 3 - 4 * 2	3.23

Screen Number					F D	ragn efini	nent tior	i I			Frequency Percent
683	CS CS	2 - 3 *									2.54
684	CS CS	2 – 3 –									6.98
685	CS	3 –	2	-	2 -	- 2	-	2	-	3	4.23
686	CS	3 –	2	-	2 -	- 2	-	3			6.76
687	CS CS	3 4	2		2	2 2		4			2.05
688	CS CS	3 – 3 –				- 3 - 2				3	6.96
689	CS CS	3 – 3 *				- 3 - 2		3			9.91
690	CS CS	3 – 3 –			2 -	- 3 - 2		3			9.42
691	CS CS	3 4	2		2	3 2		4			10.08
692	CS CS	3 4	2		2	4					8.19
693	CS	3 –	2	-	3 -	- 2	-	3			7.87
694	CS CS	3 4	2		3 2	2		3		4	3.99
695	CS CS	3 – 3 –			3 -	- 3 - 2					5.68
696	CS	3 –	3	*	2 '	* 2	*	3	-	3	4.81
697	CS CS CS CS CS CS	4 – 4 –	3 3 3 3 3	* * * * *	2 3 3	* 3 * 2 * 3 * 2 * 3	* * * * * * *	3 3 3 3	- - - - -	4 4	2.13
698	CS	3 *	3	-	2 -	- 3	*	3			2.62
699	CS CS	3 * 3 -									5.51
700	CS	3 –	3	*	2 ,	٠ 3	-	3			5.43

Screen														
Number								Def						Percent
701	CS		3	-	3	-	2	-	3	-	3			5.59
702	CS CS		3	-	3	*	2	*		*	3		3	2.80
703	CS CS		3 4		3		2		3		4			7.93
704	CS CS CS		3 3 4 4	_ _ _ _	3	* * *	2 3 2 3	* * *	3	_ _ _ _	4 3			1.89
705	CS CS		3 4		3 2		2		4					9.47
706	CS		3	*	3	-	3	*	3					3.65
707	CS CS			*		- -		- *	3					6.09
708	CS		3	-	3	*	3	-	3					7.00
709	CS		3	-	3	-	3	-	3					2.79
710	CS CS		3	*	3	- *		*	3	- *	3			1.08
711	CS		3	*	3	-	3	-	3	*	3			0.75
712	CS		3	-	3	*	3	*	3	-	3			2.35
713	CS		3	*	3	*	3	*	3	*	3	*	3	7.52
714	CS		3	-	3	*	3	*	3	*	3	-	3	1.64
715	CS CS		3 4		3		3		4					10.43
716	CS CS		4	-	3	*	3	- - -	3					1.02
717	CS CS		3 4		3		4							15.49
718	CS		3		4		3							13.57
719	CS CS					- *								2.12

Screen Number					Fragm Defini	nent tion		Frequency Percent
720	CS C	4.	H 2 H 2 H 2 H 2 H 2 H 3 H 3 H 3 H 3 H 3	2 2 2 2 3 3 3 3 2 2 2 2 2 3 3 3 3 3 3 3	2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 3 2 2 3	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3.12
721	CS CS CS CS CS CS CS	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 2 1 2 1 2 1 3 1 3	2 2 3 3 2 2 2 3 3	2 3 2 3 2 3 2 3 2	4 4 4 4 4 4 4		5.18
722	CS CS CS	<u> </u>	1 2 1 3	2 3 2 3	4 4 4			3.29
723	CS	4	ł 2	4				2.20
724	CS CS CS	2. 2. 2.	1 - 3 1 - 3	* 2 * 2 * 3 * 3	* 2 * 3 * 2 * 3	* 3 * 3 * 3	44444	0.32
725	CS CS		l – 3 l – 3					0.78
726	CS	4	1 3	4				1.90
727	CS	4	4					5.62
728	BS BS		A *1A A *2A					33.57
729	BS BS		A *1A A *4A					25.91
730	BS	I	*1A	*4A	*1A			23.66
731	BS	I	*2A	*1A	*2A			14.60

Screen Number					Fragm Definit			Frequency Percent
732	BS BS		*2A *4A					12.99
733	BS	А	*4A	*1A	*4A			3.43
734	BS	А	*1A	*1A	*1A	*1A		46.26
735	BS BS		*1A *2A					18.26
736	BS BS		*1A *4A					15.85
737	BS BS		*1A *1A					23.12
738	BS BS		*1A *4A					3.11
739	BS	А	*1A	*4A	*4A	*1A		5.55
740	BS	А	*2A	*1A	*1A	*2A		15.67
741	BS BS		*2A *4A					10.64
742	BS	А	*4A	*1A	*1A	*4A		5.18
743	BS	А	*4A	*4A	*4A	*4A		70.68
744	BS	А	*1A	*1A	*1A	*1A	*1A	32.33
745	BS BS		*1A *2A					11.68
746	BS	А	*1A	*1A	*2A	*1A	*1A	12.39
747	BS	А	*1A	*1A	*4A	*1A	*1A	8.65
748	BS	А	*1A	*4A	*4A	*4A	*1A	1.67
749	BS	А	*2A	*1A	*1A	*1A	*2A	4.86
750	BS BS BS	A	*2A *4A *4A	*1A	*1A	*1A	*2A	5.71
751	BS	А	*2A	*1A	*2A	*1A	*2A	1.80
752	BS BS BS BS BS	A A A A	*2A *2A *2A *4A *4A *4A	*1A *1A *1A *1A *1A	*4A *4A *2A *2A *4A	*1A *1A *1A *1A *1A	*2A *4A *2A *4A *2A	1.61
	-5	11						

Screen Number		Fragment Definition	Frequency Percent
753	BS	A *1A *4A *4A *4A -1A	11.30
	BS	A *1A *4A *4A *4A -4A	
	BS	A -1A *4A *4A *4A *1A	
	BS	A -4A *4A *4A *1A	
754	BS	A *2A *1A *1A *1A -1A	16.45
	BS	A *4A *1A *1A *1A -1A	
	BS	A -1A *1A *1A *2A	
	BS	A -1A *1A *1A *4A	
755	BS	A *2A *1A *1A *1A -2A	7.52
	BS	A *2A *1A *1A *1A -4A	
	BS	A *4A *1A *1A -2A	
	BS	A *4A *1A *1A -4A	
	BS	A -2A *1A *1A *2A	
	BS	A -2A *1A *1A *4A	
	BS BS	A -4A *1A *1A *1A *2A A -4A *1A *1A *1A *4A	
756	D.G	. +0. +1. +1. +0. 1.	0.46
756	BS	A *2A *1A *1A *2A -1A	8.46
	BS	A -1A *2A *1A *1A *2A	
757	BS	A *2A *1A *1A *4A -1A	7.07
	BS	A *4A *1A *1A *2A -1A	
	BS	A *4A *1A *1A *4A -1A	
	BS	A -1A *2A *1A *1A *4A	
	BS	A -1A *4A *1A *1A *2A	
	BS	A -1A *4A *1A *1A *4A	
758	BS	A *2A *1A *1A *4A -4A	0.97
	BS	A *4A *1A *1A -4A -4A	
	BS	A -4A *4A *1A *1A *2A	
	BS	A -4A *4A *1A *1A *4A	
759	BS	A *2A *1A *2A *1A -1A	13.23
	BS	A *2A *1A *4A *1A -1A	
	BS	A *4A *1A *2A *1A -1A	
	BS	A *4A *1A *4A *1A -1A	
	BS	A -1A *1A *2A *1A *2A A -1A *1A *2A *1A *4A	
	BS BS	A -1A "1A "2A "1A "4A A -1A *1A *4A *1A *2A	
	BS	A -1A *1A *4A *1A *4A	
760	BS	A *2A *1A *2A *1A -2A	4.14
	BS	A *2A *1A *2A *1A -4A	
	BS	A *2A *1A *4A *1A -2A	
	BS	A *2A *1A *4A *1A -4A	
	BS	A *4A *1A *2A *1A -2A	
	BS	A *4A *1A *2A *1A -4A	
	BS	A *4A *1A *4A *1A -2A	
	BS	A *4A *1A *4A *1A -4A	
	BS	A -2A *1A *2A *1A *2A	
	BS	A -2A *1A *2A *1A *4A	
	BS	A -2A *1A *4A *1A *2A A -2A *1A *4A *1A *4A	
	BS	A -ZA "IA "4A ^IA ^4A	

Screen Number		Fragment Definition	Frequency Percent	
760	BS BS BS	A -4A *1A *2A *1A *2A A -4A *1A *2A *1A *4A A -4A *1A *4A *1A *2A A -4A *1A *4A *1A *4A	4.14	(continued)
761	BS BS BS	A *2A *1A *4A *4A -1A A *4A *1A *4A *4A -1A A -1A *4A *4A *1A *2A A -1A *4A *4A *1A *4A	3.88	
762	BS BS BS	A *2A *1A *4A *4A -4A A *4A *1A *4A *4A -4A A -4A *4A *4A *1A *2A A -4A *4A *4A *1A *4A	0.88	
763	BS BS	A *1A *1A *1A -1A A -1A *1A *1A *1A	43.32	
764	BS BS BS	A *1A *1A *1A -2A A *1A *1A *1A -4A A -2A *1A *1A *1A A -4A *1A *1A *1A	16.95	
765	BS BS BS BS BS	A *1A *1A *2A -1A A *1A *1A *4A -1A A *1A *1A *4A -4A A -1A *2A *1A *1A A -1A *4A *1A *1A A -4A *4A *1A *1A	24.92	
766	BS BS BS BS BS	A *1A *4A *1A -1A A *1A *4A *1A -2A A *1A *4A *1A -4A A -1A *1A *4A *1A A -2A *1A *4A *1A A -4A *1A *4A *1A	15.89	
767	BS BS BS	A *1A *4A *4A -1A A *1A *4A *4A -4A A -1A *4A *4A *1A A -4A *4A *4A *1A	14.13	
768	BS BS BS	A *2A *1A *1A -1A A *4A *1A *1A -1A A -1A *1A *1A *2A A -1A *1A *1A *4A	26.83	
769	BS BS BS BS BS BS	A *2A *1A *1A -2A A *2A *1A *1A -4A A *4A *1A *1A -2A A *4A *1A *1A -4A A -2A *1A *1A *2A A -2A *1A *1A *4A A -4A *1A *1A *2A A -4A *1A *1A *2A	10.73	

Screen Number		Fragment Definition	Frequency Percent
770	BS BS BS BS BS BS	A *2A *1A *2A -1A A *2A *1A *4A -1A A *4A *1A *2A -1A A *4A *1A *4A -1A A -1A *2A *1A *2A A -1A *2A *1A *4A A -1A *4A *1A *2A A -1A *4A *1A *4A	17.24
771	BS BS BS BS	A *2A *1A *4A -4A A *4A *1A *4A -4A A -4A *4A *1A *2A A -4A *4A *1A *4A	3.22
772	BS BS	A *4A *4A *1A -1A A -1A *1A *4A *4A	12.57
773	BS BS BS	A *4A *4A *1A -2A A *4A *4A *1A -4A A -2A *1A *4A *4A A -4A *1A *4A *4A	5.73
774	BS BS	A *1A *1A *1A -1A -1A A -1A -1A *1A *1A *1A	31.09
775	BS BS BS	A *1A *1A *1A -1A -2A A *1A *1A *1A -1A -4A A -2A -1A *1A *1A *1A A -4A -1A *1A *1A *1A	15.47
776	BS BS BS	A *1A *4A *4A -1A -2A A *1A *4A *4A -1A -4A A -2A -1A *4A *4A *1A A -4A -1A *4A *4A *1A	3.05
777	BS BS BS	A *2A *1A *1A -1A -2A A *2A *1A *1A -1A -4A A -2A -1A *1A *1A *2A A -4A -1A *1A *1A *2A	4.54
778	BS BS BS	A *4A *1A *1A -1A -2A A *4A *1A *1A -1A -4A A -2A -1A *1A *1A *4A A -4A -1A *1A *1A *4A	2.25
779	BS BS BS	A *4A *1A *2A -1A -2A A *4A *1A *2A -1A -4A A -2A -1A *2A *1A *4A A -4A -1A *2A *1A *4A	1.43
780	BS BS BS	A *4A *1A *4A -1A -2A A *4A *1A *4A -1A -4A A -2A -1A *4A *1A *4A A -4A -1A *4A *1A *4A	0.18

Screen Number		Fragment Definition	Frequency Percent
781	BS BS	A *2A *1A -1A A -1A *1A *2A	20.76
782	BS BS	A *2A *1A -2A A -2A *1A *2A	7.00
783	BS BS	A *2A *1A -4A A -4A *1A *2A	1.11
784	BS BS	A *1A *1A -1A -1A A -1A -1A *1A *1A	38.04
785	BS BS BS	A *1A *1A -1A -2A A *1A *1A -1A -4A A -2A -1A *1A *1A A -4A -1A *1A *1A	19.91
786	BS BS BS	A *1A *1A -2A -1A A *1A *1A -4A -1A A -1A -2A *1A *1A A -1A -4A *1A *1A	4.41
787	BS BS	A *1A *4A -1A -1A A -1A -1A *4A *1A	2.71
788	BS BS BS	A *1A *4A -1A -2A A *1A *4A -1A -4A A -2A -1A *4A *1A A -4A -1A *4A *1A	0.92
789	BS BS BS	A *2A *1A -1A -1A A *4A *1A -1A -1A A -1A -1A *1A *2A A -1A -1A *1A *4A	15.32
790	BS BS BS BS BS BS	A *2A *1A -1A -2A A *2A *1A -1A -4A A *4A *1A -1A -2A A *4A *1A -1A -4A A -2A -1A *1A *2A A -2A -1A *1A *4A A -4A -1A *1A *2A A -4A -1A *1A *4A	6.14
791	BS BS BS BS BS BS	A *2A *1A -2A -1A A *2A *1A -4A -1A A *4A *1A -2A -1A A *4A *1A -4A -1A A -1A -2A *1A *2A A -1A -2A *1A *4A A -1A -4A *1A *2A A -1A -4A *1A *2A	2.06
792	BS BS	A *4A *4A -1A -1A A -1A -1A *4A *4A	50.44

Screen Number		Fragment Definition	Frequency Percent
793	BS BS	A *4A *4A -1A -2A A -2A -1A *4A *4A	21.99
794	BS BS	A *4A *4A -1A -4A A -4A -1A *4A *4A	14.39
795	BS	A * A - A * A	24.19
796	BS	A *1A -1A *1A	4.83
797	BS BS	A *1A -1A *2A A *2A -1A *1A	2.29
798	BS BS	A *1A -1A *4A A *4A -1A *1A	17.07
799	BS	A *1A -2A *1A	0.27
800	BS	A *2A -1A *2A	0.82
801	BS BS	A *2A -1A *4A A *4A -1A *2A	6.81
802	BS	A *4A -1A *4A	4.33
803	BS BS	A * A - A * A * A - A A - A * A * A - A * A	16.99
804	BS BS	A * A - A * A - A A - A * A - A * A	15.25
805	BS	A * A - A * A - A * A	1.90
806	BS BS BS BS BS	A *1A -1A -3A A *2A -1A -3A A *4A -1A -3A A -3A -1A *1A A -3A -1A *2A A -3A -1A *4A	3.87
807	BS BS BS	A *1A -4A -4A A *4A -4A -4A A -4A -4A *1A A -4A -4A *4A	1.54
808	BS BS	A *2A -1A -1A A -1A -1A *2A	14.59
809	BS BS BS	A *2A -1A -2A A *2A -1A -4A A -2A -1A *2A A -4A -1A *2A	8.95
810	BS BS	A *4A -4A -1A A -1A -4A *4A	2.32

Screen Number		Fragment Definition	Frequency Percent
811	BS	A * A - A - A * A	20.58
812	BS	A *1A -1A -1A *1A	3.71
813	BS	A *1A -1A -1A *2A	1.34
	BS	A *2A -1A -1A *1A	
814	BS	A *1A -1A -1A *4A	8.26
	BS	A *4A -1A -1A *1A	
815	BS	A *1A -1A -2A *1A	1.79
	BS	A *1A -1A -4A *1A	
	BS	A *1A -1A -4A *4A	
	BS	A *1A -2A -1A *1A	
	BS	A *1A -4A -1A *1A	
	BS	A *1A -4A -4A *1A A *1A -4A -4A *4A	
	BS BS	A *2A -1A -4A *4A	
	BS	A *4A -1A -4A *4A	
	BS	A *4A -4A -1A *1A	
	BS	A *4A -4A -1A *2A	
	BS	A *4A -4A -1A *4A	
	BS	A *4A -4A -4A *1A	
	BS	A *4A -4A -4A *4A	
816	BS	A *1A -2A -1A *2A	2.34
	BS	A *1A -2A -1A *4A	
	BS	A *1A -4A -1A *2A	
	BS	A *1A -4A -1A *4A	
	BS	A *2A -1A -2A *1A	
	BS	A *2A -1A -4A *1A	
	BS	A *4A -1A -2A *1A	
	BS	A *4A -1A -4A *1A	
817	BS	A *2A -1A -1A *2A	0.35
818	BS	A *2A -1A -1A *4A	1.80
	BS	A *4A -1A -1A *2A	
819	BS	A *4A -1A -1A *4A	7.50
820	BS	A * A - A - A * A - A	11.11
	BS	A - A * A - A - A * A	
821	BS	A *1A -1A -1A -1A	29.59
	BS	A *2A -1A -1A -1A	
	BS	A -1A -1A -1A *1A	
	BS	A -1A -1A -1A *2A	_
822	BS	A *1A -1A -1A -2A	6.54
	BS	A *2A -1A -1A -2A	
	BS	A -2A -1A -1A *1A	
	BS	A -2A -1A -1A *2A	

