

CAS STNext[®] E-SEMINAR Searching Ring System Data on CAS STNext[®]

Paul Peters, ACS International / CAS

© 2023 American Chemical Society. All rights reserved.

Analyzing Ring System Data

Search Fields

Combining Ring Search Fields with Structure Search

Use cases for using Ring System Data

Rings in REGISTRY

For substances with up to 252 non-hydrogen atoms

Any structure in REGISTRY with a ring contains Ring System Data.

- Over 207 million substances have Ring System Data (RSD)
- Over 77.8 million substances have polycyclic rings
- Only 78.5 mil substances have a structure without a ring (NO RSD/FA)

Some Ring System Data may be displayed for a substance.

Other Ring System Data is searchable only.

Often, broad structure claims are best searched with RSD in combination with structure query.

Challenges in Searching Rings

The name of a ring system is not always clear.

New substances entering REGISTRY may not yet have a name.

Structure search may be too broad to run within system limits.

The claimed ring system may be too generic to be comprehensively covered in a structure search query.

Terminology of rings

Fused Ring": Shares at least one ring node with another ring.

AKA: embedded or polycyclic

Unfused Ring": Does not share a ring node with another ring. AKA: isolated or monocyclic

American Chemical Society

Displaying Ring System Data

Substance CAS RN 872201-71-3

Ring System Data

Elemental	L El0	emental	L S:	ize of	Ri	ng Syster	n	Ring		RID
Analysis	Sec	quence	the	e Rings	s	Formula	lq	entifie	r <mark>0</mark> c	currence
EA	L	ES	I.	SZ	I	RF	I.	RID	I	Count

	C40	0C4	5	C40	16.138.5	1
	C6	C6	6	C6	46.150.18	3
;	C302-C40	00002-004	5-5	C503	180.182.1	1

This substance contains five Ring Systems

The ring data for Rapamycin

CAS RN is 53123-88-9

Ring System Data

Absolute stereochemistry shown E/Z labels describe double bond geometry

Elementa	l Elemental	Size of	Ring Syste	m Ring	RID
Analysis	Sequence	the Ring	s Formula	Identifie	r Occurrence
EA	ES	SZ	RF	RID	Count
	=+========	=+=======	=+========	=+=========	=+=========
C6	C6	6	C6	46.150.1	1
C5N-C50-	NC5-0C5-	6-6-29	C33N02	22445.1.1	1
C26N02	NC20C210C	3	1	1	1

This substance has two Ring System with the larger one containing three rings.

Finding the smallest rings in the ring system

Sometimes leads to unexpected choices

/=	_	
\mathbb{N}		
	_	_/

Elemental	l Elementa	l Size of	Ring Syste	m Ring	RID
Analysis	Sequence	the Ring	s Formula	Identifie	r Occurrence
EA	ES	SZ	RF	RID	Count
=======	=+=======	=+========	=+==========	=+=========	=+========
C6-C6	C6-C6	6-6	C10	591.49.57	1

Nothing strange here. Naphthalene is built as two 6-membered rings fused together

Finding the smallest rings in the ring system

Sometimes leads to unexpected choices

	$\overline{}$
$\left\{ \right.$	\rightarrow

Elemental	L El	ementa	1 Si	ize of	Ri	ing System	n	Ring		RID
Analysis	Se	quence	the	e Rings	s	Formula	Id	entifier	^ Oc	currence
EA		ES		SZ	I	RF		RID	I.	Count
=======	=+==:		=+===		=+==		=+==:		=+==	
C5-C5	C5	-C5	5-5	5	C7	7	10	3.10.1	1	

There is no 6-membered ring in the bicycloheptane ring system. The smallest rings are two 5-membered rings

Finding the smallest rings in the ring system

Sometimes leads to unexpected choices

Elemental Elemental Size of	Ring System Ring RID
Analysis Sequence the Rings	Formula Identifier Occurrence
EA ES SZ	RF RID Count
======+====+====+=========	=+=======+====+=====+=============
C2Fe-C2Fe- FeC2-FeC2- 3-3-3-3-3-3	- C10Fe 14785.1.1 1
C2Fe-C2Fe- FeC2-FeC2- 3-3-3-3	
C2Fe-C2Fe- FeC2-FeC2-	
C2Fe-C2Fe- FeC2-FeC2-	
C2Fe-C2Fe FeC2-FeC2	

What?! There is no 5-membered ring in these cyclopentadienyl-based complexes? Indeed, these are built by 10 3-membered rings.

