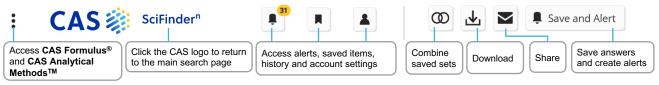
CAS SCIFINDER[®] QUICK REFERENCE GUIDE


Contents

- 03 Solution Interface
- 03-04 References Search
- 05-06 Substances Search
 - 07 Advanced Search
 - 08 CAS Roles
- 09-10 Reactions Search
- 11-14 Retrosynthesis Planner
 - 15 Markush and CAS PatentPak®
 - 16 Supplier Search
 - 16 <u>ChemDoodle®</u>
 - 17 Prior Art Analysis
 - 17 Login, Training, and Support

Solution interface and References search

Main interface

The options below are found on the main interface in CAS SciFinderⁿ.

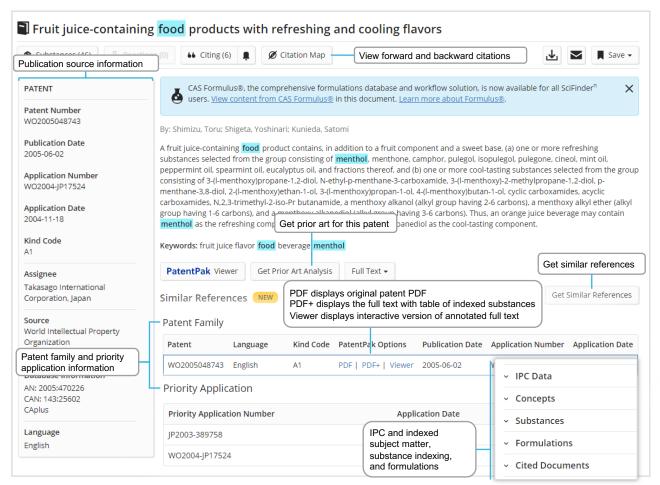
Search interface

CAS SciFinderⁿ features a streamlined search interface.

8° All Substances A Reactions References Enter the query	Execute the search or press ENTER
Search by Substance Name, CAS RN, Patent Number, PubMed ID, AN, CAN, and/or DOI.	raw Q
Molecular Formula Example: C6H6 (C8H8)x C22H26CuN2O5.C2H3N	
Add Advanced Search Field Access fielded search, available for substances and references As Sequences Build powerful searches using Oury BLAST, COR, and Motif algorithms for nucleonide and Structure	he
conditions, yields, catalysts, and experimental procedures. CAS concepts, chemical classes, and taxonomy. algorithms for nucleotide and protein based sequences.	editor

References search result

Performing a References search provides you with access to a full result set in an easy-to-use interface where:


- References are default sorted by relevance with customizable sorting options.
- You can focus your answer set further using filters.
- You can save searches, send a link, set up alerts, or add results to a project list.
- You can quickly access full details for any of the references displayed.

Substances Reactions	Filtering:	← X Knowledge Graph	Combine current	with saved set 🗕 👁 🛃 💌	
	Filtering:			with saved set	Save and Alert
Would you like to load the entire result set?	Excluding:	Concept: Flavor X Des Concept: Antibacterial agents	elect applied filters $ x $	Share answers Sort answers	Clear All Filters
Learn about result relevance.	🗌 391 Resu	lts		Sort: Relevance 🗸	View: Partial Abstract 🗸
	0 1	Click title to open refe	erence detail		
Document Type Journal (133) Patent (255) Review (9)	Coencapsulat their perform Select Filt	nance. Xviitol and menthol are er by or Exclude, then r categories	rials in one system can in cooling agents that are v nint-flavored products. T	nprove the functionality of individual comp widely applied in the food industry, and s hus, xylitol and menthol were coencapsu intensifying the cooling sensation and to	tudies have reported lated using the double
Clinical Trial (1)		I-text options			
Search Within Results Search for up to 3 text strings — within the result set.	Full Text ▼ Search any this answer		Substances (2)	Reactions (0) 46 Citing (44)	
"oral release"		nery composition inclue nt, and a sensate	ding an elastomeri	c component, a cooked sacchar	ide

Reference detail and search operators

Reference detail

Access full details for each reference found in CAS SciFinderⁿ.