Screen Number		Fragment Definition	Frequency Percent
823	BS	A *1A -1A -1A -4A	3.08
	BS	A *2A -1A -1A -4A	
	BS	A -4A -1A -1A *1A	
	BS	A -4A -1A -1A *2A	
824	BS	A *1A -1A -1A -3A	1.16
	BS	A *1A -2A -1A -3A	
	BS	A *1A -4A -1A -3A	
	BS	A *2A -1A -1A -3A	
	BS	A *4A -1A -1A -3A	
	BS	A *4A -4A -1A -3A	
	BS	A -3A -1A -1A *1A	
	BS	A -3A -1A -1A *2A	
	BS	A -3A -1A -1A *4A	
	BS	A -3A -1A -2A *1A	
	BS	A -3A -1A -4A *1A	
	BS	A -3A -1A -4A *4A	
825	BS	A *1A -1A -2A -1A	9.84
	BS	A *1A -1A -4A -1A	
	BS	A *2A -1A -2A -1A	
	BS	A *2A -1A -4A -1A	
	BS	A -1A -2A -1A *1A	
	BS	A -1A -2A -1A *2A	
	BS	A -1A -4A -1A *1A	
	BS	A -1A -4A -1A *2A	
826	BS	A *1A -1A -4A -4A	3.47
	BS	A *2A -1A -4A -4A	
	BS	A -4A -4A -1A *1A	
	BS	A -4A -4A -1A *2A	
827	BS	A *4A -1A -1A -1A	32.93
027	BS	A -1A -1A -1A *4A	32.73
	ЪБ	A IA IA IA IA	
828	BS	A *4A -1A -1A -2A	6.41
	BS	A -2A -1A -1A *4A	
829	BS	A *4A -1A -1A -4A	3.12
	BS	A -4A -1A -1A *4A	
830	BS	A *4A -1A -2A -1A	7.09
050	BS	A -1A -2A -1A *4A	, . 0 5
	טם		
831	BS	A *4A -1A -4A -1A	9.50
	BS	A -1A -4A -1A *4A	
832	BS	A *4A -1A -4A -4A	8.33
JJ2	BS	A -4A -4A -1A *4A	0.33
833	BS	A * A - A - A - A * A	16.30

Screen Number		Fragment Definition	Frequency Percent
834	BS BS BS BS BS BS BS	A *1A -1A -1A -1A *1A A *1A -1A -1A -1A *2A A *1A -1A -1A -1A *4A A *2A -1A -1A -1A *1A A *2A -1A -1A -1A *2A A *2A -1A -1A -1A *4A A *4A -1A -1A -1A *1A A *4A -1A -1A -1A *2A A *4A -1A -1A -1A *4A	9.08
835	BS BS BS BS BS BS BS BS BS BS BS BS BS B	A *1A -1A -1A -1A *1A A *1A -1A -1A -2A *1A A *1A -1A -1A -4A *1A A *1A -1A -2A -1A *1A A *1A -1A -4A -1A *1A A *1A -1A -4A -4A *1A A *1A -2A -1A -1A *1A A *1A -2A -1A -2A *1A A *1A -2A -1A -2A *1A A *1A -4A -1A -1A *1A A *1A -4A -1A -4A *1A A *1A -4A -1A -4A *1A A *1A -4A -4A -1A *1A A *1A -4A -4A -1A *1A A *1A -4A -4A -1A *1A A *1A -4A -4A -4A *1A	2.29
836	BS BS BS BS BS BS BS BS BS BS	A *1A -1A -1A -1A *2A A *1A -1A -2A -1A *2A A *1A -1A -4A -1A *2A A *1A -2A -1A -1A *2A A *1A -4A -1A -1A *2A A *1A -4A -1A -1A *2A A *1A -4A -4A -1A *1A A *2A -1A -1A -2A *1A A *2A -1A -1A -4A *1A A *2A -1A -2A -1A *1A A *2A -1A -4A -1A *1A A *2A -1A -4A -4A *1A	1.05
837	BS BS BS BS BS BS BS BS BS BS BS BS BS B	A *1A -1A -1A -1A *4A A *1A -1A -2A -1A *4A A *1A -1A -4A -1A *4A A *1A -1A -4A -4A *4A A *1A -2A -1A -1A *4A A *1A -2A -1A -1A *4A A *1A -4A -1A -1A *4A A *1A -4A -1A -1A *4A A *1A -4A -1A -4A *4A A *1A -4A -4A -1A *4A A *1A -4A -4A -1A *4A A *1A -4A -4A -4A *1A A *4A -1A -1A -2A *1A A *4A -1A -1A -4A *1A A *4A -1A -1A -4A *1A	7.61

Screen Number		Fragment Definition	Frequency Percent	
837	BS	A *4A -1A -4A -1A *1A	7.61	(continued)
	BS	A *4A -1A -4A -4A *1A		
	BS	A *4A -4A -1A -2A *1A		
	BS	A *4A -4A -1A -4A *1A		
	BS	A *4A -4A -4A -1A *1A		
	BS	A *4A -4A -4A -4A *1A		
838	BS	A *1A -1A -1A -2A *1A	0.72	
	BS	A *1A -1A -1A -4A *1A		
	BS	A *1A -1A -1A -4A *4A		
	BS	A *1A -2A -1A -1A *1A		
	BS	A *1A -2A -1A -1A *2A		
	BS	A *1A -2A -1A -1A *4A A *1A -4A -1A -1A *1A		
	BS BS	A *1A -4A -1A -1A *1A A *1A -4A -1A -1A *2A		
	BS	A *1A -4A -1A -1A *4A		
	BS	A *2A -1A -1A -2A *1A		
	BS	A *2A -1A -1A -4A *1A		
	BS	A *2A -1A -1A -4A *4A		
	BS	A *4A -1A -1A -2A *1A		
	BS	A *4A -1A -1A -4A *1A		
	BS	A *4A -1A -1A -4A *4A		
	BS	A *4A -4A -1A -1A *1A		
	BS	A *4A -4A -1A -1A *2A		
	BS	A *4A -4A -1A -1A *4A		
839	BS	A *1A -1A -2A -1A *1A	3.00	
	BS	A *1A -1A -2A -1A *2A		
	BS	A *1A -1A -2A -1A *4A		
	BS	A *2A -1A -2A -1A *1A		
	BS	A *2A -1A -2A -1A *2A		
	BS	A *2A -1A -2A -1A *4A		
	BS	A *4A -1A -2A -1A *1A		
	BS	A *4A -1A -2A -1A *2A		
	BS	A *4A -1A -2A -1A *4A		
840	BS	A *1A -1A -4A -1A *1A	3.51	
	BS	A *1A -1A -4A -1A *2A		
	BS	A *1A -1A -4A -1A *4A		
	BS	A *2A -1A -4A -1A *1A		
	BS	A *2A -1A -4A -1A *2A A *2A -1A -4A -1A *4A		
	BS BS	A *2A -1A -4A -1A *4A A *4A -1A -4A -1A *1A		
	BS	A *4A -1A -4A -1A *2A		
	BS	A *4A -1A -4A -1A *4A		
0.41	D.C.	2 412 12 42 42 412	0.60	
841	BS	A *1A -1A -4A -4A *1A	0.60	
	BS BS	A *1A -1A -4A -4A *4A A *1A -4A -4A -1A *1A		
	BS BS	A *1A -4A -4A -1A *1A A *1A -4A -4A -1A *2A		
	BS	A *1A -4A -4A -1A *4A		
	BS	A *1A -4A -4A *1A		
	BS	A *1A -4A -4A -4A *4A		
	BS	A *2A -1A -4A -4A *1A		
	BS	A *2A -1A -4A -4A *4A		

Screen Number		Fragment Definition	Frequency Percent
841	BS	A *4A -1A -4A -4A *1A	0.60 (continued)
	BS	A *4A -1A -4A -4A *4A	,
	BS	A *4A -4A -4A -1A *1A	
	BS	A *4A -4A -4A -1A *2A	
	BS	A *4A -4A -4A -1A *4A	
	BS	A *4A -4A -4A -4A *1A	
	BS	A *4A -4A -4A -4A *4A	
842	BS	A *1A -2A -1A -2A *1A	0.16
	BS	A *1A -2A -1A -4A *1A	
	BS	A *1A -2A -1A -4A *4A	
	BS	A *1A -4A -1A -2A *1A	
	BS	A *1A -4A -1A -4A *1A	
	BS	A *1A -4A -1A -4A *4A	
	BS	A *4A -4A -1A -2A *1A	
	BS	A *4A -4A -1A -4A *1A	
	BS	A *4A -4A -1A -4A *4A	
843	BS	A *2A -1A -1A -1A *2A	0.38
	BS	A *2A -1A -2A -1A *2A	
	BS	A *2A -1A -4A -1A *2A	
844	BS	A *2A -1A -1A -1A *4A	2.50
	BS	A *2A -1A -1A -4A *4A	
	BS	A *2A -1A -2A -1A *4A	
	BS	A *2A -1A -4A -1A *4A	
	BS	A *2A -1A -4A -4A *4A	
	BS	A *4A -1A -1A -1A *2A	
	BS	A *4A -1A -2A -1A *2A	
	BS	A *4A -1A -4A -1A *2A	
	BS	A *4A -4A -1A -1A *2A	
	BS	A *4A -4A -4A -1A *2A	
845	BS	A *4A -1A -1A -1A *4A	7.44
	BS	A *4A -1A -1A -4A *4A	
	BS	A *4A -1A -2A -1A *4A	
	BS	A *4A -1A -4A -1A *4A	
	BS	A *4A -1A -4A -4A *4A	
	BS	A *4A -4A -1A -1A *4A	
	BS	A *4A -4A -1A -4A *4A	
	BS	A *4A -4A -4A -1A *4A	
	BS	A *4A -4A -4A -4A *4A	
846	BS	A * A - A - A - A	49.89
	BS	A - A - A - A - A * A	
847	BS	A *1A -1A -1A -1A	19.15
	BS	A *2A -1A -1A -1A -1A	
	BS	A -1A -1A -1A *1A	
	BS	A -1A -1A -1A *2A	

*1A -1A -1A -1A -2A *1A -1A -1A -1A -4A *2A -1A -1A -1A -2A *2A -1A -1A -1A -4A -2A -1A -1A -1A *1A -2A -1A -1A -1A *2A -4A -1A -1A -1A *1A -4A -1A -1A -1A *2A *1A -1A -1A -3A *1A -1A -2A -1A -3A	1.26
	1 26
*1A -1A -3A -1A -3A *1A -1A -4A -1A -3A *1A -2A -1A -1A -3A *1A -4A -1A -1A -3A *1A -4A -4A -1A -1A -3A *1A -4A -4A -1A -1A -3A *2A -1A -1A -1A -3A *2A -1A -3A -1A -3A *2A -1A -3A -1A -3A *2A -1A -3A -1A -3A *4A -1A -1A -1A -1A -1A -3A -3A -1A -1A -1A -1A *1A -3A -1A -1A -1A *1A -3A -1A -1A -1A *4A -3A -1A -1A -4A *1A -3A -1A -2A -1A *4A -3A -1A -2A -1A *4A -3A -1A -3A -1A *4A -3A -1A -4A -1A *4A -3A -1A -4A -1A *4A -3A -1A -4A -1A *4A	1.20
-3A -1A -4A -4A *4A *1A -1A -1A -2A -1A *1A -1A -1A -4A -1A *2A -1A -1A -2A -1A *2A -1A -1A -4A -1A *4A -1A -1A -2A -1A *4A -1A -1A -4A -1A -1A -2A -1A -1A *1A -1A -2A -1A -1A *2A -1A -2A -1A -1A *4A -1A -4A -1A -1A *1A	6.05
	*1A -4A -4A -1A -3A *2A -1A -1A -1A -3A *2A -1A -2A -1A -3A *2A -1A -3A -1A -3A *2A -1A -3A -1A -3A *2A -1A -4A -1A -3A *4A -1A -1A -1A -3A *4A -1A -1A -1A -3A *4A -1A -3A -1A -3A *4A -1A -3A -1A -3A *4A -1A -3A -1A -3A *4A -4A -1A -1A -1A -3A -3A -1A -1A -1A -1A *1A -3A -1A -1A -1A *1A -3A -1A -1A -1A *4A -3A -1A -1A -4A *1A -3A -1A -1A -4A *1A -3A -1A -2A -1A *2A -3A -1A -3A -1A *2A -3A -1A -3A -1A *2A -3A -1A -3A -1A *4A -3A -1A -4A -4A -1A *4A -1A -1A -1A -1A -1A -1A -4A *1A -1A -1A -1A -1A -1A -4A *1A -1A -1A -1A -1A -1A -1A *4A -1A -1A -1A -1A -1A *4A -1A -1A -1A -1A -1A *4A -1A -1A -1A -

851 BS	Screen Number		Fragment Definition	Frequency Percent
BS	851	BS	A *1A -1A -1A -4A -4A	4.86
BS		BS		
BS				
BS A *4A -1A -4A -4A BS A *4A -4A -1A -4A -4A BS A *4A -4A -1A -1A -1A BS A *4A -4A -1A -1A -1A BS A *4A -4A -4A -4A -1A BS A -4A -4A -4A -4A -1A BS A -1A -1A -4A -4A -1A BS A -1A -1A -4A -4A +1A BS A -1A -4A -4A -1A *1A BS A -1A -4A -4A -1A *1A BS A -1A -4A -4A -1A *1A BS A -1A -4A -4A -4A *1A BS A -1A -4A -4A -4A *1A BS A -1A -4A -4A -4A *1A BS A -2A -1A -4A -4A *1A BS A -2A -1A -4A -4A *1A BS A -4A -1A -1A *1A BS A -4A -1A -1A *1A BS A -4A -4A -1A -1A *4A BS A -4A -4A -1A -1A *1A BS A -4A -4A -1A -1A *4A BS A -4A -4A -1A -1A *1A BS A -4A -4A -1A -1A *4A BS A -4A -4A -1A -1A *4A BS A -4A -4A -1A -1A *1A BS A -4A -4A -4A -1A -1A *1A BS A -4A -4A -4A -4A *1A *1A *1A BS A -4A -4A -4A -4A *1A *1A *1A BS A -4A -4A -4A -4A *1A *1A *1A BS A -4A -4A -4A -4A *1A *1A *1A BS A -4A -4A -4A -4A *1A *1A *1A BS A -4A -4A -4A -4A *1A *1A *1A *1A BS A -4A -4A -4A -4A *1A *1A *1A *1A *1A *1A *1A *1A *1A *1				
BS				
BS				
BS		BS	A *4A -4A -4A -1A -1A	
BS		BS	A *4A -4A -4A -1A -2A	
BS A *4A -4A -4A -4A -4A -4A BS A -1A -1A -1A -4A -4A *1A BS A -1A -1A -4A -4A *1A BS A -1A -4A -4A -4A *4A BS A -1A -4A -4A -1A *1A BS A -1A -4A -4A -1A *1A BS A -1A -4A -4A -1A *1A BS A -1A -4A -4A -1A *2A BS A -1A -4A -4A -1A *4A BS A -1A -4A -4A -4A *1A BS A -1A -4A -4A -4A *1A BS A -1A -4A -4A -4A *1A BS A -2A -1A -4A -4A *1A BS A -2A -1A -4A -4A *1A BS A -4A -1A -4A -4A *1A BS A -4A -1A -1A -1A *1A BS A -4A -1A -1A -1A *1A BS A -4A -4A -1A -1A *4A BS A -4A -4A -1A -1A *1A BS A -4A -4A -1A -4A *1A BS A -4A -4A -1A -4A *1A BS A -4A -4A -4A -1A *1A BS A -4A -4A -4A -1A *1A BS A -4A -4A -4A -1A *4A BS A -4A -4A -4A -1A *1A BS A -4A -4A -4A -4A *4A BS A -4A -4A -4A -4A *1A *1A *1A BS A -4A -4A -4A -4A *1A *1A *1A BS A -1A -1A -2A -1A *1A *1A		BS	A *4A -4A -4A -1A -4A	
BS		BS	A *4A -4A -4A -4A -1A	
BS		BS	A * 4A - 4A - 4A - 4A	
BS		BS	A -1A -1A -4A -4A *1A	
BS		BS	A -1A -1A -4A -4A *4A	
BS		BS	A -1A -4A -4A -1A *1A	
BS		BS	A -1A -4A -4A -1A *2A	
BS		BS	A -1A -4A -4A -1A *4A	
BS		BS	A -1A -4A -4A +1A	
BS				
BS				
BS A -4A -1A -4A -4A *4A BS A -4A -1A -1A -1A *1A BS A -4A -4A -1A -1A *1A BS A -4A -4A -1A -1A *2A BS A -4A -4A -1A -1A *4A BS A -4A -4A -1A -1A *4A BS A -4A -4A -1A -1A *4A BS A -4A -4A -1A -4A *1A BS A -4A -4A -1A -4A *1A BS A -4A -4A -1A -1A *1A BS A -4A -4A -4A -1A *2A BS A -4A -4A -4A -1A *4A BS A -4A -4A -4A -1A *4A BS A -4A -4A -4A -4A *1A BS A -4A -4A -4A -4A *1A BS A -4A -4A -4A -1A *4A BS A -4A -4A -4A -1A *1A BS A -4A -4A -1A -1A -1A BS A *2A -1A -2A -1A -1A BS A *2A -1A -1A -1A BS A *4A -1A -2A -1A -1A BS A *4A -1A -2A -1A -1A BS A -1A -1A -2A -1A *1A BS A -1A -1A -2A -1A *1A BS A -1A -1A -2A -1A *2A BS A -1A -1A -2A -1A *4A				
BS A -4A -4A -1A -1A *1A BS A -4A -4A -1A -1A *1A BS A -4A -4A -1A -1A *2A BS A -4A -4A -1A -1A *4A BS A -4A -4A -1A -1A *4A BS A -4A -4A -1A -1A *4A BS A -4A -4A -1A -4A *1A BS A -4A -4A -1A -4A *1A BS A -4A -4A -1A -1A *1A BS A -4A -4A -4A -1A *2A BS A -4A -4A -4A -1A *4A BS A -4A -4A -4A -1A *4A BS A -4A -4A -4A -4A *1A BS A -4A -4A -4A -4A *1A BS A -4A -4A -4A -4A *4A BS A -4A -4A -4A -1A *1A BS A *2A -1A -2A -1A -1A BS A *2A -1A -1A -1A BS A *4A -1A -2A -1A -1A BS A *4A -1A -2A -1A -1A BS A -1A -1A -2A -1A *1A BS A -1A -1A -2A -1A *1A BS A -1A -1A -2A -1A *2A BS A -1A -1A -2A -1A *4A BS A -1A -1A -1A -1A +1A *4A BS A -1A -1A -1A -1A -1A *4A BS A -1A -1A -1A -1A +1A +1A +1A +1A +1A +1A +1A +1A +1A +				
BS				
BS A -4A -4A -4A -1A *4A BS A -4A -4A -4A *1A BS A -4A -4A -4A *4A 852 BS A *1A -1A -2A -1A -1A *4A BS A *2A -1A -2A -1A -1A BS A *2A -1A -4A -1A -1A BS A *4A -1A -2A -1A -1A BS A *4A -1A -4A -1A -1A BS A -1A -1A -2A -1A *1A BS A -1A -1A -2A -1A *2A BS A -1A -1A -2A -1A *4A BS A -1A -1A -4A -1A *2A				
BS A -4A -4A -4A -4A *1A BS A -4A -4A -4A *4A 852 BS A *1A -1A -2A -1A -1A 9.56 BS A *2A -1A -2A -1A -1A BS A *2A -1A -4A -1A -1A BS A *4A -1A -2A -1A -1A BS A *4A -1A -4A -1A -1A BS A -1A -1A -2A -1A *1A BS A -1A -1A -2A -1A *2A BS A -1A -1A -2A -1A *2A BS A -1A -1A -2A -1A *4A BS A -1A -1A -4A -1A *2A				
BS A -4A -4A -4A -4A *4A 852 BS A *1A -1A -2A -1A -1A 9.56 BS A *2A -1A -2A -1A -1A BS A *2A -1A -4A -1A -1A BS A *4A -1A -2A -1A -1A BS A *4A -1A -4A -1A -1A BS A -1A -1A -2A -1A *1A BS A -1A -1A -2A -1A *2A BS A -1A -1A -2A -1A *2A BS A -1A -1A -2A -1A *4A BS A -1A -1A -4A -1A *2A				
852 BS				
BS A *2A -1A -2A -1A -1A BS A *2A -1A -4A -1A -1A BS A *4A -1A -2A -1A -1A BS A *4A -1A -2A -1A -1A BS A -1A -1A -1A -1A BS A -1A -1A -2A -1A *1A BS A -1A -1A -2A -1A *2A BS A -1A -1A -2A -1A *4A BS A -1A -1A -4A -1A *2A				
BS A *2A -1A -4A -1A -1A BS A *4A -1A -2A -1A -1A BS A *4A -1A -4A -1A -1A BS A -1A -1A -1A -1A BS A -1A -1A -2A -1A *1A BS A -1A -1A -2A -1A *2A BS A -1A -1A -2A -1A *4A BS A -1A -1A -4A -1A *2A	852	BS	A *1A -1A -2A -1A -1A	9.56
BS A *4A -1A -2A -1A -1A BS A *4A -1A -4A -1A -1A BS A -1A -1A -2A -1A *1A BS A -1A -1A -2A -1A *2A BS A -1A -1A -2A -1A *4A BS A -1A -1A -4A -1A *2A		BS	A *2A -1A -2A -1A -1A	
BS A *4A -1A -4A -1A -1A BS A -1A -1A -2A -1A *1A BS A -1A -1A -2A -1A *2A BS A -1A -1A -2A -1A *4A BS A -1A -1A -4A -1A *2A		BS	A *2A -1A -4A -1A -1A	
BS A -1A -1A -2A -1A *1A BS A -1A -1A -2A -1A *2A BS A -1A -1A -2A -1A *4A BS A -1A -1A -4A -1A *2A		BS	A *4A -1A -2A -1A -1A	
BS A -1A -1A -2A -1A *2A BS A -1A -1A -2A -1A *4A BS A -1A -1A -4A -1A *2A		BS		
BS A -1A -1A -2A -1A *4A BS A -1A -1A -4A -1A *2A		BS		
BS A -1A -1A -4A -1A *2A				
		BS		
BS A -1A -1A -4A -1A *4A				
		BS	A -1A -1A -4A -1A *4A	

