BIOTECHNO (Biotechnobase)

Subject Coverage	• Agriculture
	• Development of novel therapeutic
	• Environmental science
	• Food science
	• Forensic science
	• Medicine & health care
	• Microbial biotechnology
	• Pharmaceuticals & pharmacology
	• Textiles

<table>
<thead>
<tr>
<th>File Type</th>
<th>Bibliographic</th>
</tr>
</thead>
</table>

Features	Thesaurus: None
	Alerts (SDIs): Not available
	CAS Registry Number® Identifiers: ✓
	Keep & Share: ✔

<table>
<thead>
<tr>
<th>Record Content</th>
<th>Bibliographic data, indexing, drug trade names and their manufacturers, medical device trade names and manufacturers, CAS Registry Numbers®, and abstracts.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>File Size</th>
<th>1.777.566 records</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Coverage</th>
<th>1980-2003</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Updates</th>
<th>Not updated</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>English</th>
</tr>
</thead>
</table>

Database Producer	Elsevier B.V.
	E-products Team
	1000 AE Amsterdam
	The Netherlands
	Phone: +31 20 485 3507
	Fax: +31 20 485 3222
	Email: ebd-marketing@elsevier.nl

<table>
<thead>
<tr>
<th>Copyright Holder</th>
<th>Elsevier B.V.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sources</th>
<th>Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Books</td>
</tr>
<tr>
<td></td>
<td>Conference Proceedings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User Aids</th>
<th>Online Helps (HELP DIRECTORY lists all help messages available)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STNGUIDE</td>
</tr>
</tbody>
</table>
Cluster

- AGRICULTURE
- ALLBIB
- AUTHORS
- BIOSCIENCE
- BUSINESS
- CASRNS
- CHEMENG
- CHEMISTRY
- ORPSOURCE
- ENGINEERING
- ENVIRONMENT
- FOOD
- HEALTH
- MEDICINE
- MEETINGS
- PHARMACOLOGY
- TOXICOLOGY

STN Database Cluster information:
http://www.stn-international.com/en/customersupport/customer-support#cluster+%7C+subjects+%7C+features
Search and Display Field Codes

Fields that allow left truncation are indicated by an asterisk (*).

