Polymer Class Terms in the Registry File

Chemical Abstracts Service

A Division of the American Chemical Society 2540 Olentangy River Road P.O. Box 3012 Columbus, Ohio 43210

Copyright © 1995 American Chemical Society

Quoting or copying of material from this publication for educational purposes is encouraged, providing acknowledgment is made of the source of such material.

Polymer Class Terms in the Registry File

SEARCH Field:/PCTDISPLAY Field:PCT (Included in IDE, FIDE, and ALL)Proximity:(L) same as AND

Class Term	Code	Type of Polymer Retrieved
Amino Resin	AR	Condensation polymers of amines with aldehydes (mainly formaldehyde).
		IN Formaldehyde, polymer with 1,5-pentanediamine (9CI)
		CM 1 CM 2
		H_2N — (CH ₂) ₅ — NH ₂ H_2C = O
Chloropolymer	CLPO	Monomer contains an acyclic C=C-CI and has no atoms other than C, H, or CI.
		IN 1-Butene, 1-chloro-, homopolymer (9CI)
		CM 1
		H_3C — CH_2 — CH — CH — CI
Double Strand	DBLSTR	Uninterrupted sequence of rings with: (a) adjacent rings having one atom in common (spiro polymers), or (b) two or more atoms in common (ladder polymers), or (c) combinations of both features (ladder-spiro polymers). IN Poly(1,2:4,5-benzenetetrayl) (9Cl) $\left[\begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Epoxy Resin	EP	Epihalohydrin polymers with a diol. Polymers of monomers containing two or more epoxy groups.
		IN Phenol, 4,4'-(1-methylethylidene)bis-, polymer with (chloromethyl)oxirane (9CI)
		CM 1 CM 2 O CH_2 —CI HO

Class Term	Code	Type of Polymer Retrieved
Fluoropolymer	FLPO	Monomer contains an acyclic C=C-F and has no atoms other than C, H, F, or Cl. IN Benzene, (2-chloro-1,2-difluoroethenyl)-, homopolymer (9Cl) CM 1 F Cl Ph -C - F
Manual Component	MANC	Polymers with one or more manually-registered components. PCT term assignment may be incomplete for these polymers. IN Benzene, ethenyl-, polymer with PE 2136 (9Cl) MF (C8 H8 . Unspecified)x CM 1 CM 2 CCI PMS, MAN H ₂ C=CH—Ph STRUCTURE DIAGRAM IS NOT AVAILABLE
Manual Registration	MANR	Manually-registered polymers (often identifiable only via tradenames). Polymers containing only manually-registered components. IN Yupimer FRS 1 (9CI) MF Unspecified CI PMS, MAN STRUCTURE DIAGRAM IS NOT AVAILABLE
Phenolic Resin	PR	Polymers of phenols with aldehydes. IN Phenol, polymer with formaldehyde (9CI) CM 1 CM 2 $H_2C=0$
Polyacetylene	PACT	Monomer contains a carbon-carbon acyclic triple bond. IN 1-Pentyne, 4-methyl-, homopolymer (9Cl) CM 1 i-Bu—C <u>—</u> CH