Screen Number		Fragment Definition	Frequency Percent
853	BS BS BS	A *1A -1A -2A -1A -2A A *1A -1A -2A -1A -4A A *2A -1A -2A -1A -2A	3.89
	BS	A *2A -1A -2A -1A -4A	
	BS	A *4A -1A -2A -1A -2A	
	BS	A *4A -1A -2A -1A -4A	
	BS	A -2A -1A -2A -1A *1A	
	BS	A -2A -1A -2A -1A *2A	
	BS BS	A -2A -1A -2A -1A *4A A -4A -1A -2A -1A *1A	
	BS	A -4A -1A -2A -1A 1A A -4A -1A -2A -1A *2A	
	BS	A -4A -1A -2A -1A *4A	
854	BS BS	A *1A -1A -4A -1A -1A A *1A -2A -1A -1A -1A	5.30
	BS	A *1A -4A -1A -1A -1A	
	BS	A *4A -4A -1A -1A -1A	
	BS	A -1A -1A -1A -2A *1A	
	BS	A -1A -1A -1A -4A *1A	
	BS	A -1A -1A -1A -4A *4A	
	BS	A -1A -1A -4A -1A *1A	
855	BS	A *1A -1A -4A -1A -2A	1.69
	BS	A *1A -1A -4A -1A -4A	
	BS	A *2A -1A -4A -1A -2A	
	BS	A *2A -1A -4A -1A -4A	
	BS	A *4A -1A -4A -1A -2A	
	BS	A *4A -1A -4A -1A -4A	
	BS BS	A -2A -1A -4A -1A *1A A -2A -1A -4A -1A *2A	
	BS	A -2A -1A -4A -1A *4A	
	BS	A -4A -1A -4A -1A *1A	
	BS	A -4A -1A -4A -1A *2A	
	BS	A -4A -1A -4A -1A *4A	
856	BS	A *1A -2A -1A -1A -2A A *1A -2A -1A -1A -4A	0.24
	BS BS	A *1A -4A -1A -1A -4A A *1A -4A -1A -1A -2A	
	BS	A *1A -4A -1A -1A -4A	
	BS	A *4A -4A -1A -1A -2A	
	BS	A *4A -4A -1A -1A -4A	
	BS	A -2A -1A -1A -2A *1A	
	BS	A -2A -1A -1A -4A *1A	
	BS	A -2A -1A -1A -4A *4A	
	BS	A -4A -1A -1A -2A *1A	
	BS	A -4A -1A -1A -4A *1A	
	BS	A -4A -1A -1A -4A *4A	
857	BS	A *1A -2A -1A -2A -1A	0.76
	BS	A *1A -2A -1A -4A -1A	
	BS	A *1A -4A -1A -2A -1A	
	BS	A *1A -4A -1A -4A -1A	
	BS	A *4A -4A -1A -2A -1A	
	BS	A *4A -4A -1A -4A -1A	
	BS	A -1A -2A -1A -2A *1A	

Screen Number		Fragment Definition	Frequency Percent	
857	BS BS BS BS	A -1A -2A -1A -4A *1A A -1A -2A -1A -4A *4A A -1A -4A -1A -2A *1A A -1A -4A -1A -4A *1A A -1A -4A -1A -4A *4A	0.76	(continued)
858	BS BS	A *4A -1A -1A -1A -1A A -1A -1A -1A -1A *4A	19.79	
859	BS BS BS	A *4A -1A -1A -1A -2A A *4A -1A -1A -1A -4A A -2A -1A -1A -1A *4A A -4A -1A -1A -1A *4A	10.42	
860	BS	A - A * A * A * A - A	60.97	
861	BS	A -1A *1A *1A *1A -1A	18.92	
862	BS BS	A -1A *1A *1A *1A -2A A -2A *1A *1A *1A -1A	7.82	
863	BS BS	A -1A *1A *1A *1A -4A A -4A *1A *1A *1A -1A	0.85	
864	BS BS BS BS BS BS BS	A -1A *1A *1A *2A -1A A -1A *1A *4A *1A -1A A -1A *1A *4A *4A -1A A -1A *2A *1A *1A -1A A -1A *2A *1A *2A -1A A -1A *2A *1A *4A -1A A -1A *4A *1A *2A -1A A -1A *4A *1A *4A -1A A -1A *4A *1A *4A -1A A -1A *4A *1A *4A -1A	14.38	
865	BS BS BS	A -1A *1A *1A *4A -1A A -1A *1A *2A *1A -1A A -1A *4A *1A *1A -1A	5.70	
866	BS BS BS BS BS BS BS BS BS BS BS	A -1A *1A *1A *4A -4A A -1A *1A *2A *1A -4A A -1A *1A *4A *1A -4A A -1A *1A *4A *4A -4A A -1A *1A *4A *4A -4A A -1A *2A *1A *4A -4A A -1A *2A *1A *4A -4A A -1A *4A *1A *1A -4A A -1A *4A *1A *1A -4A A -1A *4A *1A *4A -4A A -1A *4A *1A *4A -1A A -4A *1A *1A *4A -1A A -4A *1A *2A +1A -1A A -4A *1A *4A *1A -1A A -4A *1A *4A *1A -1A A -4A *4A *1A *4A -1A A -4A *4A *4A *1A -1A	3.89	

Screen Number		Fragment Definition	Frequency Percent
867	BS	A -1A *1A *2A *1A -2A	7.30
	BS	A -1A *1A *4A *1A -2A	
	BS	A -1A *2A *1A *1A -2A	
	BS	A -1A *4A *1A *1A -2A	
	BS	A -1A *4A *4A *1A -2A	
	BS	A -2A *1A *1A *2A -1A	
	BS	A -2A *1A *1A *4A -1A	
	BS	A -2A *1A *2A *1A -1A	
	BS	A -2A *1A *4A *1A -1A	
	BS	A -2A *1A *4A *4A -1A	
868	BS	A -1A *4A *4A *4A -1A	35.57
869	BS	A -1A *4A *4A *4A -4A	0.88
	BS	A -4A *4A *4A -1A	
870	BS	A -2A *1A *1A *1A -2A	3.88
	BS	A -2A *1A *2A *1A -2A	
	BS	A -2A *1A *4A *1A -2A	
871	BS	A -2A *1A *1A *1A -4A	1.29
	BS	A -2A *1A *1A *4A -4A	
	BS	A -2A *1A *2A *1A -4A	
	BS	A -2A *1A *4A *1A -4A	
	BS	A -2A *1A *4A *4A -4A	
	BS	A -4A *1A *1A *1A -2A	
	BS	A -4A *1A *1A *1A -4A	
	BS	A -4A *1A *1A *4A -4A	
	BS	A -4A *1A *2A *1A -2A	
	BS	A -4A *1A *2A *1A -4A	
	BS	A -4A *1A *4A *1A -2A	
	BS	A -4A *1A *4A *1A -4A	
	BS	A -4A *1A *4A *4A -4A	
	BS	A -4A *4A *1A *1A -2A	
	BS	A -4A *4A *1A *1A -4A	
	BS	A -4A *4A *1A *4A -4A	
	BS	A -4A *4A *4A *1A -2A	
	BS	A -4A *4A *4A *1A -4A	
	BS	A -4A *4A *4A -4A	
872	BS	A - A * A * A - A	53.81
873	BS	A -1A *1A *1A -1A	20.93
874	BS	A -1A *1A *1A -2A	12.22
	BS	A -1A *2A *1A -2A	
	BS	A -1A *4A *1A -2A	
	BS	A -2A *1A *1A -1A	
	BS	A -2A *1A *2A -1A	
	BS	A -2A *1A *4A -1A	

Screen Number		Fragment Definition	Frequency Percent
875	BS BS	A -1A *1A *1A -4A A -1A *1A *4A -4A	2.85
	BS	A -1A *2A *1A -4A	
	BS	A -1A *4A *1A -4A	
	BS	A -4A *1A *1A -1A	
	BS	A -4A *1A *2A -1A	
	BS	A -4A *1A *4A -1A	
	BS	A -4A *4A *1A -1A	
876	BS	A -1A *1A *2A -1A	10.85
070	BS	A -1A *1A *4A -1A	10.03
	BS	A -1A *2A *1A -1A	
	BS	A -1A *4A *1A -1A	
	DO		
877	BS	A -1A *4A *4A -1A	25.09
878	BS	A -1A *4A *4A -4A	2.01
	BS	A -4A *4A *4A -1A	
879	BS	A -2A *1A *1A -2A	3.77
880	BS	A -2A *1A *1A -4A	2.69
	BS	A -2A *1A *4A -4A	
	BS	A -4A *1A *1A -2A	
	BS	A -4A *1A *1A -4A	
	BS	A -4A *1A *4A -4A	
	BS	A -4A *4A *1A -2A	
	BS	A -4A *4A *1A -4A	
	BS	A -4A *4A *4A -4A	
881	BS	A -1A *4A *4A -1A -1A	15.57
	BS	A -1A -1A *4A *4A -1A	
882	BS	A -1A *4A *4A -1A -2A	7.58
	BS	A -2A -1A *4A *4A -1A	
883	BS	A -1A *4A *4A -1A -4A	5.64
003	BS	A -4A -1A *4A *4A -1A	3.04
884	BS	A - A * A - A	52.87
885	BS	A -1A *1A -1A	23.45
886	BS	A -1A *1A -2A	14.04
	BS	A -2A *1A -1A	
887	BS BS	A -1A *1A -4A A -4A *1A -1A	2.47
000			0 12
888	BS	A -1A *2A -1A	8.13
889	BS	A -1A *4A -1A	24.67
890	BS	A -1A *4A -4A	0.92
	BS	A -4A *4A -1A	

Screen Number		Fragment Definition	Frequency Percent
891	BS	A -2A *1A -2A	1.95
892	BS	A -2A *1A -4A	0.54
	BS	A -4A *1A -2A	
	BS	A -4A *1A -4A	
	BS	A -4A *4A -4A	
893	BS	A - A * A - A * A - A	2.80
894	BS	A -1A *4A -1A -1A	16.03
	BS	A -1A -1A *4A -1A	
895	BS	A -1A *4A -1A -2A	7.01
	BS	A -2A -1A *4A -1A	
896	BS	A -1A *4A -1A -4A	5.42
	BS	A -4A -1A *4A -1A	
897	BS	A -1A -1A *4A -1A -1A	5.51
898	BS	A -1A -1A *4A -1A -2A	4.41
	BS	A -1A -1A *4A -1A -4A	
	BS	A -2A -1A *4A -1A -1A	
	BS	A -4A -1A *4A -1A -1A	
899	BS	A -2A -1A *4A -1A -2A	1.55
	BS	A -2A -1A *4A -1A -4A	
	BS	A -4A -1A *4A -1A -2A	
	BS	A -4A -1A *4A -1A -4A	
900	BS	A -1A -1A -2A	36.03
0.04	BS	A -2A -1A -1A	00.00
901	BS	A -1A -1A -4A	23.62
0.00	BS	A -4A -1A -1A	4 50
902	BS	A -1A -1A -3A	4.52
0.0.2	BS	A -3A -1A -1A A -1A -2A -1A	12 44
903 904	BS	A -1A -2A -2A	13.44
904	BS BS	A -2A -2A -1A	1.23
905	BS	A -1A -4A -1A	20.88
906	BS BS	A -1A -4A -4A A -4A -4A -1A	23.99
907	BS	A -1A -3A -1A	1.31
908	BS	A -2A -1A -2A	5.38
909	BS BS	A -2A -1A -4A A -4A -1A -2A	4.21

Screen Number		Fragment Definition	Frequency Percent
910	BS BS	A -2A -1A -3A A -3A -1A -2A	1.19
911	BS	A -4A -1A -4A	0.72
912	BS	A -4A -4A -4A	2.45
913	BS BS	A -3A -1A -4A A -4A -1A -3A	0.00
914	BS	A -3A -1A -3A	0.09
915	BS	A -1A -1A -1A	45.77
916	BS BS	A -1A -1A -1A -2A A -2A -1A -1A -1A	26.16
917	BS BS	A -1A -1A -1A -4A A -4A -1A -1A -1A	18.40
918	BS BS	A -1A -1A -1A -3A A -3A -1A -1A -1A	2.42
919	BS BS BS BS BS	A -1A -1A -2A -1A A -1A -1A -3A -1A A -1A -1A -4A -1A A -1A -2A -1A -1A A -1A -3A -1A -1A A -1A -4A -1A -1A	23.74
920	BS BS	A -1A -1A -4A -4A A -4A -4A -1A -1A	12.63
921	BS BS BS BS BS BS BS BS BS BS BS BS BS B	A -1A -2A -1A -2A A -1A -2A -1A -3A A -1A -2A -1A -4A A -1A -3A -1A -2A A -1A -3A -1A -2A A -1A -3A -1A -3A A -1A -3A -1A -4A A -1A -4A -1A -2A A -1A -4A -1A -3A A -1A -4A -1A -4A A -2A -1A -2A -1A A -2A -1A -4A -1A A -3A -1A -2A -1A A -3A -1A -3A -1A A -3A -1A -3A -1A A -3A -1A -4A -1A A -4A -1A -2A -1A A -4A -1A -3A -1A	7.65
922	BS BS BS	A -1A -4A -4A -1A A -1A -4A -4A -4A A -4A -4A -4A -1A	2.48

Screen Number		Fragment Definition	Frequency Percent
923	BS	A -2A -1A -1A -2A	9.54
	BS	A -2A -1A -1A -4A	
	BS	A -4A -1A -1A -2A	
	BS	A -4A -1A -1A -4A	
924	BS	A -2A -1A -1A -3A	1.72
	BS	A -3A -1A -1A -2A	
	BS	A -3A -1A -1A -3A	
	BS	A -3A -1A -1A -4A	
	BS	A -4A -1A -1A -3A	
925	BS	A -2A -1A -4A -4A	3.29
	BS	A -3A -1A -4A -4A	
	BS	A - 4A - 1A - 4A - 4A	
	BS	A -4A -4A -1A -2A	
	BS	A -4A -4A -1A -3A	
	BS	A -4A -4A -1A -4A	
	BS	A -4A -4A -4A	
926	BS	A - A - A - A - A	44.76
927	BS	A -1A -1A -1A -1A	30.55
928	BS	A -1A -1A -1A -2A	24.95
	BS	A -1A -1A -1A -3A	
	BS	A -1A -1A -1A -4A	
	BS	A -2A -1A -1A -1A	
	BS	A -3A -1A -1A -1A	
	BS	A -4A -1A -1A -1A	
929	BS	A -1A -1A -1A -2A -1A	18.34
	BS	A -1A -1A -1A -3A -1A	
	BS	A -1A -1A -1A -4A -1A	
	BS	A -1A -2A -1A -1A -1A	
	BS	A -1A -3A -1A -1A -1A	
	BS	A -1A -4A -1A -1A -1A	
930	BS	A -1A -1A -1A -4A -4A	9.93
	BS	A -4A -4A -1A -1A -1A	
931	BS	A -1A -1A -2A -1A -1A	10.49
	BS	A -1A -1A -3A -1A -1A	
	BS	A -1A -1A -4A -1A -1A	
932	BS	A -1A -2A -1A -2A -1A	3.30
	BS	A -1A -2A -1A -3A -1A	
	BS	A -1A -2A -1A -4A -1A	
	BS	A -1A -3A -1A -2A -1A	
	BS	A -1A -3A -1A -3A -1A	
	BS	A -1A -3A -1A -4A -1A	
	BS	A -1A -4A -1A -2A -1A	
	BS	A -1A -4A -1A -3A -1A A -1A -4A -1A -4A -1A	
	BS	A -IA -IA -IA -IA	

