RDISCLOSURE (Research Disclosure)

<table>
<thead>
<tr>
<th>Subject Coverage</th>
<th>All areas of science and technology, i.e., all classes of the International Patent Classification.</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Type</td>
<td>Full-text</td>
</tr>
<tr>
<td>Features</td>
<td>Thesaurus: None</td>
</tr>
<tr>
<td></td>
<td>Alerts (SDIs): Monthly</td>
</tr>
<tr>
<td></td>
<td>CAS Registry Number® Identifiers: SLART, Structures</td>
</tr>
<tr>
<td>Record Content</td>
<td>Full-text of technical disclosures of inventions published as an alternative to the patent system.</td>
</tr>
<tr>
<td></td>
<td>Records contain the title, patent assignee (company and individual inventors as well as the statement ‘anonymous’), patent, priority and source information, and the full-text.</td>
</tr>
<tr>
<td>File Size</td>
<td>More than 51,707 records (07/2023)</td>
</tr>
<tr>
<td>Coverage</td>
<td>1960-present</td>
</tr>
<tr>
<td>Updates</td>
<td>Monthly</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Database Producer</td>
<td>Questel Ireland Ltd. Killerman, Kilmaine, Co. Mayo, Republic of Ireland Phone: +353 93 33870 Copyright Holder</td>
</tr>
</tbody>
</table>
Sources
- Monthly Journal 'Research Disclosure'

User Aids
- Online Helps (HELP DIRECTORY lists all help messages available)
- STNGUIDE

Cluster
- ALLBIB
- BIOSCIENCE
- CHEMISTRY
- ENGINEERING
- FULLTEXT
- HPATENTS
- MATERIALS
- NPS
- PATENTS
- PHARMACOLOGY
- PNTTEXT

STN Database Cluster information
https://www.cas.org/support/training/stn/database-clusters
Search and Display Field Codes

Fields that allow left truncation are indicated by an asterisk (*).

General Search Fields

<table>
<thead>
<tr>
<th>Search Field Name</th>
<th>Search Code</th>
<th>Search Examples</th>
<th>Display Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Index* (contains single words from title (TI), and the full-text)</td>
<td>None or /BI</td>
<td>S SOFTWARE? S HERBICIDE# S ?LASER?</td>
<td>TI, TX</td>
</tr>
<tr>
<td>Accession Number</td>
<td>/AN</td>
<td>S 324009/AN</td>
<td>AN</td>
</tr>
<tr>
<td>Document Type (code and text)</td>
<td>/DT</td>
<td>S PATENT/DT</td>
<td>DT</td>
</tr>
<tr>
<td>Entry Date (1)</td>
<td>/ED</td>
<td>S ED>=OCT 2021</td>
<td>ED</td>
</tr>
<tr>
<td>Field Availability</td>
<td>/FA</td>
<td>S REN/FA</td>
<td>FA</td>
</tr>
<tr>
<td>International Standard (Document) Number (CODEN) and ISSN)</td>
<td>/ISN</td>
<td>S RSDSBB/ISN S 0374-4353/ISN</td>
<td>ISN, SO</td>
</tr>
<tr>
<td>Language (ISO code and text)</td>
<td>/LA</td>
<td>S FRENCH/LA</td>
<td>LA</td>
</tr>
<tr>
<td>Patent Assignee (includes inventors) (3)</td>
<td>/PA</td>
<td>S INTERNATIONAL BUSINESS CORPORATION/PA</td>
<td>PA</td>
</tr>
<tr>
<td>Physical Properties</td>
<td>/PHP</td>
<td>S REFRACTIVE INDEX/PHP</td>
<td>KWIC</td>
</tr>
<tr>
<td>Patent Number (4)</td>
<td>/PN</td>
<td>S RD430009/PN</td>
<td>PI</td>
</tr>
<tr>
<td>Priority Date (1)</td>
<td>/PRD</td>
<td>S PRD>=20021000</td>
<td>PRAI</td>
</tr>
<tr>
<td>Priority Number (4)</td>
<td>/PRN</td>
<td>S RD2002-456008/PRN</td>
<td>PRAI</td>
</tr>
<tr>
<td>Priority Year (1)</td>
<td>/PRY</td>
<td>S 1991/PRY</td>
<td>PRAI</td>
</tr>
<tr>
<td>Publication Date (1)</td>
<td>/PD</td>
<td>S PD=JAN-FEB 2002</td>
<td>PI</td>
</tr>
<tr>
<td>Publication Year (1)</td>
<td>/PY</td>
<td>S PY>1999</td>
<td>PI</td>
</tr>
<tr>
<td>Referenced Non-Patent Literature (2)</td>
<td>/REN</td>
<td>S XP000001356/REN</td>
<td>REN</td>
</tr>
<tr>
<td>Source (contains volume, year, and number of the printed publication, ISSN, and CODEN)</td>
<td>/SO</td>
<td>S 463/SO</td>
<td>SO</td>
</tr>
<tr>
<td>Title*</td>
<td>/TI</td>
<td>S ?COMPOSITE?/TI</td>
<td>TI</td>
</tr>
<tr>
<td>Text*</td>
<td>/TX</td>
<td>S INTERFACE/TI</td>
<td>TX</td>
</tr>
<tr>
<td>Update Date (1)</td>
<td>/UP</td>
<td>S UP>=OCT 2021</td>
<td>UP</td>
</tr>
</tbody>
</table>