General Search Fields

<table>
<thead>
<tr>
<th>Search Field Name</th>
<th>Search Code</th>
<th>Search Examples</th>
<th>Display Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Index* (contains single words from the abstract (AB), chemical name (CN), corporate name (CO), controlled term (CT), gene number (GEN), trade name (TN), and title (TI) fields, as well as CAS Registry Numbers)</td>
<td>None or /BI</td>
<td>S ZINC FINGER PROTEIN? S 147-85-3 S PROLINE 147-85-3 S ?ISOMER?(L)METABOLITE</td>
<td>AB, CN, CO CT, GEN, RN, TN, TI</td>
</tr>
<tr>
<td>Accession Number</td>
<td>/AN</td>
<td>S 1999:29304189/AN</td>
<td>AN</td>
</tr>
<tr>
<td>Author</td>
<td>/AU</td>
<td>S MANCHESTER, L C/AU</td>
<td>AU</td>
</tr>
<tr>
<td>Chemical Name (Chemical Name and Drug Trade Name) (1)</td>
<td>/CN</td>
<td>S COTAZYM 65B/CN</td>
<td>CN, RN</td>
</tr>
<tr>
<td>Controlled Term* (includes main terms)</td>
<td>/CT</td>
<td>S CELL GROWTH/CT</td>
<td>CT</td>
</tr>
<tr>
<td>Controlled Word</td>
<td>/CW</td>
<td>S SIGMA/CO</td>
<td>CO</td>
</tr>
<tr>
<td>Corporate Name (Drug Manufacturer and Device Manufacturer) (1)</td>
<td>/CO</td>
<td>S NOVO FARMACEUTICI ITALIA/CO</td>
<td></td>
</tr>
<tr>
<td>Corporate Source (1)</td>
<td>/CS</td>
<td>S PFIZER/CS</td>
<td>CS</td>
</tr>
<tr>
<td>Country (of publication) (ISO code and text)</td>
<td>/CY</td>
<td>S NETHERLANDS/CY</td>
<td>CY</td>
</tr>
<tr>
<td>Document Type (code and text)</td>
<td>/DT</td>
<td>S B/DT</td>
<td>DT</td>
</tr>
<tr>
<td>E-mail (1)</td>
<td>/EML</td>
<td>S REITER UTHSCSA/EML</td>
<td>CS, EML</td>
</tr>
<tr>
<td>Entry Date (2)</td>
<td>/ED</td>
<td>S L1 AND ED <= FEB 2000</td>
<td>ED</td>
</tr>
<tr>
<td>Field Availability</td>
<td>/FA</td>
<td>S GEN/FA</td>
<td></td>
</tr>
<tr>
<td>Geographic Term</td>
<td>/GEN</td>
<td>S (A04926(S)REFERRED NUMBER)/GEN</td>
<td>GEN</td>
</tr>
<tr>
<td>International Standard (Document) Number (contains CODEN, ISSN and ISBN)</td>
<td>/GT</td>
<td>S UNITED STATES/GT</td>
<td>GT</td>
</tr>
<tr>
<td>(Document) Number</td>
<td>/ISN</td>
<td>S 0022-2836/ISN</td>
<td>ISN, SO</td>
</tr>
<tr>
<td>Journal Title</td>
<td>/JT</td>
<td>S JOURNAL OF BIOCHEMISTRY/JT</td>
<td>JT, SO</td>
</tr>
<tr>
<td>Language (ISO code and text)</td>
<td>/LA</td>
<td>S DE/LA</td>
<td>LA</td>
</tr>
<tr>
<td>Meeting Date (2)</td>
<td>/MD</td>
<td>S MD=3 SEP 1999</td>
<td>MD, SO</td>
</tr>
<tr>
<td>Meeting Location (1)</td>
<td>/ML</td>
<td>S SYDNEY/ML and DIABETES/MT</td>
<td>ML, SO</td>
</tr>
<tr>
<td>Meeting Title</td>
<td>/MT</td>
<td>S THYROID CELL SYSTEM/MT</td>
<td>MT, SO</td>
</tr>
<tr>
<td>Meeting Year (2)</td>
<td>/MY</td>
<td>S 1988-1989/MY</td>
<td>MY, SO</td>
</tr>
<tr>
<td>Publication Date (2)</td>
<td>/PD</td>
<td>S PD=1 APR, 1999</td>
<td>PD, SO</td>
</tr>
<tr>
<td>Publication Year (2)</td>
<td>/PY</td>
<td>S 1998-1999/PY</td>
<td>PY, SO</td>
</tr>
<tr>
<td>Publisher (1)</td>
<td>/PB</td>
<td>S ANN ARBOR SCIENCE/PB</td>
<td>PB, SO</td>
</tr>
<tr>
<td>Publisher Item Identifier</td>
<td>/PUI</td>
<td>S S0001706X99000480/PUI</td>
<td></td>
</tr>
<tr>
<td>Reference Count (2)</td>
<td>/REC</td>
<td>S L1 AND REC <=10</td>
<td>REC, SO</td>
</tr>
<tr>
<td>(or /RE.CNT)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Search Fields (cont'd)