Boolean operators

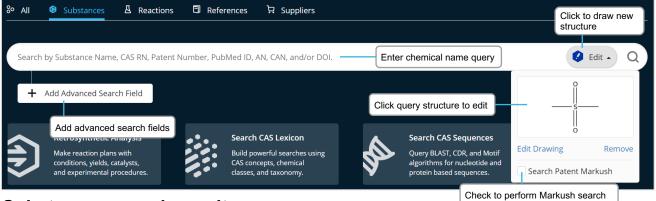
You can use logical operators to create precise text queries.

Use parentheses to group logical expressions, such as related terms usinng "OR", ex:

Refe	erences - (flavor or odor) and menthol not cigarette × Ø Draw Q	
AND	Requires both terms to be present within the document	
OR	Requires either one or both terms to be present (connect synonyms with OR)	
ΝΟΤ	Excludes documents from an answer set containing the word(s) after NOT	
Wildca	ards allow for more comprehensive results in reference, substance, and filter searches.	

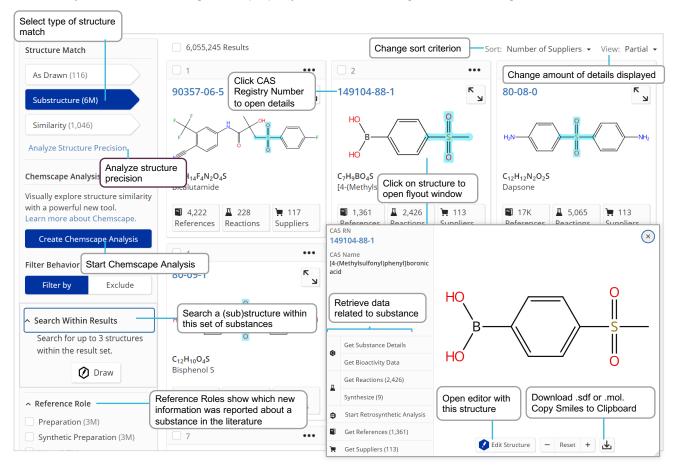
Wildcards allow for more comprehensive results in reference, substance, and filter searches. Internal and right-hand truncation is possible.

- * Replaces 0 to any number of characters ex: polymorph* | immunoglobulin*conjugate*
- ? Replaces 0 or 1 character ex: benzonorbornen?


Phrases containing double quotes will be searched as a precise phrase. Ex: a search for "Programmed cell death protein" only finds results that exactly match: "Programmed cell death protein."

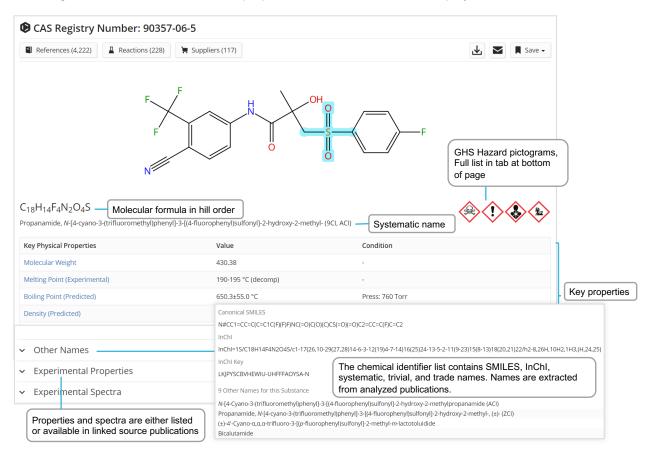
Substance name and structure search

Substances search


You can search substances by placing one or more substance names or identifiers into the query box. You can also draw or edit a structure. Below are name search option examples.

StreptomycinFinds Streptomycin record57-92-1Finds Streptomycin record, uses CAS Registry Number® as identifierStreptomycin sulfateFinds three records: Streptomycin, Streptomycin sulfate, and Sulfate"Streptomycin sulfate" StreptomycinFinds two records: Streptomycin sulfate and StreptomycinSulfoximin*Finds all names that start with the stem SulfoximinWO2019234160Finds all indexed substances for this patent

Substances search result


Substances search results are displayed in an intuitive interface where you will see the most relevant results for your search, including critical property information and high-resolution images.

Substance detail and structure editor

Substance detail

When you click a CAS Registry Number for one of your Substances search results, substance details including structure, molecular formula, properties, and further data are displayed.

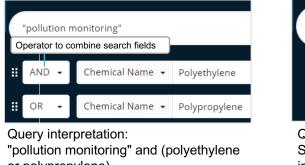
CAS Draw editor

You can further define structure and reaction queries using the CAS Draw structure editor.