(1) Numeric search field that may be searched using numeric operators or ranges.
(2) Field available for data until May 2008.
(3) Search with implied (S) proximity is available in this field.
(4) Either STN or Derwent format may be used.
Property Fields

In RDISCLOSURE a numeric search for a specific set of physical properties (/PHP) is available within the text fields (TI, TX, BI). The numeric values are not displayed as single fields, but highlighted within the hit displays.

EXPAND in the /PHP field to search for all available physical properties. A search with the respective field codes will be carried out in all database fields with English text. The /PHP index contains a complete list of codes and related text for all physical properties available for numeric search.

<table>
<thead>
<tr>
<th>Field Code</th>
<th>Property</th>
<th>Unit</th>
<th>Symbol</th>
<th>Search Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>/AOS</td>
<td>Amount of substance</td>
<td>Mol</td>
<td>mol</td>
<td>S 10/AOS</td>
</tr>
<tr>
<td>/BIR</td>
<td>Bit Rate</td>
<td>Bit/Second</td>
<td>bit/s</td>
<td>S 8000-10000/BIR</td>
</tr>
<tr>
<td>/BIT</td>
<td>Stored Information</td>
<td>Bit</td>
<td>Bit</td>
<td>S BIT > 3 MEGABIT</td>
</tr>
<tr>
<td>/CAP</td>
<td>Capacitance</td>
<td>Farad</td>
<td>F</td>
<td>S 1-10 MF/CAP</td>
</tr>
<tr>
<td>/CATA</td>
<td>Catalytic Activity</td>
<td>Katal</td>
<td>kat</td>
<td>S 1-10/CATA</td>
</tr>
<tr>
<td>/CDN</td>
<td>Current Density</td>
<td>Ampere/Square Meter</td>
<td>A/m²</td>
<td>S CDN>10 A/M**2</td>
</tr>
<tr>
<td>/CMOL</td>
<td>Molarity, Molar Concentration</td>
<td>Mol/Liter</td>
<td>mol/L</td>
<td>S UREA/B1 (S) 8/CMOL</td>
</tr>
<tr>
<td>/CON</td>
<td>Conductance</td>
<td>Siemens</td>
<td>S</td>
<td>S 1S-3/CON</td>
</tr>
<tr>
<td>/DB</td>
<td>Decibel</td>
<td>Decibel</td>
<td>dB</td>
<td>S DB>50</td>
</tr>
<tr>
<td>/DEG</td>
<td>Degree</td>
<td>Degree</td>
<td>°</td>
<td>S CYLINDER/B1 (S) 45/DEG</td>
</tr>
<tr>
<td>/DEN (/C)</td>
<td>Density (Mass Concentration)</td>
<td>Kilogram/Cubic Meter</td>
<td>kg/m³</td>
<td>S 5E-3-10E-3/DEN</td>
</tr>
<tr>
<td>/DEQ</td>
<td>Dose Equivalent</td>
<td>Sievert</td>
<td>Sv</td>
<td>S 100/DEQ</td>
</tr>
<tr>
<td>/DOA</td>
<td>Dosage</td>
<td>Milligram/Kilogram/Day</td>
<td>mg/day</td>
<td>S 300/DOA</td>
</tr>
<tr>
<td>/DOS (/LD50)</td>
<td>Dose</td>
<td>Milligram/Kilogram</td>
<td>mg/kg</td>
<td>S DOS>0.8</td>
</tr>
<tr>
<td>/DV</td>
<td>Viscosity, dynamic</td>
<td>Pascal * Second</td>
<td>Pa * s</td>
<td>S DV>5000</td>
</tr>
<tr>