<table>
<thead>
<tr>
<th>Search Field Name</th>
<th>Search Code</th>
<th>Search Examples</th>
<th>Display Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source (contains journal titles, and other higher level titles, publisher and place of publication, meeting information, collation, CODEN, ISSN and ISBN, and publication year)</td>
<td>/SO</td>
<td>S GENOMICS/SO AND 1999/PY S AJPAA4/SO</td>
<td>SO</td>
</tr>
<tr>
<td>Summary Language (ISO code and text)</td>
<td>/SL</td>
<td>S GERMAN/SL S DE/SL</td>
<td>SL</td>
</tr>
<tr>
<td>Title (3)</td>
<td>/TI</td>
<td>S MODELLING BIODEGRATION/TI</td>
<td>TI</td>
</tr>
<tr>
<td>Trade Name (Chemical Name, Drug Trade Name and Medical Device Trade Name)</td>
<td>/TN</td>
<td>S ACTRAPID/TN</td>
<td>CN, TN, RN</td>
</tr>
<tr>
<td>Word Count, Title (2)</td>
<td>/WC.T</td>
<td>S WC.T <=15</td>
<td>WC.T</td>
</tr>
</tbody>
</table>

(1) Search with implied (S) proximity is available in this field.
(2) Numeric search field that may be searched with numeric operators or ranges.
(3) Title of higher level (e.g. title of book in a record of a book article) are searchable in /SO.

DISPLAY and PRINT Formats

Any combination of formats may be used to display or print answers. Multiple codes must be separated by spaces or commas, e.g., D L1 1-5 TI AU. The fields are displayed or printed in the order requested.

Hit-term highlighting is available for all fields. Highlighting must be ON during SEARCH to use the HIT, KWIC, and OCC formats.

<table>
<thead>
<tr>
<th>Format</th>
<th>Content</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Abstract</td>
<td>D TI AB</td>
</tr>
<tr>
<td>AN</td>
<td>Accession Number</td>
<td>D 1-5 AN</td>
</tr>
<tr>
<td>AU</td>
<td>Author</td>
<td>D AU TI</td>
</tr>
<tr>
<td>CN</td>
<td>Chemical Name (format includes RN)</td>
<td>D CN</td>
</tr>
<tr>
<td>CO</td>
<td>Corporate Name</td>
<td>D CO</td>
</tr>
<tr>
<td>CS</td>
<td>Corporate Source</td>
<td>D CS</td>
</tr>
<tr>
<td>CT</td>
<td>Controlled Term</td>
<td>D CT</td>
</tr>
<tr>
<td>CY</td>
<td>Country (of publication)</td>
<td>D CY</td>
</tr>
<tr>
<td>DT (TC)</td>
<td>Document Type</td>
<td>D DT</td>
</tr>
<tr>
<td>ED (UP) (1)</td>
<td>Entry Date</td>
<td>D ED</td>
</tr>
<tr>
<td>EML (1)</td>
<td>E-mail Address</td>
<td>D EML</td>
</tr>
<tr>
<td>GEN</td>
<td>Gene Number</td>
<td>D CT, GEN</td>
</tr>
<tr>
<td>GT (1)</td>
<td>Geographic Term</td>
<td>D GT</td>
</tr>
<tr>
<td>ISN (1)</td>
<td>International Standard (Document) Number</td>
<td>D ISN</td>
</tr>
<tr>
<td>JT (1)</td>
<td>Journal Title</td>
<td>D JT</td>
</tr>
<tr>
<td>JTA (1)</td>
<td>Journal Title, Abbreviated</td>
<td>D JTA</td>
</tr>
<tr>
<td>JTF (1)</td>
<td>Journal Title, Full</td>
<td>D JTF</td>
</tr>
<tr>
<td>LA</td>
<td>Language</td>
<td>D LA TI</td>
</tr>
<tr>
<td>MD (1)</td>
<td>Meeting Date</td>
<td>D MD</td>
</tr>
<tr>
<td>ML (1)</td>
<td>Meeting Location</td>
<td>D ML</td>
</tr>
<tr>
<td>MT (1)</td>
<td>Meeting Title</td>
<td>D MT</td>
</tr>
<tr>
<td>MY (1)</td>
<td>Meeting Year</td>
<td>D MY</td>
</tr>
<tr>
<td>PB (1)</td>
<td>Publisher</td>
<td>D PB</td>
</tr>
<tr>
<td>PD (1)</td>
<td>Publication Date</td>
<td>D PD</td>
</tr>
<tr>
<td>PUI</td>
<td>Publisher Item Identifier</td>
<td>D PUI SO</td>
</tr>
</tbody>
</table>
DISPLAY and PRINT Formats (cont'd)