Class Term	Code	Type of Polymer Retrieved
Polyacrylic	PACR	Monomer contains an acyclic C=C-Y, where Y is either: (a) a carbon atom with at least two N, O, or S attached (e.g., CO_2H , CO_2R , $CH(OR)_2$, $CONH_2$, etc.) IN 2-Propencyl chloride, polymer with 2-propenenitrile (9Cl) CM 1 CM 2 $O_1 = CH_2 = H_2C = CH_2C = N$ (b) a carbon with a doubly bonded N, O, or S and a H attached (e.g., CHO, CHS, CHN, but not COC) IN 2,6-Octadienal, 3,7-dimethyl-, homopolymer (9Cl) CM 1 Me = Me $Me = C = CH_2 = CH_2 = CH_2 = CH_2$ (c) a CN group IN 2,4-Pentadienenitrile, homopolymer (9Cl) CM 1 $H_2C = CH_2 = CH_2 = CH_2$ Only one group meeting the Y definition may be present on the C=C atoms, except that CN may be present if Y is not CN. IN 2-Propencic acid, 2-cyano-, 4-methylpentyl ester, homopolymer (9Cl) CM 1 $Me_2CH_2 = (CH_2)_3 = O_2 = C_2 = CH_2$
Polyamic acid	РАМА	Polyamides containing a carboxy group (or thio analogs) adjacent to the amide linkage. IN 1H,3H-Benzo[1,2-c:4,5-c']difuran-1,3,5,7-tetrone, polymer with 1,6-hexanediamine (9Cl) CM 1 CM 2 $H_2N-(CH_2)_6-NH_2$
Polyamide	ΡΑ	-CO-NH- amide linkages (or thio analogs) in the backbone. IN Decanedioic acid, polymer with N,N'-dimethyl-1,6-hexanediamine (9CI) CM 1 CM 2 MeNH— $(CH_2)_6$ — NHMe HO_2C — $(CH_2)_8$ — CO_2H EXCLUSIONS: Polymers formed from unsaturated amides (e.g., CH ₃ -CH=CH-CO-NH ₂) by
		addition polymerization with resulting pendant amido groups.

Class Term	Code	Type of Polymer Retrieved
Polyamine	РМ	Unquaternized amino groups in the backbone.IN1,6-Hexanediamine, polymer with 1,2-dichloroethane (9CI)CM1CM2 $H_2N - (CH_2)_6 - NH_2$ $CI - CH_2 - CH_2 - CI$ EXCLUSIONS: Polyamines with quaternized amino groups in the backbone are considered Polyionenes.
Polyanhydride	PANH	-CO-O-CO- anhydride linkages (or thio analogs) in the backbone. IN Decanedioic acid, polymer with hexanedioic acid (9CI) CM 1 CM 2 HO_2C $(CH_2)_4$ CO_2H HO_2C $(CH_2)_8$ CO_2H
Polyazomethine	PAZM	-C=N- or -C=N-N=C- linkages in the backbone. IN Pentanedial, polymer with 1,6-hexanediamine (9CI) CM 1 CM 2 H_2N — (CH ₂) ₆ — NH ₂ OHC — (CH ₂) ₃ — CHO
Polybenzimidazole	PBI	Benzimidazole linkages in the backbone with the backbone running through both rings. IN 2,6-Pyridinedicarboxylic acid, polymer with [1,1'-biphenyl]-3,3',4,4'-tetramine (9Cl) CM 1 CM 2 $HO_2C \longrightarrow CO_2H \longrightarrow H_2N \longrightarrow H_2$
Polybenzoxazole	РВО	Benzoxazole linkages in the backbone with the backbone running through both rings. IN 2,5-Pyridinedicarboxylic acid, polymer with 4,6-diamino-1,3-benzenediol (9CI) CM 1 CM 2 $H_2N \rightarrow H_2 \rightarrow HO_2C \rightarrow H$
Polycarbodiimide	PCD	-N=C=N- carbodiimide linkages in the backbone. IN Dodecane, 1,12-diisocyanato-, homopolymer (9CI) CM 1 OCN — (CH ₂) ₁₂ — NCO