<td>/ECH (/CHA)</td>
<td>Electric Charge</td>
<td>Coulomb</td>
<td>C</td>
<td>S 0.0001-0.001/ECH</td>
</tr>
<tr>
<td>/ECO (/ECND)</td>
<td>Electrical Conductivity</td>
<td>Siemens/Meter</td>
<td>S/m</td>
<td>S ECO>800 S/M (15A) AQUEOUS</td>
</tr>
<tr>
<td>/ELC (/ECC)</td>
<td>Electric Current</td>
<td>Ampere</td>
<td>A</td>
<td>S 1-10/ELC</td>
</tr>
<tr>
<td>/ELF (/ECF)</td>
<td>Electric Field</td>
<td>Volt/Meter</td>
<td>V/m</td>
<td>S 200/ELF</td>
</tr>
<tr>
<td>/ENE</td>
<td>Energy</td>
<td>Joule</td>
<td>J</td>
<td>S DROPLETS (10A) 40 JOULE - 70 JOULE /ENE</td>
</tr>
<tr>
<td>/ERE (/ERES)</td>
<td>Electrical Resistivity</td>
<td>Ohm * Meter</td>
<td>Ohm * m</td>
<td>S ERE>0.1</td>
</tr>
<tr>
<td>/FOR</td>
<td>Force</td>
<td>Newton</td>
<td>N</td>
<td>S 50 N /FOR</td>
</tr>
<tr>
<td>/FRE (/F)</td>
<td>Frequency</td>
<td>Hertz</td>
<td>Hz</td>
<td>S OSCILLAT?/BI (S) 1- 3/FRE</td>
</tr>
<tr>
<td>/IU</td>
<td>International Unit</td>
<td>none</td>
<td>IU</td>
<td>S IU=1000 (P) VITAMIN A</td>
</tr>
<tr>
<td>/KV</td>
<td>Viscosity, kinematic</td>
<td>Square Meter/Second</td>
<td>m²/s</td>
<td>S METHYLPOLSILOXANES/BI (10A) 200-300 CST /KV</td>
</tr>
<tr>
<td>/LEN (/SIZ)</td>
<td>Length, Size</td>
<td>Meter</td>
<td>m</td>
<td>S 1-4/LEN</td>
</tr>
<tr>
<td>/LUME</td>
<td>Luminous Emittance, Illuminance</td>
<td>Lux</td>
<td>lx</td>
<td>S 10-50/LUME</td>
</tr>
<tr>
<td>/LUMF</td>
<td>Luminous Flux</td>
<td>Lumen</td>
<td>Lm</td>
<td>S LUMF>1000</td>
</tr>
<tr>
<td>/LUMI</td>
<td>Luminous Intensity</td>
<td>Candela</td>
<td>cd</td>
<td>S LUMI<4</td>
</tr>
<tr>
<td>/M</td>
<td>Mass</td>
<td>Kilogram</td>
<td>kg</td>
<td>S ALLOY/B1 (30A) 1E-10-1E-5/M</td>
</tr>
<tr>
<td>/MCH</td>
<td>Mass to Charge Ratio</td>
<td>none</td>
<td>m/z</td>
<td>S MCH=1</td>
</tr>
<tr>
<td>/MFD</td>
<td>Magnetic Flux Density</td>
<td>Tesla</td>
<td>T</td>
<td>S MFD>102</td>
</tr>
<tr>
<td>/MFS</td>
<td>Magnetic Flux Strength</td>
<td>Kilogram/Second</td>
<td>kg/s</td>
<td>S MFR<0.1</td>
</tr>
<tr>
<td>/MFR (/MFL)</td>
<td>Magnetic Flow Rate</td>
<td>Ampere/Meter</td>
<td>A/m</td>
<td>S 2000/MFST</td>
</tr>
<tr>
<td>Field Code</td>
<td>Property Description</td>
<td>Unit</td>
<td>Symbol</td>
<td>Search Examples</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>/MOLS</td>
<td>Molality of Substance</td>
<td>Mol/Kilogram</td>
<td>mol/kg</td>
<td>S 0.1-10 MOL/KG/MOLS</td>
</tr>
<tr>
<td>/MVR</td>
<td>Melt Flow Rate</td>
<td>g/10 min</td>
<td></td>
<td>S 3/MVR</td>
</tr>
<tr>
<td>/PER</td>
<td>Percent (Proportionality)</td>
<td>none</td>