CAS		CAS Draw - Import and export structure files Enter CAS Registry Number, SMI or InChI to create structure	LES,	Acc
		🗅 🛱 🛱 🛱 🗞 🕫 🛱 🐔 🖘 🗢 🛱 ? Enter a CAS Registry Number, SMILES, or InChI To		
P		Lasso Marquee tool Learn about keyboard shortcuts	С	H
		Draw atoms and bonds Eraser	0	s
	Et	Pick element symbol from periodic table Shortcuts	N	P
X	R	Variable selection Define own variables (R Groups)	CI_	Si
Fn	0	Add attachment point to fragment Select from templates Draw bonds. 4 indicate further options are available	È	[™]
Ð	Θ	Add positive charge Add negative charge	$\overline{\bigcirc}$	$\overline{\Omega}$
	~	Repeating groups Carbon chain tool	0	0
	A B	Define variable point of attachment at ring Reaction role	0	Ċ
	⁰\$_	Atom mapping Lock rings/lock atoms		
^∗		Bond mapping Draw reaction arrow		
ent Se	arch	C OK Cancel	w All Se	arch Hi:

Advanced Search

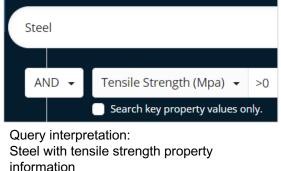
Performing an Advanced Search


You can perform specific References and Substances searches using fields found on the main search page in CAS SciFinderⁿ.

- Operators are processed in this order: OR, AND, NOT _
- Operators are not available for a search using a single advanced search field
- Wildcards are allowed, e.g., peek*
- Use up to 50 Advanced Search Fields (49 if also using the main search field)

% All © Subs	tances 🛛 Reactions	s 🖹 References 📮 Suppliers	
Search by Keywor	Change field ne, CAS	RN, Pa General search box, AN, CAN, and/or DOI.	Ø Draw Q
Aut	hor Name 👻 Enter last	name, first name middle name.	
Define operator be	etween search fields	Example: Schubert, J A	
+ Add Adva	nced Search Field	Add more specific fields	

Advanced Search examples


Advanced References Search

Advanced Substances Search

Click 'Edit Search' to modify

the Advanced Search

or polypropylene)

References -

Edit Search "pollution monitoring"

Available Advanced Search fields

You can utilize many search fields and categories as part of an Advanced Search query, including:

References Search

- Authors
- Publication Name
- Organization
- Title
- Abstract/Keywords
- Concept
- Substances
- Bioactivity Data
- Publication Year
- Document Identifier
- Patent Identifier
- Publisher

Substances Search

- Molecular Formula
- CAS Registry Number
- Chemical Identifier Document Identifier
- Patent Identifier
- Experimental Spectra
- Bioactivity Data
- Biological
- Chemical Properties
- Density
- Electrical
- Lipinski
- Magnetic
- Mechanical
- **Optical and Scattering**
- Structure Related
- Thermal

CAS Roles

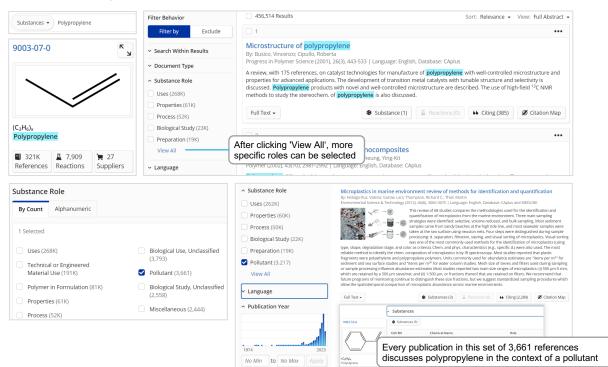
CAS Roles overview

Roles are linked to substances, allowing you to find focused publications connecting a substance of interest to its specific role within the scope of the publication.

- Super roles are broad categories and comprise all related specific roles. Examples are Analytical Study, Preparation, or Occurrence.
- Specific roles are more precise. They relate to aspects such as the use of the substance in an analytical study as an analyte (Analyte) or the occurrence of a compound in a plant (Natural Product Occurrence).

Roles in substance results

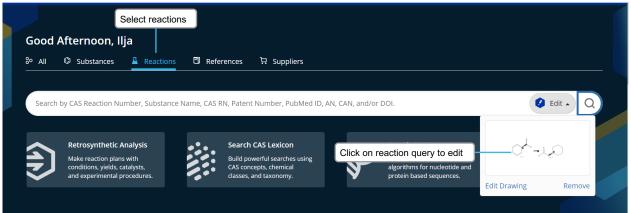
From a search on substance(s), the roles filter will indicate the types of roles that are connected to the substance(s) in the publications.