Class Term	Code	Type of Polymer Retrieved
Polycarbonate	PC	-O-CO-O- carbonate linkages (or thio analogs) in the backbone. IN Carbonic acid, dibutyl ester, polymer with 2,2'-oxybis[ethanol] (9CI) CM 1 CM 2 $HO - CH_2 - CH_2 - O - CH_2 - CH_2 - OH$ EXCLUSIONS: Polymers formed from unsaturated carbonate esters by addition polymerization with resulting pendant carbonate groups.
Polycyanurate	PCY	Cyanurate linkages in the backbone. IN Cyanic acid, 2,7-naphthalenediyl ester, homopolymer (9CI) CM 1 NCO
Polyester	PES	-CO-O- ester linkages in the backbone, alkyd resins. IN Nonanoic acid, 9-hydroxy-, homopolymer (9CI) CM 1 HO ₂ C — (CH ₂) ₈ — OH EXCLUSIONS: Polycarbonates. Polymers formed from unsaturated esters by addition polymerization with resulting pendant ester groups.
Polyether	PETH	-O- ether linkages in the backbone, polyoxymethylenes, polyoxyalkylenes, polyoxyarylenes, and polyoxyphenylenes. IN Oxirane, methyl-, polymer with oxirane (9CI) CM 1 CM 2 $\overbrace{CH_3}^{O}$ EXCLUSIONS: Polymers with pendant oxy groups formed by addition polymerization of unsaturated ethers.
Polyhydrazide	PHZ	-CO-NH-NH- hydrazide linkages (or thio analogs) in the backbone. IN Hexanedioyl dichloride, polymer with hydrazine (9Cl) CM 1 CM 2 H_2N — NH_2 CI — C — $(CH_2)_4$ — C — CI

Class Term	Code	Type of Polymer Retrieved
Polyimide	PI	-CO-N-CO- imido linkages (or thio analogs) in the backbone. IN 1H,3H-Benzo[1,2-c:4,5-c']difuran-1,3,5,7-tetrone, polymer with 1,6-hexanediamine (9CI) CM 1 CM 2 $H_2N - (CH_2)_6 - NH_2$ EXCLUSIONS: Polymers formed by addition polymerization of unsaturated imides with resulting pendant imido groups.
Polyionene	PION	Quaternary nitrogen atoms in the backbone. IN 1,16-Hexadecanediamine, N,N,N',N'-tetramethyl-, polymer with 1,3-dibromopropane (9CI) CM CM 1 CM 2 Me ₂ N
Polyisocyanurate	PIR	<i>s</i> -Triazinetrione ring in the backbone. IN Propane, 1,2-diisocyanato-, homopolymer (9CI) CM 1 NCO Me—CH—CH ₂ —NCO
Polyketone	РК	-CO- ketone groups (or thio analogs) in the backbone. IN Benzoyl chloride, 4-phenoxy-, homopolymer (9Cl) CM 1 $PhO \longrightarrow C \longrightarrow C$ EXCEPTIONS: Polymers formed by addition polymerization of unsaturated ketones with resulting pendant ketone groups.
Polynucleotide	PNUC	-O-P(O)(OH)-O- linkages (or thio analogs) between nucleosides in the backbone. IN 5'-Cytidylic acid, 2'-deoxy-, homopolymer (9CI) CM 1 $H_2N \xrightarrow{V} (V \xrightarrow{V} (V \xrightarrow{O} (CH_2 \longrightarrow OPO_3H_2))$ OH

Class Term	Code	Type of Polymer Retrieved
Polyolefin	POLF	Acyclic monomer with a C=C group. Monomer contains no atoms other than C or H. IN 1,3-Butadiene, 2-methyl-, polymer with 1-propene (9CI) CM 1 CM 2 $H_3C \xrightarrow{CH_2}_{H_3C} = CH = CH_2$
Polyother	OTHER	Polymers for which an algorithmic classification is uncertain.INMethane, chlorodiazo-, polymer with diazomethane (9CI)CM1CM2
		$CL - CH - N^{+} N^{-} H_2 C - N^{+} N^{-}$
Polyother Only	OTHERO	Polymers for which the term Polyother is posted and no other terms except Manual Component or Manual Registration are posted. IN Guanidine, cyano-, homopolymer (9Cl) CM 1 NH H ₂ N—C — NH—CN
Polyphenyl	РРН	Direct linkages between phenylene rings in the backbone. IN Benzene, homopolymer (9CI) CM 1
Polyphosphazene	PPSZ	-P=N- phosphazene linkages in the backbone. IN 1,3,5,2,4,6-Triazatriphosphorine, 2,2,4,4,6,6-hexachloro- 2,2,4,4,6,6-hexahydro-, homopolymer (9CI) CM 1 $CI \longrightarrow P \longrightarrow CI$ $CI \longrightarrow P \longrightarrow CI$ $CI \longrightarrow CI \longrightarrow CI$
Polyquinoxaline	PQ	Quinoxaline linkages in the backbone, with the backbone running through both rings.IN Ethanedione, 1,1'-(1,4-phenylene)bis[2-phenyl-, polymer with 4,4'-sulfonylbis[1,2-benzenediamine] (9CI)CM 1CM 2 $(H_2N) \rightarrow (H_2) \rightarrow (H_$