Screen Number					Fragm Defini			Frequency Percent
933	BS BS BS BS BS BS BS		A - 2 A - 2 A - 3 A - 3 A - 4 A - 4	2A -1A 2A -1A 2A -1A 3A -1A 3A -1A 3A -1A 4A -1A	-1A -1A -1A -1A -1A -1A	-1A -1A -1A -1A -1A -1A	-3A -4A -2A -3A -4A -2A -3A	6.75
934	BS B		A - 2 A - 2 A - 2 A - 2 A - 3 A - 4 A - 4	2A -1A 3A -1A	-2A -3A -3A -4A -4A -2A -2A -3A -3A -4A -2A -2A -2A -2A -2A -2A -3A -3A -3A -3A -3A -3A -3A -3A	-1A -1A -1A -1A -1A -1A -1A -1A -1A -1A	-3A -4A -2A -3A -4A -2A -3A -4A -2A -3A -4A -2A -3A -4A -2A -3A -4A -2A -3A -4A -3A -4A -3A -3A	1.22
935	AA		A	*2A				34.69
936	AA		A	*4A				72.06
937	AA		A	*3A				0.14
938	AA		Α	-2A				59.17
939	AA		A	-4A	* ~	.	7)	39.02
940	AA		A	* A	* A		A	41.18
941	AA	0	A	* A	- A		A	12.51
942	AA	2	A	* A	- A		A	3.34
943	AA	3	A	* A	- A	-	A	1.07

Screen Number					Fra Def	gmer initio	nt n				Frequency Percent
944	AA		Α -	A	-	A	-	A			73.89
945	AA		A *	A	*	A	*	A	*	A	7.17
946	AA	2	A *	Α	*	A	*	A	*	A	1.92
947	AA		A *	Α	*	A	*	A	-	А	7.64
948	AA	2	A *	Α	*	A	*	A	-	A	3.57
949	AA	3	A *	Α	*	A	*	A	-	A	1.36
950	DC		5								5.63
951	HA H		AlH2- AlH - AsH2- BH2- BH- GeH3- GeH2- GeH- PH2- PH- SbH2- SbH- SiH3- SiH2- SiH3- SnH3- SnH2- SnH -	1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1	-3 -3 -3 -3 -3	lc lc lc	-3	ıc			0.07
952	AA AA AA AA AA AA AA AA		As B Se Si Te X X X X	X X X X As B Se Si Te							0.53
953	AA AA			C B							0.39
954	AA AA		B N	N B							0.22

Screen Number				Fragment Definition	Frequency Percent
955	AA AA AA		B * O B - O O * B O - B		0.30
956	AA AA		Br C C Br		4.36
957	AA	2	C Br		0.80
958	AA		C Br	Br	0.09
959	AA		C - Br	* C	3.55
960	AA	2	C - Br	* C	0.64
961	AA AA AA AA AA		C Br C Br C Cl C Cl C F	Cl F I F I	0.16
962	AA		C - Br	* N	0.11
963	НА		С Н3-1С		57.28
964	НА	2	С Н3-1С		37.58
965	НА	3	С Н3-1С		22.43
966	НА	4	С Н3-1С		14.08
967	НА	6	С Н3-1С		6.24
968	AA		C -2C		14.86
969	AA	4	C -2C		3.19
970	НА		C H2-2C		5.09
971	AA	2	C -3C		1.56
972	AA	4	C -3C		0.28
973	НА		С Н -3С		0.52
974	AA		C * C	* C	83.26
975	AA		C * C	- C	70.68
976	AA	2	C * C	- C	51.36
977	AA	3	C * C	- C	30.91

Screen Number					Fragment Definition	Frequency Percent
978	AA	4	С	* C	- C	18.42
979	AA	5	С	* C	- C	9.80
980	AA		С	*1C	*1C	38.78
981	AA	2	С	*1C	*1C	32.27
982	AA	3	С	*1C	*1C	24.82
983	AA	4	С	*1C	*1C	18.90
984	AA	5	С	*1C	*1C	15.08
985	AA	6	С	*1C	*1C	12.75
986	AA	7	С	*1C	*1C	8.38
987	AA	10	С	*1C	*1C	4.88
988	AA	14	С	*1C	*1C	2.59
989	НА		C I	H2*1C	*1C	27.77
990	НА	2	C I	H2*1C	*1C	22.12
991	НА	3	C I	H2*1C	*1C	14.50
992	AA		С	*1C	*2C	23.19
993	AA	2	С	*1C	*2C	16.26
994	AA	3	С	*1C	*2C	6.48
995	AA	4	С	*1C	*2C	4.73
996	НА		C I	H *1C	*2C	12.78
997	НА	2	C I	H *1C	*2C	6.93
998	AA		С	*4C	*4C	70.37
999	AA	4	С	*4C	*4C	68.05
1000	AA	7	С	*4C	*4C	46.29
1001	AA	9	С	*4C	*4C	44.62
1002	AA	12	С	*4C	*4C	41.35
1003	AA	15	С	*4C	*4C	18.54
1004	AA	18	С	*4C	*4C	16.22
1005	AA		С	- C	- C	59.87

Screen Number					Fragmen Definition	nt n	Frequency Percent
1006	НА		CI	H2-1C	-1C		35.14
1007	НА	2	C I	H2-1C	-1C		22.54
1008	НА	3	C I	H2-1C	-1C		15.40
1009	НА	5	CI	H2-1C	-1C		9.31
1010	НА	8	C I	H2-1C	-1C		6.05
1011	AA		С	-1C	-2C		14.27
1012	AA	2	С	-1C	-2C		8.12
1013	AA	3	С	-1C	-2C		2.10
1014	AA	6	С	-1C	-2C		0.42
1015	НА		C I	H -1C	-2C		12.02
1016	НА	2	C I	H -1C	-2C		5.64
1017	НА	3	C I	H -1C	-2C		1.54
1018	НА	4	CI	H -1C	-2C		0.99
1019	AA		С	-1C	-3C		1.58
1020	AA AA AA AA AA AA AA		0 0 0 0 0 0 0 0 0	-2As -2B -2C -2C -2C -2C -2C -2C -2C -2C	-2C -2C -2C -2N -2O -2P -2S -2Se -2Si -2Te		0.14
1021	AA		С	* C	* C	* C	29.30
1022	AA	2	С	* C	* C	* C	19.00
1023	AA	3	С	* C	* C	* C	9.59
1024	AA	5	С	* C	* C	* C	4.24
1025	AA		С	*1C	*1C	*1C	7.74
1026	AA	2	С	*1C	*1C	*1C	5.66
1027	AA	3	С	*1C	*1C	*1C	3.23
1028	НА		C I	H *1C	*1C	*1C	6.09

Screen Number					Fragmer Definition	nt on		Frequency Percent
1029	AA		С	*1C	*1C	*2C		3.99
1030	AA	2	С	*1C	*1C	*2C		0.98
1031	AA		С	*1C	*1C	-1C		16.17
1032	AA	2	С	*1C	*1C	-1C		6.87
1033	AA	3	С	*1C	*1C	-1C		2.67
1034	НА		C I	H *1C	*1C	-1C		10.75
1035	AA		С	*1C	*1C	-2C		1.98
1036	AA		С	*1C	*2C	-1C		10.48
1037	AA	2	С	*1C	*2C	-1C		2.50
1038	AA		С	*1C	*4C	*4C		16.87
1039	AA	2	С	*1C	*4C	*4C		8.65
1040	AA	3	С	*1C	*4C	*4C		3.02
1041	AA		С	*4C	*4C	*4C		6.96
1042	AA	2	С	*4C	*4C	*4C		4.96
1043	AA	3	С	*4C	*4C	*4C		1.64
1044	AA		С	*4C	*4C	-1C		53.13
1045	AA	2	С	*4C	*4C	-1C		29.03
1046	AA	3	С	*4C	*4C	-1C		12.69
1047	AA	5	С	*4C	*4C	-1C		2.69
1048	AA		С	- C	- C	- C		21.56
1049	AA		С	-1C	-1C	-1C		18.17
1050	AA	2	С	-1C	-1C	-1C		6.13
1051	НА		CI	H -1C	-1C	-1C		10.06
1052	НА	2	CI	H -1C	-1C	-1C		3.43
1053	НА	3	CI	H -1C	-1C	-1C		1.59
1054	AA		С	-1C	-1C	-2C		4.39
1055	AA	2	С	-1C	-1C	-2C		0.79
1056	AA		С	С	С	С	С	10.15

Screen Number					Fragmer Definition	nt on		Frequency Percent
1057	AA	2	С	С	С	С	C	3.79
1058	AA	3	С	С	С	С	C	0.96
1059	AA	4	С	С	С	С	C	0.56
1060	AA	5	С	С	С	С	C	0.25
1061	AA		С	* C	* C	* C	* C	1.01
1062	AA		С	* C	* C	* C	- C	3.22
1063	AA		С	* C	* C	- C	- C	3.52
1064	AA		С	- C	- C	- C	- C	3.78
1065	AA		С	С	С	С	X	0.41
1066	AA AA AA		C C C	* C * C * C	* C * C * C	- C - C - C	- N - O - S - X	1.87
1067	AA		С	- C	- C	- C	- X	0.12
1068	AA		С	С	С	С	N	2.73
1069	AA	2	С	С	С	С	N	0.43
1070	AA		С	* C	- C	- C	* N	0.70
1071	AA		С	- C	- C	- C	- N	1.23
1072	AA AA		C C	C C	C C	C C	0 S	7.26
1073	AA AA	2 2	C C	C C	C C	C C	0 S	1.18
1074	AA AA	3	C C	C C	C C	C C	O S	0.25
1075	AA AA		C C	* C * C	- C	- C	* 0 * S	1.18
1076	AA AA		C C	- C		- C	- O - S	3.59
1077	AA		С	* C	* C	- X		18.59
1078	НА		C E	1 *1C	*1C	-1X		0.47
1079	AA		С	- C	- C	- X		1.51
1080	AA	2	С	- C	- C	- X		0.55

Screen Number					Fragme Definition	nt on		Frequency Percent
1081	AA	3	С	- C	- C	- X		0.35
1082	AA		С	-1C	-1C	-1X		1.18
1083	НА		C H	-1C	-1C	-1X		0.44
1084	AA		С	-1C	-2C	-1X		0.35
1085	AA		С	С	С	X	X	0.86
1086	AA		С	* C	* C	- X	- X	0.23
1087	AA AA AA AA AA AA AA AA		0 0 0 0 0 0 0 0 0 0 0 0	-1C -1C -1C -1C -1C -1C -1C -1C -1C -1C	-1C -1C -1C -1C -1C -1C -1C -1C -1C -1C	-2N -1N -1N -1N -20 -10 -10 -10 -15 -15 -18	-1N -10 -1S -1X -10 -1S -1X -1S -1X	7.76
1088	AA AA AA		C C C	C C C	C C	N O S	X X X	0.11
1089	AA AA AA AA AA		0 0 0 0 0	* C * C * C * C	* C * C * C * C * C	- N - N - N - N - O	- N - O - S - X - X	0.08
1090	AA AA AA AA AA AA AA AA AA		00000000000000	* * * * * * * * * * * * * * * * * * *	- C - C - C - C * N * N * N * N * N * N * N * N * N *	* N * N * N - N - N - N - O - O - O - S - S	- N - O - S - X - N - O - S - X - O - S - X - X - X	0.12

Screen Number					Fragmer Definitio	nt n		Frequency Percent
1091	AA		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* * * * * * * * * * * * * * * * * * *	- C C C C C C N N N N N N O O O O O S S S * *	- N N O O O O S S N N O O O O S S S X S S X S S X	* O * S - S - X - S - X - S - X - S - X - S - X - S - X - S - X - S - X - X	0.12
1092	AA		С	* C	* C	* N		18.01
1093	AA	2	С	* C	* C	* N		7.34
1094	AA	3	С	* C	* C	* N		2.48
1095	AA	4	С	* C	* C	* N		1.63
1096	AA	5	С	* C	* C	* N		0.82
1097	AA		С	* C	* C	- N		28.97
1098	AA	2	С	* C	* C	- N		10.75
1099	AA		С	* C	- C	* N		19.54
1100	AA	2	С	* C	- C	* N		6.42
1101	AA		С	*1C	*1C	*1N		2.52
1102	HA HA HA		СН	*1C *1C *1C	*1C *1C *1C	*1N *10 *1S		3.90
1103	AA		С	*1C	*1C	*2N		0.63
1104	AA		С	*1C	*1C	-1N		5.62

Screen Number					Fragmer Definitio	nt on		Frequency Percent
1105	НА		СН	*1C	*1C	-1N		5.12
1106	AA		С	*1C	*1C	-2N		0.85
1107	AA		С	*1C	*2C	*1N		1.97
1108	AA		С	*1C	*2C	-1N		1.18
1109	AA		С	*1C	*4C	*4N		1.45
1110	AA		С	*1C	-1C	*1N		7.36
1111	НА		СН	*1C	-1C	*1N		6.44
1112	AA		С	*1C	-1C	*2N		3.47
1113	AA		С	*1C	-2C	*1N		0.48
1114	AA		С	*2C	-1C	*1N		6.96
1115	AA	2	С	*2C	-1C	*1N		1.52
1116	AA		С	*4C	*4C	*1N		10.82
1117	AA	2	С	*4C	*4C	*1N		3.71
1118	AA		С	*4C	*4C	*4N		3.24
1119	AA	2	С	*4C	*4C	*4N		1.15
1120	AA		С	*4C	*4C	-1N		23.48
1121	AA	2	С	*4C	*4C	-1N		8.53
1122	AA		С	*4C	-1C	*4N		3.89
1123	AA		С	- C	- C	- N		13.50
1124	AA	2	С	- C	- C	- N		5.13
1125	AA	3	С	- C	- C	- N		3.46
1126	НА		СН	-1C	-1C	-1N		10.60
1127	НА	2	СН	-1C	-1C	-1N		4.59
1128	AA		С	-1C	-1C	-2N		1.48
1129	AA		С	-1C	-2C	-1N		0.47
1130	AA		С	С	С	N	N	0.19

Screen Number					Fragmer Definitio	nt on		Frequency Percent
1131	AA AA AA AA AA		0 0 0 0 0	- C - C - C - C - C	- C - C - C - C - C	* N * N * N * O * O	* N * O * S * O * S	1.00
1132	AA AA		C C	C C	C C	N N	O S	0.46
1133	AA		С	* C	* C	* 0		8.35
1134	AA	2	С	* C	* C	* 0		4.34
1135	AA		С	* C	* C	- O		35.34
1136	AA	2	С	* C	* C	- O		17.07
1137	AA		С	*1C	*1C	*10		3.06
1138	AA		С	*1C	*1C	-10		8.84
1139	AA		С	*1C	*1C	-20		5.34
1140	AA	2	С	*1C	*1C	-20		1.31
1141	AA		С	*1C	*2C	*10		0.47
1142	AA		С	*1C	*2C	-10		1.32
1143	AA		С	*1C	-1C	*10		7.20
1144	AA		С	*1C	-2C	*10		0.14
1145	AA		С	*2C	-1C	*10		2.75
1146	AA		С	- C	- C	- O		16.97
1147	AA	2	С	- C	- C	- O		3.76
1148	AA	3	С	- C	- C	- O		1.06
1149	НА		С	H -1C	-1C	-10		8.63
1150	НА	2	С	H -1C	-1C	-10		2.01
1151	AA		С	-1C	-1C	-20		5.56
1152	AA	2	С	-1C	-1C	-20		0.49
1153	AA		С	-1C	-2C	-10		0.34
1154	AA		С	С	С	P		2.04
1155	AA		С	- C	- C	- P		0.26

Screen Number					Fragmen Definition	nt n		Frequency Percent
1156	AA		С	* C	* C	* S		3.07
1157	AA	2	С	* C	* C	* S		0.72
1158	AA		С	* C	* C	- S		7.91
1159	AA	2	С	* C	* C	- S		1.93
1160	AA		С	* C	- C	* S		3.95
1161	AA		С	*1C	*1C	-1S		0.51
1162	AA AA		C C	*1C *1C	*1C *2C	-2S -1S		0.44
1163	AA		С	-1C	-1C	-1S		0.85
1164	НА		C H	H -1C	-1C	-1S		0.62
1165	AA AA		C C	-1C -1C	-1C -2C	-2S -1S		0.15
1166	HA HA			1 *1C 1 *1C	*1C *1C	-10 -1S		7.88
1167	HA HA			H *1C H *1C	-1C -1C	*10 *1S		6.41
1168	AA AA AA		C C C	C C C	C C C	0 0 S	O S S	1.94
1169	AA AA AA		C C C	* C * C	* C * C * C	- O - O - S	- O - S - S	0.10
1170	AA		С	* C	- Cl			11.60
1171	AA	2	С	* C	- Cl			3.88
1172	AA	3	С	* C	- Cl			0.86
1173	AA	4	С	* C	- Cl			0.39
1174	AA		С	* C	- F			5.23
1175	AA	2	С	* C	- F			1.54
1176	AA		С	* C	- X			19.40
1177	AA	2	С	* C	- X			7.30
1178	AA	3	С	* C	- X			2.13
1179	AA		С	*1C	-1X			1.94

Screen Number					Fragmer Definitio	nt n		Frequency Percent
1180	AA		С	*2C	-1X			1.34
1181	AA		С	*4C	-1X			17.48
1182	AA		С	- C	- X			7.92
1183	AA	2	С	- C	- X			2.18
1184	AA	3	С	- C	- X			0.81
1185	AA		С	-1C	-1X			7.60
1186	НА		C H	12-1C	-1X			1.70
1187	НА	2	C H	12-1C	-1x			0.26
1188	AA		С	-2C	-1X			0.69
1189	НА		C H	-2C	-1X			0.15
1190	AA AA AA AA AA AA AA		0 0 0 0 0 0 0 0 0	-1As -1B -3C -3C -3C -3C -3C -3C -3C -3C -3C	-3C -3C -1N -10 -1P -1S -1Se -1Si -1Te			0.20
1191	AA		С	-1C	-1X	-1X		4.83
1192	HA			-1C	-2N -1N -1N -1N -20 -10 -10 -2S -1S -1S	-1N -10 -1S -1X -10 -1S -1X -1S -1X		5.19
1193	AA AA AA		C C C	-2C -2C -2C -2C	-1N -10 -1S -1X	-1X -1X -1X -1X		0.25
1194	AA		С	С	Х	Х	X	4.37