<td>%</td>
<td>S POLYMER?/AB (5A) 4/PER</td>
</tr>
<tr>
<td>/PHV (/PH)</td>
<td>pH Value</td>
<td>pH</td>
<td></td>
<td>S 7.4-7.6/PHV</td>
</tr>
<tr>
<td>/POW (/PW)</td>
<td>Power</td>
<td>Watt</td>
<td>W</td>
<td>S "HG-EX-?"/BI (S) 100-200 WATT/POW</td>
</tr>
<tr>
<td>/PPM</td>
<td>Parts per million</td>
<td>Ppm</td>
<td>ppm</td>
<td>S 100 PPM /PPM (10A) ADDITIVE/BI</td>
</tr>
<tr>
<td>/PRES (/P)</td>
<td>Pressure</td>
<td>Pascal</td>
<td>Pa</td>
<td>S (VACUUM (5A) DISTILL?)/BI (S) 1000-1100/PRES</td>
</tr>
<tr>
<td>/RAD</td>
<td>Radioactivity</td>
<td>Becquerel</td>
<td>Bq</td>
<td>S 800-900/RAD</td>
</tr>
<tr>
<td>/RES</td>
<td>Electrical Resistance</td>
<td>Ohm</td>
<td>Ohm</td>
<td>S SENSOR /BI (S) 10-100/RES</td>
</tr>
<tr>
<td>/RI</td>
<td>Refractive Index</td>
<td>none</td>
<td></td>
<td>S 3-4/RI</td>
</tr>
<tr>
<td>/RSP</td>
<td>Rotational Speed</td>
<td>Revolution/Minute</td>
<td>rpm</td>
<td>S 2 RPM - 100 RPM /RSP (S) ENGINE/BI</td>
</tr>
<tr>
<td>/SAR</td>
<td>Area /Surface Area</td>
<td>Square Meter</td>
<td>m²</td>
<td>S PLATE/BI (S) 10 M²² - 100 M²² /SAR</td>
</tr>
<tr>
<td>/SOL (/SLB)</td>
<td>Solubility</td>
<td>Gram/100 gram</td>
<td>g/100 g</td>
<td>S SOL>20 G/100G (5A) WATER</td>
</tr>
<tr>
<td>/SSAM</td>
<td>Specific Surface Area, Mass</td>
<td>Square Meter/Kilogram</td>
<td>M²/kg</td>
<td>S 9/SSAM</td>
</tr>
<tr>
<td>/STSC (/ST)</td>
<td>Surface Tension</td>
<td>Joule /Square Meter</td>
<td>J/m²</td>
<td>S 60 J/M²²/STSC</td>
</tr>
<tr>
<td>/TCO (/TCND)</td>
<td>Thermal Conductivity</td>
<td>Watt/Meter * Kelvin</td>
<td>W/m * K</td>
<td>S 1/TCO (S) HEAT?</td>
</tr>
<tr>
<td>/TEMP (/T)</td>
<td>Temperature</td>
<td>Kelvin</td>
<td>K</td>
<td>S 20-25/TEMP</td>
</tr>
<tr>
<td>/TEX</td>
<td>Tex</td>
<td>Gram/Kilometer</td>
<td>g/km</td>
<td>S 1-5/TEX</td>
</tr>
<tr>
<td>/TIM</td>
<td>Time</td>
<td>Second</td>
<td>s</td>
<td>S ?INCUB?/BI (10A) 50 S - 150 S /TIM</td>
</tr>
<tr>
<td>/VEL (/V)</td>
<td>Velocity</td>
<td>Meter per Second</td>
<td>m/s</td>
<td>S REDUC?/BI (S) 1E-3-5E-3/VEL</td>
</tr>
<tr>
<td>/VELA</td>
<td>Velocity, angular</td>
<td>Radian/Second</td>
<td>rad/s</td>
<td>S VELA>10</td>
</tr>
<tr>
<td>/VLR</td>
<td>Volumetric Flow Rate</td>
<td>Cubic Meter/Second</td>
<td>m³/s</td>
<td>S 1 M³³/3/S - 2 M³³/3 /VLR (S) ABRASIVE</td>
</tr>
<tr>
<td>/VOL</td>
<td>Volume</td>
<td>Cubic Meter</td>
<td>m³</td>
<td>S 1E-8-2E-8/VOL EX</td>
</tr>
<tr>
<td>/VOLT</td>
<td>Voltage</td>
<td>Volt</td>
<td>V</td>
<td>S TENSION/BI (10A) 5E-3 V <VOLT<7E-3 V</td>
</tr>
</tbody>
</table>