<table>
<thead>
<tr>
<th>Format</th>
<th>Content</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY (1)</td>
<td>Publication Year</td>
<td>D PY</td>
</tr>
<tr>
<td>REC (RE.CNT) (1)</td>
<td>Reference Count</td>
<td>D REC</td>
</tr>
<tr>
<td>RN</td>
<td>CAS Registry Number</td>
<td>D RN</td>
</tr>
<tr>
<td>SL</td>
<td>Summary Language</td>
<td>D SL</td>
</tr>
<tr>
<td>SO</td>
<td>Source</td>
<td>D SO</td>
</tr>
<tr>
<td>Ti</td>
<td>Title</td>
<td>D Ti 1-3</td>
</tr>
<tr>
<td>TN</td>
<td>Trade Name (format includes CN)</td>
<td>D TN</td>
</tr>
<tr>
<td>WC.T (1)</td>
<td>Word Count, Title</td>
<td>D WC.T</td>
</tr>
<tr>
<td>ABS</td>
<td>AN, AB</td>
<td>D ABS</td>
</tr>
<tr>
<td>ALL</td>
<td>AN, TI, AU, CS, SO, PUI, DT, CY, LA, SL, AB, CT, RN, CN, TN, CO, GEN</td>
<td>D ALL</td>
</tr>
<tr>
<td>DALL</td>
<td>ALL, with delimiter for post-processing</td>
<td>D 8 DALL</td>
</tr>
<tr>
<td>IALL</td>
<td>ALL, indented with text labels</td>
<td>D IALL</td>
</tr>
<tr>
<td>BIB</td>
<td>AN, TI, AU, CS, SO, PUI, DT, CY, LA, SL, (BIB is the default)</td>
<td>D 8 BIB</td>
</tr>
<tr>
<td>IBIB</td>
<td>BIB, indented with text labels</td>
<td>D IBIB</td>
</tr>
<tr>
<td>IND</td>
<td>AN, CT, RN, CN, TN, CO, GEN</td>
<td>D IND</td>
</tr>
<tr>
<td>SCAN (2)</td>
<td>TI, CT (random display without answer numbers)</td>
<td>D SCAN</td>
</tr>
<tr>
<td>TRIAL (TRI, SAMPLE, SAM, FREE) (3)</td>
<td>AN TI, CT</td>
<td>D TRI</td>
</tr>
<tr>
<td>HIT</td>
<td>Hit term(s) and field(s)</td>
<td>D HIT</td>
</tr>
<tr>
<td>KWIC</td>
<td>Up to 50 words before and after hit term(s) (KeyWord-In-Context)</td>
<td>D KWIC</td>
</tr>
<tr>
<td>OCC</td>
<td>Number of occurrences of hit term(s) and field(s) in which they occur</td>
<td>D OCC</td>
</tr>
</tbody>
</table>

(1) Custom display only.
(2) SCAN must be specified on the command line, i.e., D SCAN or DISPLAY SCAN.
(3) FREE is not available for print.

SELECT, ANALYZE, and SORT Fields

The SELECT command is used to create E-numbers containing terms taken from the specified field in an answer set.

The ANALYZE command is used to create an L-number containing terms taken from the specified field in an answer set.