Reference Role					
By Count Alphanumeric	Appearing in a substance answer set Number of substance		Number of substance(s) in the	(s) in the	
0 Selected			answer set with that role		
Adverse Effect (15)	Diagnostic Use (3)	Pharm	nacological Activity (10)		
Agricultural Use (29)	Food or Feed Use (120)		cal, Engineering, or		
Analyte (17)	Formation, Non-preparative	Chem	ical Process (888)		

Roles in reference results

Roles will appear as a filter in reference result sets whenever you have retrieved hits in the substance indexing segment of the records, i.e., by retrieving substance names or performing a crossover after substance-based searches.

Example: I am interested in the subject of (marine) pollution, how can I find publications where polypropylene is specifically described as a pollutant?


The search for polypropylene retrieves many references. The substance role window shows all roles that apply to Polypropylene in this answer set. The **Pollutant** role indicates there are 3,661 publications that describe polypropylene as a pollutant. The Search Within function or concepts can be used to restrict results to marine pollution.

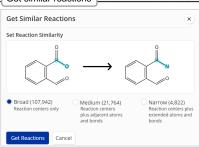
Reactions search

Performing a Reactions search

Reactions queries can be performed using CAS Reaction Numbers, substance names, CAS Registry Numbers, document identifiers, or a chemical structure.

Reactions search results

Reactions search results are grouped into schemes with identical reactants and products or into transformations. A robust panel of filters, including yield and steps, enables further refinement.


Reactions search for	drawn structure	Change grouping to 'By Document' or 'By Transformation'
References -		💿 🛃 📱 🖡 Save and Alert
View by structure match		Send to CAS Draw
itructure Match	20,022 Results Click on structure to view	Group: By Scheme 👻 Sort: Yield 👻 View: Expanded 👻
As Drawn (0)	Scheme 1 (2 Reactions)	Steps: 1 Yield: 100% •••
Substructure (20K) Similarity (2,142)		$-OH \rightarrow $
ilter Behavior Filter by Exclude	Absolute stereochemistry shown, Rotation (+)	Absolute stereochemistry shown
Search Within Results	31-614-CAS-27240963 Steps: 1 Yield: 100%	substituted cyclohexyl derivatives
90-100% (429)	Solvents: <u>Toluene</u>	By: Barnett, Charles Jackson; e View reaction reference World Intellectual Property Or
80-89% (261)	Filter reaction results	2002-03-28
70-79% (290) 50-69% (372)	Experimental Protocols	PatentPak - Full Text - Access annotated patent full-text
30-49% (206) View All	31-614-CAS-27633989 Steps: 1 Yield: 100%	••• Preparation of N-(isoxazoloquinolinylcyclohexyl)carbox amides and analogs as MRP1 inhibitors
Number of Steps	 Reagents: <u>TriethylamineDiphenylphosphoryl azide</u> Solvents: <u>Toluene</u>; 40 - 50 °C; 1 h, 110 °C; 110 °C → °C 	
1 (2,368) 2 (2.135)	1.2 70 °C; overnight, 70 °C \rightarrow 85 °C	2001-06-28 Get similar reactions

For single-step, single-stem reactions, you may view similar reactions based the similarity to of adjacent atoms to the specific reaction center.

•**Broad:** Retrieve reactions that share a reaction center with the selected reaction.

•Medium: Retrieve reactions that share a reaction center as well as adjacent atoms.

•Narrow: Retrieve reactions with a shared reaction center and extended atoms and bonds.

Reaction details

Reviewing Reaction details

The details of a reaction provide you with access to information including solvents, catalysts, reagents, conditions, and experimental protocols extracted from the publication and its supplement.