(1) Exponential format is recommended for the search of particularly high or low values, e.g., 1.8E+7 or 1.8E7 (for 18000000) or 9.2E-8 (for 0.000000092).
DISPLAY and PRINT Formats

Any combination of formats may be used to display or print answers. Multiple codes must be separated by spaces or commas, e.g., D L1 1-5 TI AU. The fields are displayed or printed in the order requested.

Hit-term highlighting is available for all fields. Highlighting must be ON during SEARCH to use the HIT, KWIC, and OCC formats.

<table>
<thead>
<tr>
<th>Format</th>
<th>Content</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>Accession Number</td>
<td>D 1-5 AN</td>
</tr>
<tr>
<td>DT (TC)</td>
<td>Document Type</td>
<td>D DT</td>
</tr>
<tr>
<td>ED (1)</td>
<td>Entry Date</td>
<td>D ED</td>
</tr>
<tr>
<td>FA (1)</td>
<td>Field Availability</td>
<td>D FA</td>
</tr>
<tr>
<td>ISN (1)</td>
<td>International Standard (Document) Number</td>
<td>D ISN</td>
</tr>
<tr>
<td>LA</td>
<td>Language</td>
<td>D LA TI</td>
</tr>
<tr>
<td>PA (CS)</td>
<td>Patent Assignee</td>
<td>D PA</td>
</tr>
<tr>
<td>PI (PN) (2)</td>
<td>Patent Information</td>
<td>D PI</td>
</tr>
<tr>
<td>PRAI (PRN) (2)</td>
<td>Priority Information</td>
<td>D PRAI</td>
</tr>
<tr>
<td>REN</td>
<td>Referenced Non-Patent Literature</td>
<td>D REN</td>
</tr>
<tr>
<td>SO</td>
<td>Source</td>
<td>D SO</td>
</tr>
<tr>
<td>TI</td>
<td>Title</td>
<td>D TI 1-10</td>
</tr>
<tr>
<td>TX</td>
<td>Text</td>
<td>D TX</td>
</tr>
<tr>
<td>UP (1)</td>
<td>Update Date</td>
<td>D UP</td>
</tr>
<tr>
<td>ABS</td>
<td>TX</td>
<td>D ABS</td>
</tr>
<tr>
<td>ALL (MAX) (2)</td>
<td>AN, TI, PA, PI, PRAI, REN, SO, LA, DT, TX</td>
<td>D 1-3 ALL</td>
</tr>
<tr>
<td>IALL (3)</td>
<td>ALL, indented with text labels</td>
<td>D IALL</td>
</tr>
<tr>
<td>BIB (STD) (2)</td>
<td>AN, TI, PA, PI, PRAI, REN, SO, LA, DT</td>
<td>D BIB</td>
</tr>
<tr>
<td>IBIB (2)</td>
<td>BIB, indented with text labels</td>
<td>D IBIB</td>
</tr>
<tr>
<td>SCAN (3)</td>
<td>Ti (random display without answer numbers)</td>
<td>D SCAN</td>
</tr>
<tr>
<td>TRIAL (TRI, SAMPLE, SAM, FREE)</td>
<td>Ti</td>
<td>D TRIAL</td>
</tr>
<tr>
<td>HIT</td>
<td>Hit term(s) and field(s)</td>
<td>D HIT</td>
</tr>
<tr>
<td>KWIC</td>
<td>Up to 50 words before and after hit term(s) (KeyWord-In-Context)</td>
<td>D KWIC</td>
</tr>
<tr>
<td>OCC</td>
<td>Number of occurrences of hit term(s) and field(s) in which they occur</td>
<td>D OCC</td>
</tr>
</tbody>
</table>