The SORT command is used to rearrange the search results in either alphabetic or numeric order of the specified field(s).
SELECT, ANALYZE, and SORT Fields (cont'd)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Code</th>
<th>ANALYZE/SELECT (1)</th>
<th>SORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Number</td>
<td>DN</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Document Type</td>
<td>DT (TC)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>E-mail Address</td>
<td>EML</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Entry Date</td>
<td>ED (UP)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Genbank</td>
<td>GENBANK</td>
<td>Y (2,5)</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>(GBN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene Number</td>
<td>GEN</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Geographic Term</td>
<td>GT</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>International Standard (Document) Number</td>
<td>ISN</td>
<td>Y (7)</td>
<td>Y</td>
</tr>
<tr>
<td>International Standard Book Number</td>
<td>ISBN</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>International Standard Serial Number</td>
<td>ISSN</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Journal Title</td>
<td>JT</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Journal Title, Abbreviated</td>
<td>JTA</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Journal Title, Full</td>
<td>JTF</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Language</td>
<td>LA</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Meeting Date</td>
<td>MD</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Meeting Location</td>
<td>ML</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Meeting Title</td>
<td>MT</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Meeting Year</td>
<td>MY</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Occurrence Count of Hit Terms</td>
<td>OCC</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Publication Date</td>
<td>PD</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Publication Year</td>
<td>PY</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Publisher</td>
<td>PB</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Publisher Item Identifier</td>
<td>PUI</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Reference Count</td>
<td>REC (RE.CNT)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Source</td>
<td>SO</td>
<td>Y (8)</td>
<td>Y</td>
</tr>
<tr>
<td>Summary Language</td>
<td>SL</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Title</td>
<td>TI</td>
<td>Y (default)</td>
<td>Y</td>
</tr>
<tr>
<td>Trade Name</td>
<td>TN</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Word Count, Title</td>
<td>WC.T</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

(1) HIT may be used to restrict terms extracted to terms that match the search expression used to create the answers set, e.g., SEL HIT CT.
(2) Appends /BI to the terms created by SELECT.
(3) Selects or analyzes Chemical Name (CN) and appends /BI to the terms created by SELECT.
(4) Selects or analyzes Chemical Name (CN) and CAS Registry Number and appends /BI to the terms created by SELECT.
(5) SELECT HIT or ANALYZE HIT are not valid with this field.
(6) SELECT or ANALYZE CIT allows you to extract the reference from the source documents in this file and have them automatically converted to a citation format for searching in the SCISEARCH file. SEL or ANALYZE CIT extracts first author, publication year, volume, first page, with a truncation symbol and with /RE appended to the terms created by SELECT.
(7) Selects or analyzes CODEN, ISSN or ISBN with /ISN appended to the terms created by SELECT.
(8) Selects or analyzes CODEN, ISSN or ISBN with /SO appended to the terms created by SELECT.

Sample Records

DISPLAY ALL

AN 2000:30051583 BIOTECHNO
TI HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission
AU Jinn T.-L.; Stone J.M.; Walker J.C.
CS J.C. Walker, Division of Biological Sciences, University of Missouri, Columbia, MO 652114, United States.
 E-mail: WalkerJ@missouri.edu
SO Genes and Development, (01 JAN 2000), 14/1 (108-117), 56 reference(s)
 CODEN: GEDEEP ISSN: 0890-9369
DT Journal; Article
CY United States
LA English
Abscission, the natural shedding of leaves, flowers and fruits, is a fundamental component of plant development. Abscission is a highly regulated process that occurs at distinct zones of cells that undergo enlargement and subsequent separation. Although some components of abscission, including accumulation of the hormone ethylene and cell wall-degrading enzymes, have been described, the regulatory pathways remain largely unknown. In this paper we described a critical component required for floral organ abscission in Arabidopsis thaliana, the receptor-like protein kinase HAESA. Histochemical analysis of transgenic plants harboring a HAESA promoter:: β-glucuronidase reporter gene and in situ RNA hybridization experiments show HAESA expression in the abscission zones where the sepalas, petals, and stamens attach to the receptacle, at the base of pedicels, and at the base of petioles where leaves attach to the stem. Immunodetection, immunoprecipitation, and protein kinase activity assays reveal HAESA is a plasma membrane serine/threonine protein kinase. The reduction of function of HAESA in transgenic plants harboring an antisense construct results in delayed abscission of floral organs, and the severity of the phenotype is directly correlated with the level of HAESA protein. These results demonstrate that HAESA functions in developmentally regulated floral organ abscission.