Get Similar Reactions	earch for similar reactions
Reaction Overview	
Steps: 1 Yield: 85%	
Reaction reference	
JOURNAL	Absolute stereochemistry shown, Rotation (+)
Development of a Scalable Synthesis of an Azaindolyl-	[Stage 2] 85%
Pyrimidine Inhibitor of Influenz Virus Replication	za Suppliers (48) 📜 Suppliers (149)
By: Liang, Jiang	
View All View all aut	thors Step 1
Development (2016), 20(5), 965-969	Stage Reagents Catalysts Solvents Conditions
O View Source Full Text	1 Triethylamine - Toluene 2 h, reflux; reflux → 60 °C Diphenylphosphoryl azide - Toluene 2 h, reflux; reflux → 60 °C
Company/Organization	2 overnight, 60 °C \rightarrow 80 °C
/ertex Pharmaceuticals ncorporated	
Boston, Massachusetts 02210 United States	View alternatives Alternative Steps (5)
Experimental Prot	
Synthetic Methods	View detailed procedures
by minetic methods	
Products	Ethyl (1R,3S)-3-[(benzyloxycarbonyl)amino]cyclohexanecarboxylate, Yield: 85%
Reactants	<u>1-Ethyl (1R,3S)-1,3-cyclohexanedicarboxylate</u>
	<u>Benzyl alcohol</u>
Reagents	Triethylamine
	Diphenylphosphoryl azide
Solvents	Toluene
Procedure	1. Add diphenylphosphoryazide (DPPA) (166 mL, 769 mmol) and triethylamine (107 mL, 769 mmol) to (1S,
	3R) -3-ethoxycarbonylcyclohexanecarboxylic acid (140 g, 700 mmol) in toluene (1.4 L).
Characterization D	ata — View characterization data
^ Ethyl (1 <i>R</i> ,3 <i>S</i>)	-3-[(benzyloxycarbonyl)amino]cyclohexanecarboxylate
Destan NMD	(200 MUL CDCL) \$7.40.7.20 (EU) E 11 (- 20) 4 67 (- 10) 4 12 (- 1- 7.1 U- 20) 2 EE (- 10)
Proton NMR Spectrum	(300 MHz, CDCl ₃) δ7.48-7.30 (m, 5H), 5.11 (s, 2H), 4.67 (s, 1H), 4.13 (q,J= 7.1 Hz, 2H), 3.55 (s, 1H), 2.42 (t,J= 11.8 Hz, 1H), 2.28 (d,J = 12.6 Hz, 1H), 2.10-1.79 (m, 3H), 1.50-1.19 (m, 6H), 1.19-1.00 (m,
	1H).
Optical Rotat	tory =-33.3° (c = 1 in DCM).
Power	(ESI) [M + H] ⁺ calculated for C ₁₇ H ₂₄ NO ₄ 306.1700, found 306.1700
THUNS	
State	sticky solid
CAS Method Numbe	er 3-451-CAS-15598720
Transformations - 1. Schmidt Rea	Overview of transformations Reaction Notes Further important notes

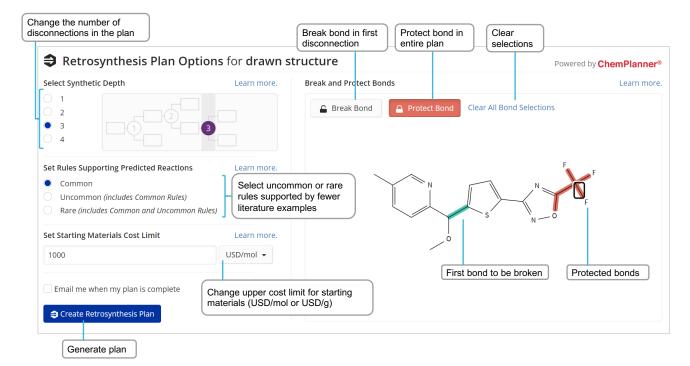
Retrosynthesis planner

Launching the tool

There are two primary ways to launch the retrosynthesis tool within CAS SciFinderⁿ:

- 1. Draw or import a structure into the Retrosynthesis window accessed by selecting the Retrosynthesis option on the main page. The substance can be novel.
- 2. Choose the Start Retrosynthetic Analysis option found on the substance flyout window.