(1) Custom display only.
(2) By default, patent numbers, and priority numbers are displayed in STN Format. To display them in Derwent format, enter SET PATENT DERWENT at an arrow prompt. To reset display to STN Format, enter SET PATENT STN.
(3) SCAN must be specified on the command line, i.e., D SCAN or DISPLAY SCAN.
SELECT, ANALYZE, and SORT Fields

The SELECT command is used to create E-numbers containing terms taken from the specified field in an answer set.

The ANALYZE command is used to create an L-number containing terms taken from the specified field in an answer set.

The SORT command is used to rearrange the search results in either alphabetic or numeric order of the specified field(s).

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Code</th>
<th>ANALYZE/SELECT (1)</th>
<th>SORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accession Number</td>
<td>AN</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Document Type</td>
<td>DT (TC)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Entry Date</td>
<td>ED</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Language</td>
<td>LA</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Occurrence Count of Hit Terms</td>
<td>OCC</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Patent Assignee</td>
<td>PA (CS)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Patent Information</td>
<td>PI (PN)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Priority Date</td>
<td>PRD</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Priority Information</td>
<td>PRAI (PRN)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Priority Year</td>
<td>PRY</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Referenced Non-Patent Literature</td>
<td>REN</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Source</td>
<td>SO</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Text</td>
<td>TX</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Title</td>
<td>TI</td>
<td>Y (default)</td>
<td>Y</td>
</tr>
<tr>
<td>Update Date</td>
<td>UP</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

(1) HIT may be used to restrict terms extracted to terms that match the search expression used to create the answer set, e.g., SEL HIT TI.
Sleeve roll belt with pre-tightened yarns

Sleeve roll technology is described for example in patent publications EP3382094, EP3333314 and EP3333315. One possible composition for the sleeve roll belt body is published with patent number EP2367980. However, the body of the belt can comprise other polymers and materials too. Structures of sleeve roll belt will be/are published with patent applications EP20175590 and EP20175592.

The belt for a sleeve roll comprises an inner surface and an outer surface. The belt can form a closed loop and comprise an elastic body, and a reinforcing structure. The reinforcing structure can be a support structure supporting the elastic body. The reinforcing structure can comprise first yarns forming a first yarn layer. The reinforcing structure can further comprise second yarns forming a second yarn layer. The second yarn layer can be the outermost yarn layer closest to the outer surface of the belt. The first yarns are arranged to a first direction, and the second yarns are arranged to a second direction. The second direction is preferably perpendicular or substantially perpendicular to the first direction. The second direction can further be parallel or substantially parallel to a travel direction of the belt. Further, the first direction can be parallel or substantially parallel to an axis of rotation of the belt and the number of reinforcing yarn layers can be from one to five. The first direction is from now on called machine direction and is marked to the Figure 1 with letters MD. Sleeve roll belt is also marked to the Figure 1.
The present invention is related to the manufacturing method, where the yarns in MD direction are pre-tightened. During the manufacturing the pre-tightened MD yarns are arranged to the elastic body. The pre-tightened MD yarns can be arranged to the outer surface or substantially close to the outer surface of the belt. The pre-tightened MD yarns can also be arranged to any depth of the sleeve roll belt measured from the outer surface. Pre-tightening of the MD yarns can move the neutral axis closer to the outer surface compared to the yarn arrangement without pre-tightening. The closer the neutral axis is located to the outer surface, the smaller is the slipping effect between the belt and forming fabric when the belt is bending on top of the curve element, see Figure 1. The smaller is the slipping effect between the surfaces, the lower is the friction factor between belt and forming fabric. Due to smaller friction factor between the surfaces, the wearing of the wire and belt can also be reduced. Pre-tensioning of the MD wires can thus facilitate savings in energy consumption.