Screen Number		Fragment Definition	Frequency Percent
1195	AA	C C N N	N 0.40
	AA	C C N N	0
	AA	C C N N	S
	AA	C C N N	X
	AA	C C N O	0 S
	AA AA	C C N O	X
	AA	C C N S	S
	AA	C C N S	X
	AA	C C N X	X
	AA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
	AA	C C O O	S
	AA	C C O O	X
	AA	C C O S	S
	AA	C C O S	X
	AA	C C O X	X
	AA	C C S S	S
	AA	C C S S	X
	AA	C C S X	X
1196	НА	C H -1N -1N -1N	0.97
	HA	C H -1N -1N -1O	
	HA	C H -1N -1N -1S	
	HA	C H -1N -1N -1X	
	HA	C H -1N -10 -10	
	HA	C H -1N -10 -1S	
	HA	C H -1N -10 -1X	
	HA	C H -1N -1S -1S	
	HA	C H -1N -1S -1X	
	HA	C H -1N -1X -1X	
	HA	С Н -10 -10 -10	
	HA	C H -10 -10 -1S	
	HA	C H -10 -10 -1X	
	HA	C H -10 -1S -1S	
	HA	C H -10 -1S -1X	
	HA	C H -10 -1X -1X	
	HA	C H -1S -1S -1S	
	HA	C H -1S -1S -1X	
	HA	C H -1S -1X -1X	
	AA	C - 1C - 1N - 1N - 1	.N
	AA	C - 1C - 1N - 1N - 1	.0
	AA	C -1C -1N -1N -1	S
	AA	C -1C -1N -1N -1	.X
	AA	C -1C -1N -1O -1	.0
	AA	C - 1C - 1N - 10 - 1	.S
	AA	C - 1C - 1N - 10 - 1	.X
	AA	C -1C -1N -1S -1	.S
	AA	C -1C -1N -1S -1	.X
	AA	C -1C -1N -1X -1	.X
	AA	C -1C -10 -10 -1	.0
	AA	C -1C -10 -10 -1	.S
	AA	C -1C -10 -10 -1	X
	AA	C -1C -10 -1S -1	.S
	AA	C -1C -10 -1S -1	
	AA	C -1C -10 -1X -1	.X

Screen Number				Fragmer Definition	nt on		F	requency Percent	
1196	AA	С	-1C	-1S	-1S	-1S		0.97	(continued)
	AA	C	-1C	-1S	-1S	-1X			
	AA	С	-1C	-1S	-1X	-1X			
	AA	С	-1N	-1N	-1N	-1N			
	AA	С	-1N	-1N	-1N	-10			
	AA	С	-1N	-1N	-1N	-1S			
	AA	C	-1N	-1N	-1N	-1X			
	AA	C	-1N	-1N	-10	-10			
	AA	C C	-1N -1N	-1N	-10 -10	-1S			
	AA AA	C	-1N -1N	-1N -1N	-10 -1s	-1X -1S			
	AA	C	-1N	-1N	-1S	-1X			
	AA	C	-1N	-1N	-1X	-1X			
	AA	C	-1N	-10	-10	-10			
	AA	C	-1N	-10	-10	-1S			
	AA	С	-1N	-10	-10	-1X			
	AA	С	-1N	-10	-1S	-1S			
	AA	C	-1N	-10	-1S	-1X			
	AA	C	-1N	-10	-1X	-1X			
	AA	С	-1N	-1S	-1S	-1S			
	AA	С	-1N	-1S	-1S	-1X			
	AA	C	-1N	-1S	-1X	-1X			
	AA	C	-1N	-1X	-1X	-1X			
	AA	С	-10	-10	-10	-10			
	AA AA	C C	-10 -10	-10 -10	-10 -10	-1S -1X			
	AA	C	-10	-10	-15 -1S	-1X -1S			
	AA	C	-10	-10	-1S	-1X			
	AA	C	-10	-10	-1X	-1X			
	AA	C	-10	-1S	-1S	-1S			
	AA	С	-10	-1S	-1S	-1X			
	AA	С	-10	-1S	-1X	-1X			
	AA	C	-10	-1X	-1X	-1X			
	AA	С	-1S	-1S	-1S	-1S			
	AA	С	-1S	-1S	-1S	-1X			
	AA	C	-1S	-1S	-1X	-1X			
	AA	С	-1S	-1X	-1X	-1X			
1197	AA	С	* C	* N	- X			0.81	
1198	HA	СН	*1C	*1N	-1X			0.05	
	HA	СН	*1C	*10	-1X				
	HA		*1C	*1S	-1X				
	HA		*1N	*1N	-1X				
	HA		*1N	*10	-1X				
	HA		*1N	*1S	-1X				
	HA		*10	*10	-1X				
	HA HA		*10 *1S	*1S *1S	-1X -1X				
1100								42.06	
1199	AA AA	C C	-1C -1C	-1N -4N	-2N -4N			43.86	
	AA AA	C	-1C -1C	-4N -1N	-4N -20				
	AA	C	-1C	-2N	-10				
	AA	C	-1C	-4N	-40				

Screen Number			Fragment Definition	Frequency Percent	
1199	AA AA AA AA AA AA AA AA AA	C -1C C -1C	-1N -2S -2N -1S -4N -4S -2N -1X -10 -20 -40 -40 -10 -2S -20 -1S -40 -4S -20 -1X -1S -2S -4S -4S -2S -1X	43.86	(continued)
1200	AA	- C C C C C C C C C C C C C C C C C C C	* N * N * N * N * N * N * N * N * N * N	- N 0.05 - O * O - S * S - X - S * S - X - S * S - X - S * S - X - S * S - X - S * S - X - S * S - X - S - S * S - X - S - S * S - X - S - S * S - X - S - S * S - S - S - S - S - S - S - S	

Screen Number					Fragment Definition		Frequency Percent	
1200	AA		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- * * * * * * * * * * * * * * * * * * *	- N N - O O O O O O O S S S S S S S S S S S S	* S X X X - X X X - X X X - X X X - X X X - X X X - X X X - X X X - X X X - X X X - X X X - X X - X X - X X - X X - X X - X X - X X - X X X - X X - X X X - X X X - X X X - X X X - X X X - X X X - X X X - X X X - X X	0.05	(continued)
1201	AA		С	* C	- I		0.76	
1202	AA	2	С	* C	- I		0.16	
1203	AA		С	* C	- N		32.73	
1204	AA	2	С	* C	- N		13.07	
1205	AA	3	С	* C	- N		4.45	
1206	AA	5	С	* C	- N		0.92	
1207	AA	7	С	* C	- N		0.38	
1208	AA AA	2	C C	*1C	*1N *1N		27.22	

Screen Number					Fragment Definition	Frequency Percent
1210	НА		C	H2*1C	*1N	16.15
1211	НА	2	C	H2*1C	*1N	11.14
1212	AA		С	*1C	*2N	6.60
1213	AA	2	С	*1C	*2N	1.69
1214	НА			H *1C	*2N	14.42
	HA HA			н *2С н *4С	*1N *4N	
1215	AA		С	*1C	*4N	4.72
1216	AA		С	*1C	-1N	8.08
1217	AA		С	*1C	-2N	1.15
1218	AA		С	*1C	-4N	0.66
1219	AA		С	*2C	*1N	14.18
1220	AA	2	С	*2C	*1N	5.96
1221	AA		С	*2C	-1N	2.66
1222	AA		С	*4C	*1N	11.39
1223	AA		С	*4C	*4N	13.12
1224	AA	3	С	*4C	*4N	3.41
1225	AA		С	*4C	-1N	24.08
1226	AA		С	*4C	-4N	1.99
1227	AA		С	- C	* N	24.24
1228	AA	2	С	- C	* N	9.01
1229	AA	3	С	- C	* N	2.39
1230	AA		С	-1C	*1N	16.13
1231	AA		С	-1C	*2N	7.86
1232	AA		С	-1C	*4N	5.34
1233	AA		С	-1C	-1N	35.46
1234	AA	2	С	-1C	-1N	18.10
1235	НА		C	H2-1C	-1N	26.67
1236	НА	2	C	H2-1C	-1N	11.86

Screen Number				Fragment Definition		Frequency Percent
1237	НА	3	С Н2-1С	-1N		4.79
1238	НА	4	C H2-1C	-1N		2.51
1239	НА	5	С Н2-1С	-1N		1.08
1240	AA		C -1C	-2N		4.59
1241	НА		С Н -1С	-2N		2.80
1242	AA		C -1C	-4N		20.28
1243	AA		C -1C	-3N		4.12
1244	AA		C -2C	*1N		0.78
1245	AA		C -2C	-1N		1.05
1246	НА		С Н -2С	-1N		0.53
1247	AA		C * C	* N	* N	3.51
1248	AA	2	C * C	* N	* N	0.68
1249	AA		C * C	* N	- N	4.43
1250	AA		C *1C	*1N	*1N	0.15
1251	АН АН АН АН АН АН АН АН АН АН АН		C H *1C C H *1C C H *1C C H *1C C H *1C C H *1N C H *10 C H *10 C H *10	*1N *1N *10 *10 *10 *1s *1N *1N *1N *10 *10 *15 *10 *15	*1N *10 *1s *10 *1s *1s *1n *10 *1s *10 *1s *10 *1s *1s *10 *1s	1.12
1252	AA AA AA AA		C *1C C *1C C *2C C *4C C *4C	*1N *4N *1N *1N *4N	*2N *4N *1N *4N *4N	3.36
1253	AA AA AA		C *1C C *1C C *1C	*1N *1N *1N	-1N -10 -1S	0.45

Screen Number					Fragmei Definitio	nt on	Frequency Percent
1254	НА		СН	*1C	*1N	-1N	1.20
	HA		СН	*1C	-1N	*10	
	HA		СН	*1C	-1N	*1S	
	HA		СН	*1N	*1N	-1N	
	HA		СН	*1N	-1N	*10	
	HA		СН	*1N	-1N	*1S	
	HA			-1N	*10	*10	
	HA		_	-1N	*10	*1S	
	HA		СН	-1N	*1S	*1S	
1255	AA		C	*1C	*1N	-2N	4.33
	AA		C	*1C	*2N	-1N	
	AA		C	*1C	*4N	-4N	
	AA		C	*2C	*1N	-1N	
	AA		C	*4C	*4N	-1N	
	AA		С	*4C	*4N	-4N	
1256	AA		С	- C	* N	* N	4.52
1257	AA		С	- C	- N	- N	0.76
1258	AA		С	-1C	*1N	*1N	0.25
1259	HA		СН	-1C	*1N	*1N	0.85
	HA		СН	-1C	*1N	*10	
	HA		СН	-1C	*1N	*1S	
	HA		СН	-1C	*10	*10	
	HA		СН	-1C	*10	*1S	
	HA		СН	-1C	*1S	*1S	
1260	НА		СН	-1C	-1N	-1N	0.96
	HA			-1C	-1N	-10	
	HA		СН	-1C	-1N	-1S	
	HA		СН	-1C	-10	-10	
	HA		СН	-1C	-10	-1S	
	HA		СН	-1C	-1S	-1S	
1261	AA		С	-1C	-1N	-2N	0.63
	AA		C	-1C	-4N	-4N	3.33
	AA		С	-2C	-1N	-1N	
1262	AA		С	* C	* N	* 0	0.53
1263	AA		С	* C	* N	- O	12.82
1264	AA	2	С	* C	* N	- O	3.42
1265	AA		С	* C	- N	* 0	1.51
1266	AA		С	- C	* N	* 0	1.53
1267	AA		С	- C	- N	- O	24.08
1268	AA	2	C	- C	- N	- O	8.22

Screen Number					Fragme Definition	nt on	Frequency Percent
1269	AA		С	* C	* N	* S	1.27
1270	AA		С	* C	* N	- S	0.84
1271	AA		С	* C	- N	* S	0.68
1272	AA		С	- C	* N	* S	1.39
1273	AA		С	- C	- N	- S	0.29
1274	АН АН АН АН АН АН АН АН АН АН АН АН АН			* 1C	*1N *10 *10 -10 *1S *1N *1N *10 -10 *1S *10 -10 *1S *10 *10	-10 -1s -10 -1s *1s -10 -1s -10 -1s -10 -1s *1s -10 -1s *1s -10 -1s *1s -10 -1s	2.43
1275	AA		С	* C	- O		45.33
1276	AA	2	С	* C	- O		23.50
1277	AA		С	*1C	*10		14.92
1278	AA	2	С	*1C	*10		11.83
1279	AA		С	*1C	-10		10.84
1280	AA	2	С	*1C	-10		4.74
1281	AA	3	С	*1C	-10		2.71
1282	AA	4	С	*1C	-10		1.93
1283	AA		С	*1C	-20		16.45
1284	AA		С	*1C	-40		2.70
1285	AA		С	*2C	*10		3.96
1286	AA		С	*2C	-10		1.67
1287	AA		С	*4C	*10		5.34

Screen Number				Fragment Definition	Frequency Percent
1288	AA	2	C *4C	*10	2.39
1289	AA	3	C *4C	*10	0.48
1290	AA		C *4C	-10	25.19
1291	AA	2	C *4C	-10	10.71
1292	AA	3	C *4C	-10	3.45
1293	AA	4	C *4C	-10	1.58
1294	AA		C *4C	-40	1.10
1295	AA		C -1C	*10	11.58
1296	AA		C -1C	-10	40.88
1297	НА		С Н2-1С	-10	28.13
1298	НА	2	С Н2-1С	-10	10.61
1299	НА	3	С Н2-1С	-10	4.00
1300	НА	4	C H2-1C	-10	2.34
1301	НА	5	С Н2-1С	-10	1.26
1302	AA		C -1C	-20	28.91
1303	AA	2	C -1C	-20	8.29
1304	НА		С Н -1С	-20	1.12
1305	НА	2	С Н -1С	-20	0.08
1306	AA		C -1C	-40	26.47
1307	AA		C -2C	*10	0.20
1308	AA		C -2C	-10	0.80
1309	AA		C * C	* 0 * 0	0.90
1310	AA		C * C	* 0 - 0	5.39
1311	AA		C - C	* 0 * 0	1.47
1312	AA		C - C	- 0 - 0	28.04
1313	AA	2	C - C	- 0 - 0	8.84
1314	AA		C C	0 S	0.64
1315	AA		C - C	- P	1.30

Screen Number					Fragmen Definition	t n	Frequency Percent
1316	AA		С	-2C	-1P		0.11
1317	AA		С	* C	- S		8.93
1318	AA	2	С	* C	- S		2.23
1319	AA	3	С	* C	- S		0.54
1320	AA		С	*1C	*1S		4.10
1321	AA	2	С	*1C	*1S		1.72
1322	AA		С	*1C	-1S		1.16
1323	AA		С	*1C	-2S		1.03
1323	AA		C	*1C	-4S		1.03
	AA		C	*2C	-1S		
1204	AA		С	*4C	-4S		5.45
1324	AA		С	*2C	*1S		5.45
1325	AA		С	*4C	*1S		2.38
1326	AA	2	С	*4C	*1S		0.58
1327	AA		С	*4C	-1S		7.63
1328	AA		С	-1C	*1S		4.50
1329	AA		С	-1C	-1S		7.34
1330	AA	2	С	-1C	-1S		1.98
1331	AA	3	С	-1C	-1S		0.43
1332	HA		C I	H2-1C	-1S		6.20
1333	AA AA		C C	-1C -1C	-2S -4S		0.25
1334	НА		C I	H -1C	-2S		0.00
1335	AA		С	-2C	*1S		0.91
1336	AA		С	-2C	-1S		0.40
1337	AA		С	С	S	S	0.74
1338	HA HA			H2*1C H2*1C	*10 *1S		8.20
1339	HA HA	2 2		H2*1C H2*1C	*10 *1S		3.90

Screen Number					Fragmen Definition	nt n	Frequency Percent
1340	HA HA			*2C *2C	*10 *1S		4.19
1341	HA HA	2 2		*2C *2C	*10 *1S		0.63
1342	HA HA			-2C -2C	-10 -1s		0.59
1343	HA HA HA		СН	*1C *1C *1C	*10 *10 *1S	*10 *1S *1S	0.36
1344	AA AA AA AA AA		C C C C C	- As - B * C * C * C	* C * C - P - Se - Si - Te		2.97
1345	AA AA AA AA AA AA AA AA		0 0 0 0 0 0 0 0 0 0 0	-1As -1As -1B -1B *1C *2C *1C *2C *1C *2C *1C *2C *1C	*1C *2C *1C *2C -1P -1P -1Se -1Si -1Si -1Te		0.47
1346	AA AA AA AA AA		0 0 0 0 0	-1As -1B *4C *4C *4C *4C	*4C *4C -1P -1Se -1Si -1Te		2.63
1347	AA AA		C Cl	Cl C			14.11
1348	AA	2	С	Cl			4.63
1349	AA	3	С	Cl			1.04
1350	AA		С	Cl	Cl		0.77
1351	AA		С	Cl	Cl	Cl	0.35
1352	AA		С	- Cl	* N		0.85
1353	AA AA		C F	F C			10.12

Screen Number					Fragmer Definition	nt on		Frequency Percent
1354	AA	2	С	F				3.32
1355	AA	3	С	F				1.39
1356	AA		С	F	F			5.18
1357	AA		С	F	F	F		4.49
1358	AA	2	С	F	F	F		0.88
1359	AA		С	- F	* N			0.11
1360	AA AA		C X	X C				26.42
1361	AA		С	Х	Х			6.02
1362	AA	2	С	X	X			1.63
1363	AH AH AH AH AH AH AH AH AH AH		00000000000	H2-2N H2-1N H2-1N H2-1N H2-1N H2-2O H2-1O H2-1O H2-1O H2-1S H2-1S H2-1S	-1N -10 -1S -1X -10 -1S -1X -1S -1X			1.18
1364	AA		С	X	X	X		4.93
1365	AA						NOSXXOXXXXXXXXXXX	0.59

Screen Number				Fragmei Definitio	nt on		Frequency Percent	
1365	AA	00000000000000	000000000000000000000000000000000000000			O S X S X X X X X X	0.59	(continued)
	AA	С	X	X	X	X		
1366	AA AA AA	C C C	N O S	X X X	X X X		0.99	
1367	AA AA AA AA AA AA AA AA AA AA AA AA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4N -1N -1N -4N -1N -4N -4N -1N -1N -1N -1N -1N -1N -1N -1N -1N -1	-40 -1N -4N -4N -2N -4N -4N -1N -2N -4N -4N -1N -2N -4N -1N -1N -1N -10 -40 -10	-1X -2N -4N -4N -10 -40 -10 -40 -2S -1S -4S -1S -4S -1X -1X -20 -20 -40 -10		9.76	
	AA AA AA AA AA AA AA AA AA AA AA		-4N -4N -1N -1N -1N -2N -4N -4N -1N -2N -1N -2N -1N -2N -4N -4N	-10 -40 -10 -20 -40 -10 -10 -40 -40 -20 -10 -1s -4s -1s -1s	-40 -40 -2s -1s -4s -1s -4s -1x -1x -1x -2s -4s -1s -4s			