Naphthalene is not a 10-membered ring system with a bridge, is it?

Why search on ring system data?

Considering using ring system data for your searches

Refining molecular formula or chemical name searches.

Segmenting large answer sets based on types of ring systems.

Removing unwanted ring systems from broad searches.

Creating a subset when structure queries exceed system limits.

Understanding the search fields in RSD

OLED compound by LG Chem

For reference on following slides

Elemental	Elemental	Size of	Ring System	Ring	RID
Analysis	Sequence	the Rings	Formula	Identifier	0ccurrence
EA	ES	SZ	RF	RID	Count
	+==========	+=========	+=========	+========	+=========
C6	C6	6	C6	46.150.18	4
C4N-C6-C6	NC4-C6-C6	5-6-6	C12N	1839.22.20	1
C5-C5-C6-C6-	C5-C5-C6-C6-	5-5-6-6-6-6	C25	9841.9.1	1
C6-C6	C6-C6				

RSD: Counting rings and ring systems

To specify	Field Code	Examples
Total number of rings in a component	CNR	13/CNR 10-14/CNR
Total number of ring systems in an entire substance	NRS	6/NRS 3-6/NRS
Total number of ring systems in a single component	CNRS	6/CNRS 3-6/CNRS
Number of rings in a ring system	NRRS	3/NRRS 3-10/NRRS

RSD: Ring sizes and counts

To specify	Field Code	Examples
Size of (smallest) ring in a ring system, and number of occurrences of that ring in the ring system	SZS	5/SZS 2 5/SZS 1-10 5/SZS
Sizes of all (smallest) rings in a ring system, and number of occurrences of that system in a component	SZ	5-6-6/SZ 1 5-6-6/SZ 1-3 5-6-6/SZ

Values for occurences are optional

RSD: Formulas and elements in rings

A division of the American Chemical Society

To specify	Field Code	Example
Ring system formula, and occurrences of that system formula in a component	RF	C12N/RF 2 C12N/RF
Ring system formula (without element counts), and occurrences of that system formula in a component	RELF	C N/RELF 3 C N/RELF
One element in a ring system, and occurrences of that element in the ring system	REL	C/REL 10 C/REL
Number of unique elements in a ring system	RELC	2/RELC
Number of atoms in a ring system	RATC	13/RATC

RSD: Formulas and elements in rings

To specify	Field Code	Example
Formulas for all the rings in a ring system, occurrences of that system formula in a component	EA	C4N-C6-C6/EA 3 C4N-C6-C6/EA
Formula for a ring in a ring system, occurrences of that ring in the ring system	EAS	C4N/EAS 2 C4N/EAS
Elemental sequence for all the rings in a ring system, occurrences of that system formula in a component	ES	NC4-C6-C6/ES 3 NC4-C6-C6/ES
Elemental sequence for a ring in a ring system, occurrences of that ring in the ring system	ESS	NC4/ESS 2 NC4/ESS

RSD: Proximity operators

Combining RSD fields applied to same component or system

OPERATOR	PROXIMITY
(P)	Same single-component substance or same component of a multi-component substance
(NOTP)	Not in the same component
(S)	In the same ring system
(NOTS)	Not in the same ring system

1. RSD is not always conclusive

Keeps various options open for elements in the ring

Ring system of two 6-membered rings

One ring has NCNC3 as the sequence

Second ring has 0-2 N in the ring

Only C and optionally N in that ring

What are the element sequences for the second ring?