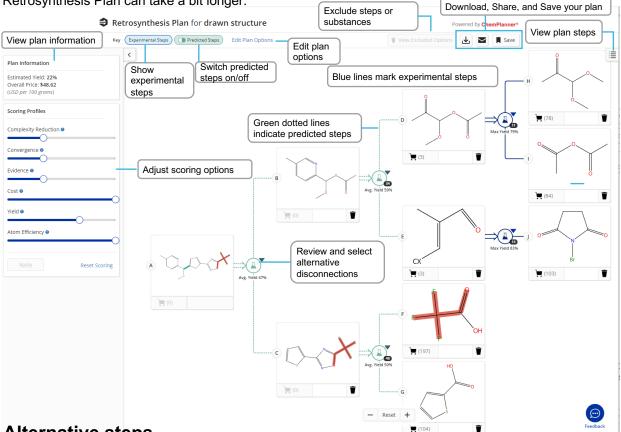
Good	Afternoon, Ilja		
8° All	Substances Reactions References Description		
Search	by CAS Reaction Number, Substance Name, CAS RN, Patent Number, PubMed ID,	AN, CAN, and/or DOI.	Ø Draw Q
	Retrosynthetic Analysis	Search CAS Sequences	
₹	Make reaction plans with Build powerful searches using Conditions, yields, catalysts, CAS concepts, chemical	Query BLAST, CDR, and Motif algorithms for nucleotide and	
	and experimental procedures.	protein based sequences.	
CAS	Pretrosynthetic Analysis	1	
PQ	Draw or import a structure.	CAS RN 2408121-76-4	×
• • •	🗅 🗜 🖵 🛱 🗞 🐇 🖻 🏝 🗲 🕫 ই ? Enter a CAS Registry Number, SMILES, or InChi 🚺	CAS Name	
ч с н	Click and drag to select objects. Ctrl-click to select or deselect individual objects.	2-[Methoxy[5-[5-(trifluoromethyl)- 1,2,4-oxadiazol-3-yl]-2-thienyl]	F
O S	F	methyl]-5-meth	
CI Si		Get Substance Details	
Et		Get Bioactivity Data	s N-0
~ 0	↓ 5 _N _6	Get Reactions (1)	
<u>\</u>		Synthesize (1)	
		a Start Retrosynthetic Analysis − 2	
		Get References (1)	
00	Molecular Formula: C11,H12F3,N3,O35 (355.34) C + Start Retrosynthetic Analysis Cancel	Get Suppliers (0)	e – Reset +
sb	Zoom: 110% Start Retrosynthetic Analysis Cancel		


Retrosynthesis planner

Selecting plan options

You can edit plan options to:

- Increase the synthetic depth.
- Protect bonds through the entire synthetic route.
- Define bonds to be broken in the first disconnection.
- Change the starting material cost limit.
- Create a predictive plan with more meaningful alternatives, (such as poly- or heterocyclic molecules).


Once you have completed your option selections, choose the Create Retrosynthesis Plan button.

Retrosynthesis plan and alternative steps

Open the plan

An Experimental plan is typically available within a few seconds. The calculation of a Predictive Retrosynthesis Plan can take a bit longer.

Alternative steps

Get an overview of all experimental and predicted disconnections along with the evidence reactions displayed as a reaction answer set. You can access these evidence reactions from either the (1) link in the steps overview or (2) alternative reaction scheme.

Step	Evidence	Filter by	5 of 15	A Predicted Step
▲ A ⇒ B + C Average Yield: 47% Evidence (16) Alternative Steps	1.1 Reagents: Butyllithium	Alternative Step Type Predicted (48) Stereochemistry Non-Selective (48)		OH + C
■ B ⇒ D + E Average Yield: 59% Evidence (23) Alternative Steps (34)	1.1 Reagents: Potassium tert-butoxide Solvents: Tetrahydrofuran View All × Experimental Protocols - 1	Grouped similar react	rosynthesis Plan Evidence	2 View Evidence (55) Average Yield: 63%
L C⇒F+G	1.1 Reagents: Diisopropylethylamine	References -		∞ 🛃 🖬 🖡 Save
Average Yield: 50% Evidence (38) Alternative Steps (48)	Amonium chloride O-(7-Azabenzotriazol-1-yl)-N,N,N',N- tetramethyluronium hexafluoro phosphate Solvents: Dimethylformamide; 2 d, rt	Filter Behavior Filter by Exclude	55 Results Scheme 1 (1 Reaction) HN N=O	Group: By Scheme + Sort: Relevance + View: Expanded Steps: 1 •••
	View All ~ Experimental Protocols	 Yield 90-100% (2) 80-89% (3) 70-79% (10) 	+ H ₂ N +	$\begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
▲ D ⇒ H + I Maximum Yield: 79% Evidence (1) Alternative Steps (11)	Predicted Step Only No reaction summary Experimental Protocols	50-69% (15) 30-49% (2) View All	31-614-CAS-29434160 Steps: 1.1 Solvents: <u>Dichloromethane</u> ; rt 1.2 Reagents: TriethVamine: rt. 18b, rt	Preparation of piperidine-containing compounds for treating and preventing metabolic and cerebrov ascular diseases
⊥ E⇒J	1.1 Solvents: Carbon tetrachloride	 Number of Steps 1 (55) 	Evidence reactions for (predicted) disconnection	By: Rodriguez, Martha E.; et al World Intellectual Property Organization, WO2010080864 A1 2010-07-15
Maximum Yield: 83% Evidence (1)		Non-Participating Functional Groups	of precursor C	PatentPak ▼ Full Text ▼

Retrosynthesis scoring options

Scoring options

For plans with predicted steps, you may increase or decrease the score assigned to steps and alternatives by each profile, which determines what is displayed in the plan/alternative steps.