Screen Number					Fragmer Definitio	nt on	Fr	equency Percent	
1367	AA AA AA AA AA AA AA AA AA AA AA AA AA		00000000000000000000000000000	-1N -2N -4N -10 -10 -10 -10 -10 -40 -10 -40 -10 -40 -10 -40 -10 -40 -10 -40 -10 -10 -40 -10 -10 -40 -10 -10 -10 -10 -10 -10 -10 -1	-2S -1S -4S -1X -10 -40 -40 -10 -20 -40 -40 -20 -40 -1S -4S -1S -4S -1S -4S -1S -4S -1S -4S -4S -4S -4S -4S -4S -4S -4S -4S -4	-1x -1x -1x -1x -1x -20 -40 -40 -25 -15 -45 -15 -45 -1x -1x -25 -45 -1x -1x -1x -1x -1x -1x -1x -1x -1x -1x		9.76	(continued)
1368	AA AA		C C	-2S N	-1X X	-1X		1.28	
1369	AA		С	* N	- X			1.09	
1370	AA	2	С	* N	- X			0.18	
1371	AA	3	С	* N	- X			0.02	
1372	AA		С	*1N	-1X			0.25	
1373	AA		С	*2N	-1X			0.14	
1374	AA		С	*4N	-1X			0.75	
1375	AA		С	-1N	-1X			0.14	
1376	AA		С	-2N	-1X			0.06	
1377	АН НА НА НА НА НА		C H C H C H C H	-1N -4N -1N -2N -4N -1N -2N	-2N -4N -20 -10 -40 -2S -1S			0.47	

Screen Number					Fragme Definition	nt on	Frequency Percent	
1377	HA HA HA HA HA HA HA HA HA		C H C H C H C H C H C H C H	-4N -2N -10 -40 -10 -20 -40 -20 -1s -4s -2s	-4S -1X -20 -40 -2S -1S -4S -1X -2S -4S -1X		0.47	(continued)
1378	AA AA AA AA AA		0 0 0 0 0	N N O O S	N O S O S	X X X X X	0.40	
1379	AA		С	* N	* N	- X	0.29	
1380	AA		С	0	X		1.00	
1381	AA		С	P	X		0.08	
1382	AA		С	S	X		0.74	
1383	AA AA		C C	* 0 * S	– X – X		0.37	
1384	AA AA		C C	-10 -1S	-1X -1X		1.03	
1385	AA AA		C C	-20 -2S	-1X -1X		0.34	
1386	AA AA		C I	I C			1.01	
1387	AA	2	С	I			0.19	
1388	AA		С	I	I		0.01	
1389	AA		С	- I	* N		0.02	
1390	AA AA		C M	M C			3.55	
1391	AA AA AA AA AA AA		As B C M M M	* M * M * M * As * B * C * N			6.30	

Screen Number			Fragment Definition	Frequency Percent	
1391	AA	M * O		6.30	(continued)
	AA	M * P			
	AA	M * S			
	AA	M * Se			
	AA	M * Si			
	AA	M * Te			
	AA	M * X			
	AA	N * M			
	AA	O * M			
	AA	P * M			
	AA	S * M			
	AA	Se * M			
	AA	Si * M			
	AA	Te * M			
	AA	X * M			
1392	AA	As - M		6.25	
	AA	В - М			
	AA	C - M			
	AA	M - As			
	AA	М - В			
	AA	M - C			
	AA	M - N			
	AA	M - O			
	AA	M - P			
	AA	M - S			
	AA	M - Se			
	AA	M - Si			
	AA	M - Te			
	AA	M - X			
	AA	N - M			
	AA AA	O – M P – M			
	AA	S - M			
	AA	Se - M			
	AA	Si - M			
	AA	Te - M			
	AA	X - M			
1393	AA	C * N		49.27	
	AA	N * C			
1394	AA	C *1N		40.50	
	AA	N *1C			
1395	AA	C *2N		14.45	
1393	AA	N *2C		14.43	
		-			
1396	AA	C *4N		20.41	
	AA	N *4C			
1397	AA	C -1N		58.10	
	AA	N -1C		23.10	
1398	HA	C H3-1N		10.55	

Screen Number					Fragment Definition	Frequency Percent
1399	НА	2	С	H3-1N		4.78
1400	НА	3	С	H3-1N		1.35
1401	НА	4	С	H3-1N		0.74
1402	AA		С	-2N		6.98
1402	AA		N	-2C		
1403	AA		С	-4N		27.74
	AA		N	-4C		
1404	AA		С	-3N		4.65
	AA		N	-3C		
1405	AA	2	С	-3N		0.94
1406	AA		С	* N	* N	15.53
1407	AA	2	С	* N	* N	5.53
1408	AA	3	С	* N	* N	2.43
1409	AA		С	* N	- N	8.70
1410	AA	2	С	* N	- N	1.83
1411	AA	3	С	* N	- N	0.54
1412	AA		С	*1N	*1N	2.53
1413	HA			H2*1N	*1N	0.31
	HA HA			H2*1N H2*1N	*10 *1S	
1414	AA		С	*1N	*2N	6.52
1415	HA			H *1N	*2N	3.87
	HA			H *4N	*4N	
	HA HA			H *2N H *2N	*10 *1S	
1416	AA		С	*1N	*4N	3.07
1417	AA		С	*1N	-1N	1.07
1418	AA		С	*1N	-2N	0.86
1419	AA		С	*1N	-4N	0.32
1420	AA		С	*2N	-1N	0.82
1421	AA		С	*4N	*4N	6.90
1422	AA		С	*4N	-1N	1.30

Screen Number					Fragme Definition	nt on	Frequency Percent
1423	AA		С	*4N	-4N		5.40
1424	AA		С	- N	- N		6.63
1425	AA	2	С	- N	- N		1.16
1426	AA	3	С	- N	- N		0.31
1427	AA		С	-1N	-1N		0.60
1428	AA		С	-1N	-2N		0.29
1429	AA		С	-1N	-4N		1.22
1430	AA		С	-1N	-3N		0.14
1431	AA		С	-2N	-2N		0.02
1432	AA		С	-4N	-4N		4.68
1433	AA		С	N	N	N	5.10
1434	AA	2	С	N	N	N	1.41
1435	AA	3	С	N	N	N	0.56
1436	AA AA AA AA AA AA AA		0000000000	* N * N * N * N * N * O * O * S	* N * N * O * O * S * O * S * S	* N O * S O S S S S * * * * *	0.88
1437	AA		С	* N	* N	- N	2.57
1438	AA		С	- N	- N	- N	2.24
1439	AA AA AA AA AA AA AA		0000000000	-1N -1N -1N -1N -1N -1N -10 -10 -10	-1N -1N -10 -10 -10 -1s -10 -10 -1s	-1N -10 -1S -10 -1S -1S -10 -1S -1S	0.04
1440	AA		С	* N	* N	- O	2.77
1441	AA	2	С	* N	* N	- 0	0.47

Screen Number					Fragmer Definitio	nt n	Frequency Percent
1442	AA		С	* N	- N	* 0	0.15
1443	AA		С	- N	- N	- O	2.24
1444	AA	2	С	- N	- N	- O	0.14
1445	AA		С	* N	* N	- S	1.97
1446	AA	2	С	* N	* N	- S	0.07
1447	AA		С	* N	- N	* S	2.29
1448	AA	2	С	* N	- N	* S	0.12
1449	AA		С	- N	- N	- S	1.12
1450	AA	2	С	- N	- N	- S	0.08
1451	AA AA		C C	-1N -1N	-1N -1N	-20 -2S	0.21
1452	AA AA AA		C C C	-1N -4N -1N -4N	-2N -4N -2N -4N	-10 -10 -1s -1s	0.18
1453	AA AA		C C	-1N -1N	-4N -4N	-40 -4S	1.09
1454	AA AA		C C	-4N -4N	-4N -4N	-40 -4S	1.91
1455	AA		С	* N	* 0		2.73
1456	AA	2	С	* N	* 0		0.63
1457	AA		С	* N	- O		14.41
1458	AA	2	С	* N	- 0		5.00
1459	AA	3	С	* N	- 0		1.38
1460	AA		С	*1N	*10		0.99
1461	AA		С	*1N	-10		0.63
1462	AA		С	*1N	-20		9.29
1463	AA		С	*1N	-40		1.16
1464	AA		С	*2N	*10		1.38
1465	AA		С	*2N	-10		0.30
1466	AA		С	*4N	*10		0.25

Screen Number					Fragment Definition	Frequency Percent
1467	AA		С	*4N	-10	0.95
1468	AA		С	*4N	-40	4.42
1469	AA		С	- N	* 0	1.68
1470	AA		С	- N	- O	28.84
1471	AA	2	С	- N	- O	10.44
1472	AA	3	С	- N	- O	4.87
1473	AA	4	С	- N	- O	3.68
1474	AA		С	-1N	-10	1.75
1475	AA		С	-1N	-20	8.11
1476	AA		С	-2N	-10	0.13
1477	AA		С	-2N	-20	0.39
1478	AA		С	-4N	-40	23.05
1479	AA		С	N	0 0	4.22
1480	AA	2	С	N	0 0	0.55
1481	AA		С	* N	* 0 - 0	0.46
1482	AA		С	- N	- 0 - 0	3.78
1483	AA		С	N	0 S	0.54
1484	AA		С	N	P	0.29
1485	AA		С	* N	* S	5.70
1486	AA	2	С	* N	* S	1.19
1487	AA		С	* N	- S	3.57
1488	AA	2	С	* N	- S	0.25
1489	AA		С	*1N	*1S	2.72
1490	AA		С	*2N	*1S	2.26
1491	AA		С	*4N	*1S	1.62
1492	AA		С	- N	- S	2.05
1493	AA	2	С	- N	- S	0.27
1494	AA		С	-1N	-1S	0.29

Screen Number					Fragme Definition	nt on		Frequency Percent
1495	AA		С	-1N	-2S			0.18
1496	AA		С	-2N	-1S			0.11
1497	AA		С	-2N	-2S			0.16
1498	AA		С	-4N	-4S			1.15
1499	AA		С	N	S	S		0.92
1500	AA		С	-1N	*10			2.47
1300	AA		C	-1N	*1S			2.17
1501	AA		C	-2N	*10			1.94
	AA		C	-4N	*10			
	AA		C	-2N	*1S			
	AA		С	-4N	*1S			
1502	AA		C	-3N	-10			0.12
	AA		С	-3N	-1S			
1503	AA		С	-1N	-10	-20		3.82
1303								3.04
	AA		C	-4N	-10	-40		
	AA		С	-1N	-10	-2S		
	AA		С	-1N	-20	-1S		
	AA		C	-4N	-10	-4S		
	AA		C	-4N	-40	-1S		
	AA		C	-1N	-1S	-2S		
	AA		С	-4N	-1S	-4S		
1504								
1504	AA		C	- N	* 0	* 0	- O	0.00
	AA		C	- N	* 0	* 0	- S	
	AA		C	- N	* 0	- O	* S	
	AA		C	- N	* 0	* S	- S	
	AA		С	- N	- 0	* S	* S	
	AA		C	- N	* S	* S	- S	
1505	AA		C	* 0				20.22
	AA		0	* C				
1506	HA		C 1	H3-10				17.33
1507	HA	2	C 1	H3-10				5.70
1=00								
1508	HA	3	C 1	H3-10				1.69
1500	TT 75	1	a 1	12 10				0.67
1509	HA	4	C I	H3-10				0.67
1 - 1 0	73.73		~	20				41 10
1510	AA		C	-20				41.18
	AA		0	-2C				
1511	AA		C	-40				31.52
	AA		Ο	-4C				
1512	AA		C	* 0	* 0			2.94

Screen Number					Fragment Definition	Frequency Percent
1513	AA	2	С	* 0	* O	0.67
1514	AA		С	* 0	- O	5.68
1515	AA	2	С	* 0	- O	1.92
1516	AA		С	*10	-10	2.36
1517	AA		С	*10	-20	3.54
1518	AA		С	- O	- O	29.91
1519	AA	2	С	- O	- O	10.19
1520	AA	3	С	- O	- O	3.17
1521	AA	4	С	- O	- O	1.56
1522	AA		С	-10	-10	1.52
1523	AA		С	-10	-20	18.25
1524	AA	2	С	-10	-20	4.97
1525	AA		С	-10	-40	2.49
1526	AA		С	-40	-40	11.09
1527	AA	2	С	-40	-40	3.39
1528	AA		С	0	P	0.20
1529	AA		С	* 0	* S	0.08
1530	AA		С	* 0	- S	0.29
1531	AA		С	- O	* S	0.37
1532	AA		С	- O	- S	0.55
1533	AA AA		C P	- P - C		2.98
1534	AA AA AA AA AA		C C C P P	-2P -3P -4P -2C -3C -4C		0.07
1535	AA		С	P	P	0.19
1536	AA		С	P	S	0.04

Screen Number				00.00.	Fragment Definition	i I	Frequency Percent
1537	AA		С	* S			10.23
1337	AA		S	* C			10.23
1538	AA		С	- S			17.07
	AA		S	- C			
1539	AA		C	-1S			14.89
	AA		S	-1C			
1540	НА		C I	H3-1S			2.72
1541	НА	2	C I	H3-1S			0.39
1542	AA		С	-2S			2.60
	AA		С	-4S			
	AA		S	-2C			
	AA		S	-4C			
1543	AA		С	* S	* S		0.47
1544	AA		С	* S	- S		0.96
1545	AA		С	- S	- S		0.38
1546	AA	2	С	Si			2.69
1547	AA	3	С	Si			2.51
1548	AA	4	С	Si			1.43
1549	AA		C	- Si			2.84
	AA		Si	- C			
1550	HA			12*10	*10		0.80
	HA			H2*10	*1S		
	HA		C F	H2*1S	*1S		
1551	AA		С	0	0	0	0.63
	AA		C	Ο	0	S	
	AA		C	Ο	S	S	
	AA		С	S	S	S	
1552	AA		As	* C			1.15
	AA		В	* C			
	AA		С	* As			
	AA		С	* B			
	AA AA		C C	* P * Se			
	AA		C	* Se			
	AA		C	* Te			
	AA		P	* C			
	AA		Se	* C			
	AA		Si	* C * C			
	AA		Te	(

Screen Number						Fragment F Definition	requency Percent
1553	AA		Cl		Р		0.13
2000	AA		P		Cl		0.10
1554	AA		Cl		S		0.08
	AA		S		Cl		
1	73.73				Б		0 07
1555	AA AA		F P		P F		0.27
	AA		F		Ľ		
1556	AA		F		S		0.06
	AA		S		F		
1557	AA		X		X		0.06
1558	AA		As		М		3.13
1330	AA		В		M		3.13
	AA		M		As		
	AA		M		В		
	AA		M		P		
	AA		M		Se		
	AA		M		Si		
	AA		M		Te		
	AA		M		Х		
	AA		P		M		
	AA		Se		M		
	AA		Si		M		
	AA		Te		M		
	AA		X		M		
1559	AA		N		Х		0.06
2007	AA		X		N		0.00
1560	AA		0		X		0.51
	AA		X		0		
1 - C 1	73 73		Б		37		0 40
1561	AA		P		X P		0.42
	AA		X		Р		
1562	AA		S		Х		0.14
	AA		X		S		
1563	AA		M		N		4.05
	AA		N		M		
1564	AA		M		0		4.03
	AA		M		S		
	AA		0		M		
	AA		S		M		
		_					
1565	AA	4	N	*	С		8.42
1566	AA	5	N	*	С		3.53
1200	AA	J	TA		C		3.33
1567	AA	6	N	*	С		2.31

Screen Number					Fragment Definition	Frequency Percent
1568	НА		N H2	2-1C		7.57
1569	НА	2	N H2	2-1C		2.12
1570	НА	3	N H	2-1C		0.62
1571	НА		N H	-2C		0.34
1572	НА НА НА НА НА НА НА		N H N H N H N H N H N H	-2As -2B -2C -2N -2O -2P -2S -2Se -2Si		0.36
	HA		N H	-2Te		
1573	AA		N	* C	* C	43.08
1574	AA	2	N	* C	* C	23.90
1575	AA	3	N	* C	* C	10.35
1576	AA	4	N	* C	* C	5.64
1577	AA		N	* C	- C	26.04
1578	AA	2	N	* C	- C	7.82
1579	AA	3	N	* C	- C	1.99
1580	AA		N	*1C	*1C	30.13
1581	AA	2	N	*1C	*1C	10.29
1582	AA	3	N	*1C	*1C	2.86
1583	НА		N H	*1C	*1C	4.55
1584	НА	2	N H	*1C	*1C	0.72
1585	AA		N	*1C	*2C	8.37
1586	AA	2	N	*1C	*2C	1.31
1587	AA		N	*2C	-1C	0.65
1588	AA		N	*4C	*4C	14.32
1589	AA	2	N	*4C	*4C	6.63
1590	AA	3	N	*4C	*4C	2.11

Screen Number					Fragmer Definition	nt on		Frequency Percent
1591	AA		N	*4C	-1C			0.87
1592	AA		N	- C	- C			35.21
1593	AA	2	N	- C	- C			13.94
1594	AA	3	N	- C	- C			5.73
1595	AA		N	-1C	-1C			14.72
1596	AA	2	N	-1C	-1C			2.46
1597	НА		N H	-1C	-1C			4.20
1598	НА	2	N H	-1C	-1C			0.48
1599	AA		N	-1C	-2C			2.33
1600	AA		N	-1C	-4C			21.05
1601	AA		N	-4C	-4C			1.92
1602	AA		N	С	С	С		31.96
1603	AA	2	N	С	С	С		10.54
1604	AA	3	N	С	С	С		2.71
1605	AA		N	* C	* C	* C		3.71
1606	AA	2	N	* C	* C	* C		0.51
1607	AA		N	* C	* C	- C		22.55
1608	AA		N	*1C	*1C	-1C		21.59
1609	AA		N	- C	- C	- C		8.91
1610	AA	2	N	- C	- C	- C		1.24
1611	AA		N	С	С	С	С	1.17
1612	AA	2	N	С	С	С	С	0.16
1613	AA AA		N N	* C	* C * C	* C * C	* C - C	0.35
	AA		N	* C	* C	- C	- C	
1614	AA		N	- C	- C	- C	- C	0.83
1615	AA AA		N N	C C	C C	C C	N O	0.08
	AA		N	C	C	C	S	
1616	AA		N	С	С	N		5.31