Class Term	Code	Type of Polymer Retrieved
Polystyrene	PSTY	Monomer contains an acyclic C=C-Ph, where Ph is an isolated benzene ring with any substitution. IN Benzene, ethenyl-, homopolymer (9CI) CM 1 H ₂ C — CH — Ph
Polysulfide	PSF	-S _n - linkages (n>1) in the backbone. IN 1,2,3-Trithiolane, 4-ethyl-, homopolymer (9Cl) CM 1 $s_{s} \xrightarrow{S} \xrightarrow{Et} Et$
Polysulfonamide	PSA	-SO ₂ -NH- sulfonamide linkages in the backbone. IN 1-Propanesulfonic acid, 3-(phenylamino)-, homopolymer (9CI) CM 1 HO ₃ S — (CH ₂) ₃ — NH — Ph
Polysulfone	PSU	-SO ₂ - sulfone groups in the backbone. IN 1-Hexene, polymer with sulfur dioxide (9CI) CM 1 CM 2 $O = S = O H_2C = CH - Bu-n$
Polythioester	PTES	Sulfur analogs of Polyesters containing -CS-S-, -CO-S-, or -CS-O- linkages. IN Propanoic acid, 3-mercapto-2,2-dimethyl-, homopolymer (9CI) CM 1 Me $HS - CH_2 - C - CO_2H$ Me Me
Polythioether	PTETH	Sulfur analogs of Polyethers containing -S- linkages.IN1,10-Decanedithiol, polymer with 1,4-dibromobutane (9CI)CM1CM2HS $(CH_2)_{10}$ SHBrBr $(CH_2)_4$
Polyurea	PUA	Urea linkage -NH-CO-NH- (or thio analogs) in the backbone.IN1,4-Butanediamine, polymer with 1,4-diisocyanatobutane (9CI)CM1CM2OCN $(CH_2)_4$ —NCO H_2N $(CH_2)_4$
Polyurethane	PUR	-O-CO-NH- urethane linkages (or thio analogs) in the backbone.IN1,6-Hexanediol, 2,2,3,3,4,4,5,5-octafluoro-, polymer with1,6-diisocyanatohexane (9CI)CM1CM1CM2OCN $(CH_2)_6$ NCOHOHO CH_2 OCN $(CH_2)_6$

Class Term	Code	Type of Polymer Retrieved
Polyvinyl	PVIN	(a) Monomer has an acyclic C=C with a ring or hetero atom no more than two atoms away from the C=C. IN Acetic acid ethenyl ester, homopolymer (9Cl) CM 1 AcOCH ==-CH ₂ EXCLUSIONS: The benzene ring of a Polystyrene. The functional group of a Polyacrylic. (b) Monomer has an acyclic C=C that does not qualify for any other class. IN 11,13-Octacosadienoic acid, homopolymer (9Cl) CM 1 HO ₂ C(CH ₂) ₉ CH==CHCH==CH(CH ₂) ₁₃ Me (c) Maleic anhydride or maleimide or acyclic-substituted derivative thereof. IN 3-Furancarboxylic acid, 2,5-dihydro-2,5-dioxo-, methyl ester, homopolymer (9Cl) O $\qquad \qquad $
(class name) FORMED	(code) F	Additional entry for polymers in which the linkage described by the class term is the result of polymerization. EXCLUSIONS: FORMED is not indexed for: - Resin terms - Amino Resin, Epoxy Resin, Phenolic Resin - Addition polymer terms - Chloropolymer, Fluoropolymer, Polyacetylene, Polyacrylic, Polyolefin, Polystyrene, Polyvinyl - Manual Component, Manual Registration, Polyother, Polyother Only - Double Strand and Polynucleotide