- Each scoring profile may be set to Off (extreme left), Low, Medium, or High (extreme right).
- The default setting for each profile is "Medium" as shown below.
- Moving the slider all the way to the left turns that profile's scoring "Off," and it will not be a factor in step selection or alternative ranking.

Scoring profiles

For plans with predicted steps, you may increase or reduce the score assigned to steps and alternatives by each profile, which determines what is displayed in the plan/alternative steps.

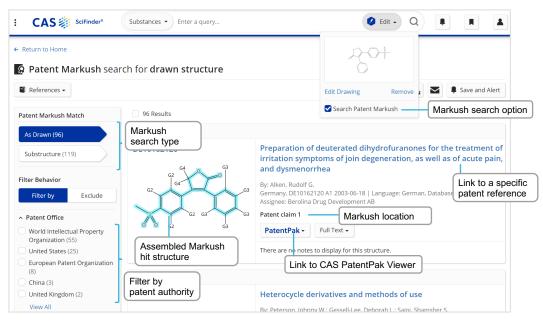
Each scoring profile may be set to **Off** (extreme left), **Low, Medium**, or **High** (extreme right); the default setting for each profile is "Medium," as shown below. Moving the slider all the way to the left turns that profile's scoring "Off," and it will not be a factor step selection or alternative ranking.

Plan Information	Complexity Reduction
Estimated Yield: 76% Overall Price: \$599.28 (USD per 100 grams)	Reduces the complexity of a step's reactants compared to its product.
Scoring Profiles	In retrosynthesis plans, you typically want high complexity reduction.
Complexity Reduction Convergence Medium	Convergence Determines how "branched" the plan is; you typically want the plan to be as branched as possible (high convergence), rather than linear.
Cost •	For a given step, the more precursors there are, and the closer their relative sizes are, the more it's considered convergent.
Yield •	Increasing Convergence displays steps/alternatives with more reactants.
Atom Efficiency	Evidence Ranks plan steps/alternatives based on the number of evidence examples supporting the particular reaction type.
Apply Reset So	More evidence examples for a step means that the reaction type has more applications and is more versatile in terms of conditions and substrates, and hence predictions made based on it are probably more reliable.
	Increasing Evidence displays steps/alternatives with more supporting examples.
	Cost
	Weighs the expenses of the reactions by ranking starting materials based on the lowest price found amongst catalogs.
	Yield Applies to the yield of each step in the plan, which contributes to the yield of the target molecule.
	Increasing the Yield displays a higher yield target molecule and steps/alternatives.
	Atom Efficiency

Reduces reactant parts not included in a plan step's product.

Increasing Atom Efficiency displays steps/alternatives with the least amount of reactant atoms that do not map to the product.

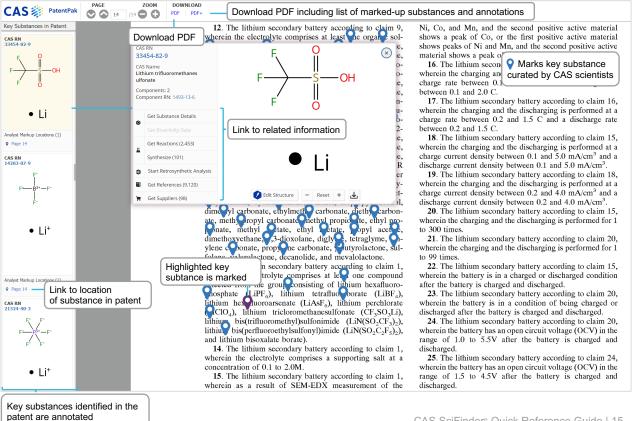
Clicking the Apply button redraws the retrosynthesis plan with the revised scoring profiles; clicking Reset Scoring restores the "Medium" default.