Screen Number					Fragmer Definitio	nt n	Frequency Percent
1617	AA AA AA		N N N	* C * C	* C * C * C	* N * O * S	0.97
1618	AA		N	- C	- C	- N	0.41
1619	AA		N	С	С	Ο	0.98
1620	AA		N	* C	* C	- O	0.53
1621	AA		N	- C	- C	- O	0.27
1622	AA		N	С	С	P	0.32
1623	AA		N	С	С	S	2.00
1624	AA		N	- C	- C	- S	0.90
1625	AA		N	* C	- N		0.76
1626	AA		N	*1C	*1N		5.00
1627	HA HA HA		N H N H N H		*1N *10 *1S		0.67
1628	AA		N	*2C	*1N		5.47
1629	AA	2	N	*2C	*1N		1.61
1630	AA		N	- C	* N		3.78
1631	AA	2	N	- C	* N		0.54
1632	AA		N	-1C	-1N		1.19
1633	НА		N H	-1C	-1N		0.77
1634	AA		N	-2C	-1N		2.84
1635	AA		N	-4C	-1N		2.74
1636	AA		N	* C	* 0		1.22
1637	AA		N	* C	- 0		0.71
1638	AA		N	*4C	-20		0.19
1639	AA		N	- C	* 0		0.15
1640	AA		N	- C	- 0		6.80
1641	AA		N	-1C	-10		0.30
1642	AA		N	-1C	-20		5.21

Screen Number					Fragment Definition	Frequency Percent
1643	AA		N	-2C	-10	1.03
1644	AA		N	С	P	0.62
1645	AA		N	С	S	4.46
1646	AA		N	* C	- S	0.98
1647	AA		N	- C	* S	0.19
1648	AA		N	- C	- S	3.03
1649	AA		N	-1C	-1S	0.97
1650	AA		N	-1C	-4S	1.46
1651	AA		N	-4C	-4S	0.57
1652	HA HA			-1C -1C	-10 -1S	0.08
1653 1654	AA			- As - B * N * N * N * N * N * N * N PPPPPPPPPPP	* N * N - O - P - Se - Si - Te - X P P P P P P P P S Si Te X	0.13
1655	AA		N	N		13.07
1656	AA	3	N	N		3.57
1657	AA	5	N	N		0.66
1658	AA	7	N	N		0.24
1659	AA		N	*1N		6.78
1660	AA		N	*2N		0.99

Screen Number					Fragment Definition	Frequency Percent
1661	AA		N	*4N		0.64
1662	AA		N	- N		6.18
1663	AA		N	-1N		4.36
1664	НА		N H	2-1N		0.41
1665	AA		N	-2N		1.77
1666	AA	3	N	-2N		0.78
1667	AA		As B N N N N N N N O P S S I T e	-4N -4N -4As -4B -4N -4O -4P -4S -4Se -4Si -4Te -4N -4N -4N -4N		2.86
1668	AA		N	-3N		0.08
1669	AA		N	* N	* N	1.06
1670	AA		N	- N	- N	0.43
1671	AA		N	N	0	0.28
1672	AA		N	N	S	0.22
1673	AA	2	N	0		1.99
1674	AA	3	N	0		0.63
1675	AA	5	N	0		0.07
1676	AA AA		N O	* O * N		1.31
1677	AA AA		N O	- O - N		8.04
1678	AA AA		N O	-10 -1N		2.25

Screen Number					Fragment Definition		Frequency Percent
1679	AA AA		N O	-20 -2N			5.78
1680	AA		N	0	0		5.54
1681	AA	2	N	0	0		1.28
1682	AA	3	N	0	0		0.42
1683	AA	5	N	Ο	0		0.03
1684	AA		N	0	0	0	0.29
1685	AA AA		N P	* P			0.20
1686	AA AA		N P	- N			0.60
1687	AA AA		N P	-1P -1N			0.36
1688	AA AA		N P	-2P -2N			0.09
1689	AA AA		N P	-4P -4N			0.21
1690	AA	2	N	S			0.62
1691	AA AA		N S	* S * N			0.62
1692	AA AA AA AA AA AA		N N N S S	*2S *4S -2S -4S *2N *4N -2N -4N			2.59
1693	AA AA		N S	- S - N			4.40
1694	AA AA		N N	0 S	S S		0.10
1695	AA AA		N Si	Si N			0.24

Screen Number					Fragment Definition	Frequency Percent
1696	НА НА НА НА НА НА		N 1 N 1 N 1 N 1 N 1 N 1	H2-1As H2-1B H2-1O H2-1P H2-1S H2-1Se H2-1Si H2-1Te		0.03
1697	AA	2	0	* C		8.15
1698	AA	3	0	* C		3.30
1699	AA	4	0	* C		2.15
1700	НА		0 1	H -1C		20.14
1701	НА	2	0 1	H -1C		7.80
1702	НА	3	0 1	H -1C		3.33
1703	НА	4	0 1	H -1C		1.93
1704	НА	5	0 1	H -1C		1.15
1705	НА	6	0 1	H -1C		0.81
1706	AA		0	* C	* C	17.14
1707	AA		0	- C	- C	38.39
1708	AA	2	0	- C	- C	17.09
1709	AA	3	0	- C	- C	6.63
1710	AA	4	0	- C	- C	3.26
1711	AA		0	* C	* N	1.07
1712	AA		0	- C	- N	1.20
1713	AA		0	С	Р	2.32
1714	AA	2	0	С	P	1.72
1715	AA	3	0	С	P	0.73
1716	AA		0	С	S	0.97
1717	AA	2	0	С	S	0.15

Screen Number			!	Fragment Definition	Frequency Percent
1718	AA	0	As	As	0.63
	AA	0	As	В	
	AA	0	As	N	
	AA	0	As	0	
	AA	0	As	P	
	AA	0	As	S	
	AA	0	As	Se	
	AA	0	As	Si	
	AA	0	As	Te	
	AA	0	As	X	
	AA	0	В	В	
	AA AA	0	B B	N O	
	AA AA	0	В	P	
	AA	0	В	S	
	AA	0	В	Se	
	AA	0	В	Si	
	AA	Ö	В	Te	
	AA	0	В	X	
	AA	0	N	N	
	AA	0	N	0	
	AA	0	N	P	
	AA	0	N	S	
	AA	0	N	Se	
	AA	0	N	Si	
	AA	0	N	Te	
	AA	0	N	X	
	AA	0	0	0	
	AA	0	0	P	
	AA	0	0	S	
	AA AA	0	0	Se Si	
	AA	0	0	Te	
	AA	0	0	X	
	AA	0	P	P	
	AA	0	P	S	
	AA	0	P	Se	
	AA	0	P	Si	
	AA	0	P	Te	
	AA	0	P	X	
	AA	0	S	S	
	AA	0	S	Se	
	AA	0	S	Si	
	AA	0	S	Te	
	AA	0	S	X	
	AA	0	Se	Se	
	AA	0	Se	Si	
	AA	0	Se	Te	
	AA AA	0	Se Si	X Si	
	AA AA	0	Si	Te	
	AA	0	Si	X	
	AA	0	Te	Te	
	AA	0	Te	X	
	AA	Ö	X	X	
		-			

Screen Number					Fragment Definition	Frequency Percent
1719	НА		ОН	-1N		0.80
1720	AA		0	0		0.23
1721	AA AA		O P	* P * O		0.36
1722	AA AA		O P	-1P -10		2.22
1723	AA AA		O P	-2P -20		1.11
1724	AA AA		O P	-4P -40		1.35
1725	AA	2	0	-4P		1.20
1726	AA	3	0	-4P		0.83
1727	AA AA		0 S	* S * O		0.09
1728	AA AA		0 S	-1S -10		1.03
1729	AA AA		0 S	-2S -20		4.78
1730	AA AA		0 S	-4S -40		4.43
1731	AA	2	Ο	-4S		4.41
1732	AA	3	0	-4S		2.17
1733	AA	2	0	Si		0.86
1734	AA AA		O Si	* Si * O		0.15
1735	AA AA			- Si - O		1.82
1736	HA HA			-10 -1s		0.06
1737	HA HA HA HA HA		O H O H O H	-1As -1B -1P -1Se -1Si -1Te		0.16
1738	AA	2	P	С		1.26

Screen				00.00	Fragment			Frequency
Number					Definition			Percent
1739	AA		P	С	С			2.11
1740	AA		P	- C	- C			1.95
1741	AA		P	С	С	С		1.75
1742	AA		P	С	С	0		0.37
1743	AA		P	С	N			0.29
1744	AA		P	С	0			1.25
1745	AA		P	С	0	0		0.94
1746	AA		P	С	0	0	0	0.69
1747	AA		P	С	S			0.17
1748	AA AA AA		P P P	C C C	0 0 0 s	0 0 5 5	O S S S	0.75
1749	AA		P	Х	X			0.32
1750	AA	2	P	N				0.18
1751	AA		P	N	N			0.27
1752	AA		P	N	0			0.49
1753	AA		P	N	0	0		0.33
1754	AA		P	N	S			0.13
1755	AA AA AA		P P P	N N N	0 0 0 s	0 0 5 5	0 5 5 5	0.19
1756	AA	2	P	0				0.77
1757	AA		P	0	0			2.69
1758	AA		P	0	0	0		2.16
1759	AA		P	0	0	0	0	1.06
1760	AA		P	0	S			0.41
1761	AA AA		P S	S P				0.53
1762	AA AA		P S	* S * P				0.06

Screen Number					Fragme Definition	nt on		Frequency Percent
1763	AA AA		P S	-1S -1P				0.22
1764	AA AA		P S	-2S -2P				0.25
1765	AA AA		P S	-4S -4P				0.11
1766	AA		P	S	S			0.18
1767	AA AA	2 2	P P	-40 -4S				0.41
1768	AA AA	3	P P	-40 -4S				0.23
1769	AA AA AA AA		P P P P	0 0 0 0 s	0 0 0 s s	0 0 5 5	0 5 5 5	1.29
1770	AA	2	S	- C				3.55
1771	НА		S I	H -1C				0.85
1772	AA		S	* C	* C			9.14
1773	AA	2	S	* C	* C			1.52
1774	AA		S	- C	- C			7.80
1775	AA	2	S	- C	- C			0.91
1776	AA		S	С	С	N		0.05
1777	AA		S	С	С	0		1.96
1778	AA	2	S	С	С	0		0.18
1779	AA		S	* C	* C	- O		0.35
1780	AA		S	- C	- C	- O		1.61
1781	AA		S	* C	* C	- O	- O	0.25
1782	AA		S	- C	- C	- O	- O	1.23
1783	AA		S	* C	* N			0.48
1784	AA		S	- C	- N			4.15
1785	AA	2	S	- C	- N			0.34

Screen Number					Fragme Definition	nt on		Frequency Percent
1786	AA		S	С	N	0	0	4.19
1787	AA		S	* C	* N	- O	- O	0.19
1788	AA		S	- C	- N	- O	- O	4.02
1789	AA		S	* C	* 0			0.04
1790	AA		S	* C	- O			0.59
1791	AA		S	- C	- O			7.61
1792	AA	2	S	- C	- O			1.22
1793	AA	3	S	- C	- O			0.38
1794	AA		S	* C	- O	- O		0.47
1795	AA		S	- C	- O	- O		7.20
1796	AA		S	С	0	0	0	2.09
1797	AA	2	S	С	0	0	0	0.65
1798	AA		S	С	P			0.21
1799	AA	2	S	С	P			0.04
1800	AA		S	Х	X			0.02
1801	AA	2	S	N				0.47
1802	AA		S	N	N			0.25
1803	AA		S	N	0			4.51
1804	AA	2	S	N	0			0.39
1805	AA	3	S	N	0			0.04
1806	AA		S	* N	- O			0.26
1807	AA		S	N	0	0	0	0.09
1808	AA		S	N	P			0.00
1809	AA	2	S	0				1.44
1810	AA	3	S	0				0.45
1811	AA		S	0	0			8.41
1812	AA		S	0	0	0		2.72
1813	AA		S	0	0	0	0	0.47

Screen Number			Fragme Definiti	ent ion	Frequency Percent
1814	AA	S	O P		0.00
1815	AA	s *	S		0.21
1816	AA	S -	S		0.24
1817	AA AA	Si X	X Si		0.15
1818	AA AA		C - C C - C		0.15
1819	AA AA	0 S	C C C	C C	0.46
1820	AA	As As As B B B B P P P P P See e e e e e e e e e e e e e	As B P Se Si Te As B P Se Si T		0.35
1821	TW	C *1	LC *1C	-1C H3	5.04
1822	TW	С Н *1	LC *1C	-1C H3	2.13

Screen Number				Fragment Definition	Frequency Percent
1823	TW		C *1C	*2C -1C H	3 2.48
1824	TW		C *4C	*4C -1C H	3 9.55
1825	TW	2	C *4C	*4C -1C H	3.33
1826	TW TW		C -1C C -1C	-1C -1C -1C -1C	-10 H 0.83
1827	TW TW TW		C *1C C *1C C H *1C	*1C -1N H *2C -1N H *1C -1N H	2
1828	TW		C *4C	*4C -1N H	2 1.65
1829	TW	2	C *4C	*4C -1N H	2 0.46
1830	TW		С Н -1С	-1C -1N H	2 3.13
1831	TW TW TW TW TW		C *1C C *1C C *1C C *1C C H *1C C H *1C	*1C -10 H *1C -1S H *2C -10 H *2C -1S H *1C -10 H *1C -1S H	
1832	TW TW		C *4C C *4C	*4C -10 H *4C -1S H	
1833	TW TW	2 2	C *4C C *4C	*4C -10 H *4C -1S H	
1834	TW TW		C H -1C C H -1C	-1C -10 H -1C -1S H	
1835	TW		С Н2-1С	-1N H2	2.72
1836	TW TW		C H2-1C C H2-1C	-10 H -1S H	6.73
1837	TW TW	2 2	C H2-1C C H2-1C	-10 H -1S H	2.13
1838	RC	1			86.17
1839	RC	2			72.82
1840	RC	3			53.05
1841	RC	4			33.05
1842	RC	5			17.59
1843	RC	6			10.11

Screen Number				Fragment Definition	Frequency Percent
1844	RC	7			6.54
1845	RC	8			5.01
1846	RC	10			3.12
1847	RC	15			1.13
1848	TR		DDD		2.06
1849	TR	2	DDD		0.21
1850	TR		DDT		0.26
1851	TR TR		DTT TTT		2.46
1852	TR		DDDD		0.97
1853	TR TR TR TR TR		DDDT DDTT DTDT DTTT TTTT		2.17
1854	TR	2	DDTT		0.04
1855	TR		DDDDD		21.27
1856	TR	2	DDDDD		4.03
1857	TR	3	DDDDD		0.93
1858	TR		DDDDT		1.30
1859	TR		DDDTT		17.81
1860	TR	2	DDDTT		3.68
1861	TR	3	DDDTT		0.68
1862	TR		DDTDT		1.60
1863	TR		DDTTT		2.02
1864	TR		DTDTT		0.62
1865	TR		DTTTT		3.57
1866	TR		TTTTT		1.04
1867	TR		DDDDDD		64.12
1868	TR	2	DDDDDD		36.55

Screen Number				Fragment Definition	Frequency Percent
1869	TR	3	DDDDDD		15.00
1870	TR	4	DDDDDD		5.96
1871	TR	5	DDDDDD		2.30
1872	TR	6	DDDDDD		1.49
1873	TR		DDDDDT		1.07
1874	TR		DDDDTT		31.00
1875	TR	2	DDDDTT		16.61
1876	TR	3	DDDDTT		2.91
1877	TR	4	DDDDTT		1.76
1878	TR		DDDTDT		1.04
1879	TR	2	DDDTDT		0.34
1880	TR		DDDTTT		2.10
1881	TR	2	DDDTTT		1.32
1882	TR	3	DDDTTT		0.53
1883	TR		DDTDDT		0.66
1884	TR		DDTDTT		0.64
1885	TR		DDTTTT		4.57
1886	TR	2	DDTTTT		2.20
1887	TR		DTDTDT		0.53
1888	TR		DTDTTT		0.35
1889	TR		DTTDTT		3.09
1890	TR	2	DTTDTT		0.66
1891	TR		DTTTTT		1.26
1892	TR		TTTTTT		0.59
1893	TR		DDDDDDD		0.67
1894	TR	2	DDDDDDD		0.03

Screen Number		Fragment Definition	Frequency Percent
1895	TR TR	DDDDDT DDDDTDT	0.49
	TR	DDDDTTT	
	TR	DDDTDDT	
	TR TR	DDDTDTT DDTDDTT	
	TR	DDTDTDT	
	TR	DDTDTTT	
	TR	DDTTTTT	
	TR	DTDTDTT	
	TR	DTDTTTT	
	TR TR	DTTDTTT DTTTTTT	
	TR	TTTTTT	
1896	TR	DDDDDTT	0.94
1897	TR	DDDTTTT	0.64
	TR	DDTTDTT	
1898	TR	8-membered ring or larger	2.61
1899	AC	1	98.15
1900	AC	6	92.64
1901	AC	8	91.95
1902	AC	10	90.59
1903	AC	12	88.21
1904	AC	14	84.50
1905	AC	16	79.75
1906	AC	18 20	73.85
1907 1908	AC AC	22	67.45 60.62
1909	AC	24	53.61
1910	AC	26	46.59
1911	AC	28	40.01
1912	AC	30	33.97
1913	AC	35	21.92
1914	AC	40	14.78
1915	AC	50	8.50

Screen Number			Fragment Definition	Frequency Percent
		=0	Definition	
1916	AC	70		4.27
1917	AC	90		2.45
1918	EC	Ac		14.84
	EC	Ag		
	EC	Al		
	EC	Am		
	EC	Au		
	EC	Ва		
	EC	Be		
	EC	Bi		
	EC	Bk		
	EC	Ca		
	EC	Cd		
	EC	Ce		
	EC	Cf		
	EC	Cm		
	EC	Co		
	EC	Cr		
	EC	Cu		
	EC	Dy		
	EC	Er		
	EC	Es		
	EC	Eu		
	EC	Fe		
	EC	Fm		
	EC	Fr		
	EC	Ga		
	EC	Gd		
	EC	Ge		
	EC	Нf		
	EC	Hg		
	EC	Но		
	EC	In		
	EC	Ir		
	EC	K		
	EC	La		
	EC	Li		
	EC	Lr		
	EC	Lu		
	EC	Md		
	EC	Mg		
	EC	Mn		
	EC	Mo		
	EC	Na		
	EC	Nb		
	EC	Nd		
	EC	Ni		
	EC	No		
	EC	Ир		
	EC	Os		
	EC	Pa		
	EC	Pb		
	EC	Pd		

Screen Number			Fragment Definition	Frequency Percent	
1918	EC	Pm		14.84	(continued)
	EC	Po			
	EC	Pr			
	EC	Pt			
	EC	Pu			
	EC	Ra			
	EC	Rb			
	EC	Re			
	EC	Rh			
	EC	Ru			
	EC	Sb			
	EC	Sc			
	EC	Sm			
	EC	Sn			
	EC	Sr			
	EC	Ta			
	EC	Tb			
	EC	Tc			
	EC	Th			
	EC	Ti			
	EC	Tl			
	EC	Tm			
	EC EC	U V			
	EC	W			
	EC	Y			
	EC	Yb			
	EC	Zn			
	EC	Zr			
	GM	E Ac			
	GM	E Ag			
	GM	E Al			
	GM	E Am			
	GM	E Au			
	GM	E Ba			
	GM	E Be			
	GM	E Bi			
	GM	E Bk			
	GM	E Ca			
	GM	E Cd			
	GM	E Ce			
	GM	E Cf			
	GM	E Cm			
	GM	E Co			
	GM	E Cr			
	GM	E Cu			
	GM	E Dy			
	GM CM	E Er			
	GM CM	E Es			
	GM CM	E Eu			
	GM CM	E Fe E Fm			
	GM GM	E Fm E Fr			
	GM GM	E Ga			
	GM GM	E Gd			
	GITI	E GU			

Screen Number				Fragment Definition	Frequency Percent	
1918	GM	E	Ge		14.84	(continued)
	GM		Нf			
	GM		Hg			
	GM		Но			
	GM	E	In			
	GM	E	Ir			
	GM		K			
	GM		La			
	GM		Li			
	GM		Lr			
	GM		Lu			
	GM		Md			
	GM		Mg			
	GM		Mn			
	GM		Мо			
	GM		Na			
	GM		Nb			
	GM		Nd			
	GM		Ni			
	GM		No N~			
	GM GM		Np Os			
	GM		Pa			
	GM		Pb			
	GM		Pd			
	GM		Pm			
	GM		Ро			
	GM		Pr			
	GM		Pt			
	GM		Pu			
	GM	E	Ra			
	GM	E	Rb			
	GM	E	Re			
	GM	E	Rh			
	GM	E	Ru			
	GM	E	Sb			
	GM		Sc			
	GM		Sm			
	GM		Sn			
	GM		Sr			
	GM		Ta			
	GM		Tb			
	GM		Tc			
	GM GM		Th Ti			
	GM		Tl			
	GM		Tm			
	GM		U			
	GM		V			
	GM		W			
	GM		Y			
	GM		Yb			
	GM		Zn			
	GM		Zr			

Screen Number			Fragment Definition	Frequency Percent
1919	EC E	AC Am Bk Cf Cm Es Fm Lr Md No Np Pa Pu Th U E AC E Am E Bk E Cf E Cm E E Fm E Lr E Md E No E Np E Pu E Pu E Th E U		0.19
1920	EC EC EC GM GM	Ag Au Cu E Ag E Au E Cu		2.10
1921	EC EC EC EC EC EC GM GM GM GM GM GM GM GM GM	Ag Mo Nb Pd Rh Ru Tc Zr E Ag E Mo E Nb E Pd E Rh E Ru E Tc E Zr		3.35

Screen Number			Fragment Definition	Frequency Percent
1922	EC GM	Al E Al		1.27
1923	EC EC EC EC GM GM GM GM GM	Al B Ga In Ti E Al E B E Ga E In E Ti		2.93
1924	EC EC EC EC GM GM GM GM GM GM	Ar He Kr Ne Rn Xe E Ar E He E Kr E Ne E Rn		0.03
1925	EC EC EC GM GM GM	As Bi P Sb E As E Bi E P E Sb		6.12
1926	EC EC EC EC EC EC GM	As Ga Ge Kr Rb Se Sr Y Zn E As E Ga E Kr E Rb E Se E Sr E Y E Sn		2.27

Screen Number				Fragment Definition	Frequency Percent
1927	EC GM		As E As		0.28
1928	EC	2	As		
1929	EC EC EC GM GM GM GM GM		At Br Cl F I E At E Br E Cl E F E I		31.99
1930	EC EC EC EC EC EC GM		At Bi Fr Hg Pb Po Ra Rn Tl E At E Bi E Fr E Hg E Pb E Po E Ra E Rn E Tl		0.76
1931	EC EC EC EC EC GM GM GM GM GM GM GM GM GM		Au Hf Ir Os Pt Re Ta W E Au E Hf E Ir E Os E Pt E Re E Ta E W		1.90
1932	EC GM		B E B		1.36

Screen Number				Fragment Definition	Frequency Percent
1933	EC	2	В		0.26
1934	EC	3	В		0.17
1935	EC EC EC EC EC EC GM GM GM GM GM GM GM		Ba Cd Cs In Sb Sn Te Xe E Ba E Cd E Cs E In E Sb E Sn E Xe		2.27
1936	EC EC EC EC GM GM GM GM GM		Ba Be Ca Mg Ra Sr E Ba E Be E Ca E Mg E Ra E Sr		1.24
1937	EC GM		Be E Be		0.05
1938	EC GM		Br E Br		5.30
1939	EC	2	Br		1.12
1940	EC	3	Br		0.30
1941	EC	4	Br		0.18
1942	EC	4	С		91.88
1943	EC	6	С		90.62
1944	EC	8	С		87.91
1945	EC	10	С		83.53
1946	EC	12	С		77.56

Screen Number				Fragment Definition	Frequency Percent
1947	EC	14	С		70.23
1948	EC	16	С		61.95
1949	EC	18	С		53.38
1950	EC	20	С		44.93
1951	EC	25	С		26.45
1952	EC	30	С		15.81
1953	EC	35	С		10.30
1954	EC	49	С		7.56
1955	EC GM		Ca E Ca		0.34
1956	EC EC EC GM GM		Cd Hg Zn E Cd E Hg E Zn		1.03
1957	EC C C C C C C G G G G G G G G G G G G G		Ce Dy Er Eu Gd Ho La Lu Nd Pm Pr Sm Tb Tm Yb E Ce E Eu E Gd E Lu E Nd E Pm E Pr E Tb E Th E Yb		1.31

Screen Number				Fragment Definition	Frequency Percent
1958	EC GM		Cl E Cl		18.33
1959	EC	2	Cl		6.14
1960	EC	3	Cl		1.93
1961	EC	4	Cl		0.93
1962	EC	5	Cl		0.39
1963	EC GM		Co E Co		1.32
1964	EC EC EC EC EC EC GM GM GM GM GM GM GM GM		Co Cr Cu Fe Mn Ni Ti V E Co E Cr E Cu E Fe E Mn E Ni E Ti E V		7.39
1965	EC EC EC EC EC GM GM GM GM GM GM GM GM		Co Fe Ni Os Pd Pt Rh Ru E Co E Fe E Ni E Os E Pd E Pt E Rh E Ru		6.72
1966	EC EC GM GM GM		Cr Mo W E Cr E Mo E W		2.44

Screen Number				Fragment Definition	Frequency Percent
1967	EC EC EC EC EC GM GM GM GM GM		Cs Fr K Li Na Rb E Cs E Fr E K E Li E Na E Rb		2.00
1968	EC GM		F E F		10.62
1969	EC	2	F		6.99
1970	EC	3	F		5.71
1971	EC	4	F		2.67
1972	EC	5	F		1.96
1973	EC	6	F		1.70
1974	EC	7	F		0.85
1975	EC GM		Fe E Fe		2.96
1976	EC	2	X		15.15
1977	EC	3	X		8.64
1978	EC	4	X		4.76
1979	EC	5	X		2.84
1980	EC	6	X		2.22
1981	EC	8	X		0.95
1982	EC	10	X		0.64
1983	EC EC EC GM GM GM		Ge Pb Si Sn E Ge E Pb E Si E Sn		5.61

Screen Number				Fragment Definition	Frequency Percent
1984	EC EC EC GM GM		Hf Ti Zr E Hf E Ti E Zr		1.39
1985	EC GM		I E I		1.71
1986	EC	2	I		0.33
1987	EC GM		K E K		0.42
1988	EC EC EC GM GM		La Sc Y E La E Sc E Y		0.53
1989	EC GM		Li E Li		0.40
1990	EC GM		Mg E Mg		0.52
1991	EC EC EC GM GM		Mn Re Tc E Mn E Re E Tc		1.96
1992	EC GM		N E N		71.10
1993	EC	2	N		53.96
1994	EC	3	N		35.41
1995	EC	4	N		23.08
1996	EC	6	N		9.30
1997	EC	8	N		5.03
1998	EC	10	N		3.47
1999	EC	14	N		2.13
2000	EC GM		Na E Na		1.11

Screen Number				Fragment Definition	Frequency Percent
2001	EC EC EC GM GM		Nb Ta V E Nb E Ta E V		1.12
2002	EC GM		Ni E Ni		1.81
2003	EC EC GM GM		O S E O E S		86.62
2004	EC GM		O E O		83.63
2005	EC	2	0		70.64
2006	EC	3	0		53.74
2007	EC	4	0		39.45
2008	EC	5	0		25.77
2009	EC	6	0		18.58
2010	EC	7	0		12.97
2011	EC	8	0		10.08
2012	EC	10	0		6.70
2013	EC	12	0		5.07
2014	EC	15	0		3.37
2015	EC	18	0		2.40
2016	EC GM		P E P		5.44
2017	EC	2	P		1.90
2018	EC	3	P		0.76
2019	EC EC GM GM GM		Po Se Te E Po E Se E Te		0.66

		F 4	F
		Fragment Definition	Frequency Percent
EC GM		Pt E Pt	0.50
EC GM		S E S	26.05
EC	2	S	7.69
EC	3	S	2.16
EC	4	S	1.14
EC	5	S	0.44
EC GM		Si E Si	4.55
EC	2	Si	0.96
EC	3	Si	0.39
GM G		E Ag E Al E Am E Ar E As E As E At E Au E B E Ba E Be E Bi E Bk E C E Cd E Cd E Cf E Cm E Co E Cr E Cr E Cs E Cu E Dy E Er E Es E Eu E F E Fe E Fm E Fe E Fm E Ga E Gd	0.61
	GM EC GM EC EC EC EC GM	GM EC 2 EC 3 EC 4 EC 5 EC GM EC 2 EC 3 GM G	Pt

Screen Number				Fragment Definition	Frequency Percent	
2029	GM	E	Нf		0.61	(continued)
	GM		Нg			
	GM		Но			
	GM	E	In			
	GM		Ir			
	GM		Kr			
	GM		La			
	GM		Li			
	GM		Lr			
	GM		Lu			
	GM		Md			
	GM GM		Mg Mn			
	GM GM		Мо			
	GM		Nb			
	GM		Nd			
	GM		Ne			
	GM		Ni			
	GM		No			
	GM		Np			
	GM		0s			
	GM	E	P			
	GM	E	Рa			
	GM		Pb			
	GM		Pd			
	GM		Ρm			
	GM		Ро			
	GM		Pr			
	GM		Pt			
	GM		Pu			
	GM GM		Ra Rb			
	GM		Re			
	GM		Rh			
	GM		Rn			
	GM		Ru			
	GM		S			
	GM	E	Sb			
	GM		Sc			
	GM		Se			
	GM		Sm			
	GM		Sn			
	GM		Sr			
	GM		Ta			
	GM		Tb			
	GM GM		Tc Te			
	GM		Th			
	GM		Ti			
	GM		Tl			
	GM		Tm			
	GM		U			
	GM		V			
	GM		W			
	GM	E	Хe			

Screen Number		Fragment Definition	Frequency Percent	
2029	GM GM GM GM	E Y E Yb E Zn E Zr	0.61	(continued)
2030	GM	E Br	0.55	
2031	GM	E Ca	0.06	
2032	GM	E Cl	2.95	
2033	GM	Е Н	3.85	
2034	GM	E I	0.45	
2035	GM	E K	0.30	
2036	GM	E N	0.15	
2037	GM	E Na	0.95	
2038	GM	E O	0.50	
2039	GM	abnormal mass all isotopic specifications	0.97	
2040	GM	charge all charges: fixed, tautomeric	12.50	
2041	GM	abnormal valence	32.34	
2042	GM	delocalized charge only	0.10	
2043	GM	polymer (general category)	4.18	
2044		Not used		
2045	GM	deuterium isotope	0.49	
2046	GM	tritium and higher H isotopes (e.g., 4H, 5H, etc.)	0.06	
2047	GM	isotope at unknown location (IUL)	0.05	
2048	GM	incompletely defined (ID) substance	1.43	
2049	GM	coordination compound	8.16	
2050	GM	alloy	3.22	
2051	GM	mixture (substance named as "mixt. with" in CA and CAplus)	0.29	
2052	GM	mineral	0.05	
2053	GM	manual registration	221.62	

Screen Number		Fragment Definition	Frequency Percent
2054	GM	radical ion	0.23
2055		Not Used	
2056		Not Used	
2057		Not Used	
2058		Not Used	
2059		Not Used	
2060		Not Used	
2061		Not Used	
2062		Not Used	
2063		Not Used	
2064		Not Used	
2065		Not Used	
2066		Not Used	
2067	GM	homopolymers and copolymers [$(A)x$, $(A.B)x$, etc.]	3.20
2068	GM	polymers defined as structural repeating units(SRUs)	1.48
2069	GM	SRU with end groups [$X-(-Y-)_n-Z$]	0.52
2070	GM	SRU without end groups [$-(-Y-)_n-$]	1.00
2071	GM	ID - unknown structure (ID molform)	0.21
2072	GM	ID - unknown point of attachment	0.99
2073	GM	ID - ester	0.14
2074	GM	ID - hydrogen (bond)	0.10
2075		Not Used	
2076	GM	tautomer	39.88
2077	GM	3 or more components	7.24
2078	GM	4 or more components	4.55
2079	GM	single atom fragment (SAF)	6.69

Screen Number				F D	ragment efinition	Frequency Percent
2080	AS AS	C N	C C	C C	N C	67.06
2081	AS AS AS	C C O S	C C C	C C C	O S C C	76.51
2082	CASREAC	T comp	ound	i		14.04
2083	AS AS	C C	C N	N C	C C	61.18
2084	AS AS AS	C C C	C C O S	0 S C C	C C C	55.24
2085	AS A	C C C C C C C C N N N O O O S S S	C C C C C C C C C C	и и и о о о я я я с с с с с с с с	N O S N O S C C C C C C C C	26.07
2086	AS AS AS AS AS	C C C N N	N O S C C	C C C N O S	N N C C	30.95
2087	AS AS AS	C C O S	N N C C	C C N	O S C C	39.80

Screen Number				Fr De	agment efinition	Frequency Percent
2088	AS AS AS AS AS AS AS	C C C O O S S	0 0 8 8 0 0 0	C C C C S O S	0 s 0 s C C C	27.26
2089	AS	N	С	С	N	23.97
2090	AS AS AS AS	N N O S	C C C	C C C	O S N N	35.39
2091	AS AS AS AS	0 0 S S	C C C	C C C	0 S 0 S	24.29
2092	AS A	C C C C C C C C C C N N N N N N O O O O	иииииооояяяссиояссиоясииоя	000555105105105000001100000000000000000	C O S C O S C C C C C N N N N N N O S O C C S O S C C	13.08

Screen Number					F D	ragme efinition	nt on		Frequency Percent
2093	AS AS AS AS AS AS AS AS		C C C C C C N N	N O O S S S C C	N C O S C O S O S	C N C C N C C C			24.67
2094	AS AS AS AS AS AS		C C C C O S S	0 0 s s C C C C	C C C C O S O S	0 S O C C C C			27.26
2095			Not	used	f				
2096	AS AS		0 S	C C	C C	C C	O S		20.23
2097			Not	used	l				
2098	AS		N	С	С	С	N		22.43
2099	AA		С	C	:	N			69.37
2100	AA	2	С	C	!	N			62.62
2101	AA		С	C	!	0			75.88
2102	AA	2	С	C	!	0			60.80
2103	AA		N	C	!	С			61.82
2104	AA		0	C	!	С			47.10
2105	AA AA AA AA AA AA AA		C C N O O P S			M S X M N O P C			31.14
2106	AA AA AA AA AA		C C C C N S	C N C S N	I ?)	P N S N C			36.37

Screen Number				Fragment Definition	Frequency Percent
2107	AA AA		C N C O	S O	42.77
2108	AA AA		C N C	O N	44.41
2109	AA AA		C C	X O	33.25
2109	AA		s c	N	33.25
2111	DC		3		92.87
2112	DC	3	3		87.28
2113	DC	5	3		75.61
2114	DC	7	3		59.22
2115	DC	9	3		41.91
2116	DC	12	3		21.66
2117	DC	14	3		13.95
2118	DC	16	3		9.96
2119	DC	20	3		6.39
2120	DC		4		42.03
2121	DC	2	4		17.53
2122	DC	3	4		8.61
2123	DC	4	4		4.94
2124	DC	5	4		3.04
2125	DC	6	4		2.10
2126	DC		6		4.73
2127	2 or	more	component	ts	18.61

In North America

CAS North America P.O. Box 3012

Columbus, Ohio 43210-0012 U.S.A.

CAS Customer Care:

Phone: 800-753-4227 (North America)

614-447-3700 (worldwide)

Fax: 614-447-3751 E-mail: help@cas.org Internet: www.cas.org

In Europe

FIZ Karlsruhe STN Europe P.O. Box 2465 76012 Karlsruhe

Germany

Phone: +49-7247-808-555 Fax: +49-7247-808-259

E-mail: helpdesk@fiz-karlsruhe.de Internet: www.stn-international.de

In Japan

JAICI (Japan Association for International Chemical Information)

STN Japan

Nakai Building

6-25-4 Honkomagome, Bunkyo-ku

Tokyo 113-0012, Japan

Phone: +81-3-5978-3601 (Technical Service)

+81-3-5978-3621 (Customer Service)

Fax: +81-3-5978-3600

Email: support@jaici.or.jp (Technical Service)

customer@jaici.or.jp (Customer Service)

Internet: www.jaici.or.jp