Reset Scoring

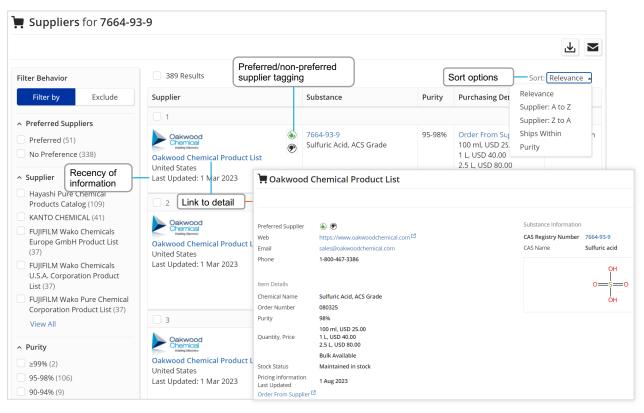
Markush search and CAS PatentPak

Markush search

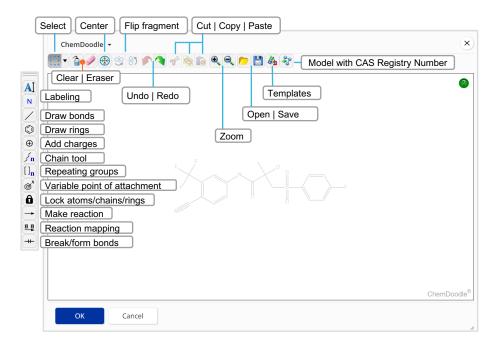

Markush structure searches can be performed using the Search Patent Markush option while in Substances search mode.

CAS PatentPak

There are three CAS PatentPak options for viewing a patent PDF:


- PDF: Full-text patent PDF only; text-searchable PDF
- PDF+: Full-text patent PDF with marked-up Key Substances; text-searchable PDF
- Viewer: Patent PDF with linked markups of Key Substances (see below)

Supplier search and ChemDoodle®


Suppliers search

Using Suppliers search allows you to directly access chemical catalog information based on chemical structure, names, or other identifiers.

ChemDoodle

The ChemDoodle structure editor is available in addition to the standard CAS Draw editor. ChemDoodle is useful for tablets and mobile devices.

Prior Art Analysis

Reviewing Prior Art

When viewing a patent Reference Detail page, an option to "Get Prior Art Analysis" is available. Results will also appear in the search history. This functionality:

- Provides an AI-based relevance prediction.
- Is based on a single patent document as the starting point.
- Includes analysis of CAS concepts, indexed substances, IPC codes, and additional full-text.
- Generates a list of relevance-ranked previously known documents, comprising patent and non-patent literature.

🛯 Aqueous dendrit	tic amine coatings containing dendritic poly(amido)amine (PAMAM)	
Substances (13)	Reactions (0) 46 Citing (1) 📮 💋 Citation Map	▲ Save -
PATENT Patent Number	By: Wang, Shaofeng; Li, Hairong; Seow, Swee How The present invention relates to a water based emulsion coating composition, e.g. paint composition, comp	prising a hyper- branched or
WO2017135893 Publication Date 2017-08-10	dendritic poly(amido)amir the detailed record Keywords: aqueous dendrice coord record record	
Application Number	PatentPak Viewer Get Prior Art Analysis Full Text +	
References	Prior Art Analysis (195)	View Results
1:52 PM	Aqueous dendritic amine coatings containing dendritic poly(amido)amine (PAMAM)	Complete
	View Results fro	om the search history

Login, training, and support

Login details

Log in at scifinder-n.cas.org

Use your existing CAS SciFinderⁿ username and password.

Feedback button

Provide direct feedback to CAS from within the CAS SciFinderⁿ solution.

Training

Upcoming events and webinars: <u>www.cas.org/cas-webinars</u>

Recorded events and webinars: www.cas.org/cas-past-webinars

CAS SciFinderⁿ training topics: www.cas.org/support/training/scifinder-n

Support contact

Email <u>help@cas.org</u> to reach a CAS Customer Center representative in North America.

If you are outside of North America, see this website for regional contacts: https://www.cas.org/contact

CAS is a leader in scientific information solutions, partnering with innovators around the world to accelerate scientific breakthroughs. CAS employs over 1,400 experts who curate, connect, and analyze scientific knowledge to reveal unseen connections. For over 100 years, scientists, patent professionals, and business leaders have relied on CAS solutions and expertise to provide the hindsight, insight, and foresight they need so they can build upon the learnings of the past to discover a better future. CAS is a division of the American Chemical Society.

Connect with us at cas.org