WO 2023/138412

CLAIMS

1. A compound of Formula (I)

or a pharmaceutically acceptable salt, solvate, stereoisomer, or isotopic variant thereof, wherein each of X¹, X², X³, and X⁴ is independently N or CR^A, in which R^A is H or R¹, with the proviso that no more than two of X¹, X², X³, and X⁴ are N;

ring A is a 5- or 6-membered aromatic or heteroaromatic ring which contains 0, 1, or 2 heteroatoms selected from the group consisting of N, O, and S, optionally further fused to one or two cyclic rings independently selected from -cycloalkyl, -heterocyclyl, -aryl, -heteroaryl ring;

PCT/CN2023/071020

Developing the search strategy

Translate the known information to respective search fields

FILE	'REGISTRY	' E	ENTE	ERED								
L3	20765955	S	6-6	5/SZ	(S)	10/RAT	С					
L4	2841932	S	LЗ	(S)	NCN	C3/ESS						
L5	2725361	S	L4	(S)	6-8	C/REL	(S)	2-4	N/REL	(S)	С	N/RELF

Consider stopping here and using L5 as the basis for our structure search, or add additional ring sequence information for the second ring:

L6 2722462 L5 (S) (2 NCNC3/ESS OR NCNC3/ESS(S)C6/ESS OR NCNC3/ESS(S)NC5/ESS OR NCNC3/ESS(S)NC2NC2/ESS OR NCNC3/ESS(S)N2C4/ESS)

L7		S	[RUC	CTURE	E UPI	LOADED
L8	50	S	L7	SSS	SAM	
L9	1061861	S	L7	SSS	FUL	SUB=L6
L10	1062485	S	L7	SSS	FUL	

CAS

What are still some ring systems in L6 that do not match our structure query?

L11	1646033	S	L6	NOT	L9
L12	93091	S	L11	AND	1/NRS

Ring Identifier (RID)

Defines shape – atoms – bonds in a ring system

Retrieval	Portion of Ring Identifier	Notes		
Skeleton	1310/RID (leftmost part of the number up to the first period)	 Any atom may be present Any type of bonding is allowed Additional fusion or bridging not allowed 		
Skeleton and atoms	1310.20/RID (leftmost part of the number up to the second period)	 Any type of bonding may be present Additional fusion or bridging not allowed 		
Skeleton, atoms, and bonds	1310.20.3/RID (entire 3-part number)	 Additional fusion or bridging not allowed 		

RIDs for our nitrogen heterocycles

Results from our previous search strategy

American Chemical Society

2. Patent claims with broadly described rings

US20230257403 claims silacrown rings very broadly

1. A silacrown ether having eleven to about twenty-seven ring atoms of which one of the ring atoms is silicon, wherein the silacrown ether contains one alkyl group on the silicon atom and at least one exocyclic substituent on the silicon ring atom and/or on a carbon ring atom, and wherein the at

RSD for one example substance

Helpful to see what fields may be useful to include in our strategy

Ring System Data

Elemental	Elemental	S	ize of	Ri	ng System	n	Ring		RID
Analysis	Sequence	th	e Rings	s I	Formula	Id	entifie	r 0	ccurrence
EA	ES		SZ		RF		RID		Count
======+=	===========	=+==		=+===		=+==		=+=:	
C6-C805Si C	6-	6-	14	C12	205Si	54	10.197.	1 1	
0	Si0C20C20C20)							
C	2								

The ESS field describing the elemental sequence of the smallest ring starts at the lowest alphabetical heteroatom and finds the shortest path to the next heteroatom

24 © 2023 American Chemical Society. All rights reserved.

What are the components of the ring search?

Verify which search fields would be relevant

11-27 ring atoms

1 silicon atom in the ring

Ring only consist of Si, O, C atoms

Si atom directly linked to two oxygen atoms

Crown structure of C-C-O repetition

All characteristics must be found in one ring system

What are the components of the ring search?

Verify which search fields would be relevant

11-27 ring atoms	11-27/RACT
1 silicon atom in the ring	1 SI/REL
Ring only consist of Si, O, C atoms	C O SI/RELF
Si atom directly linked to two oxygen atoms	OSiO?/ESS
Crown structure of C-C-O repetition	OSiOC2OC2O?/ESS
All characteristics must be found in one ring system	n (S) proximity

Running the search on STNext

FILE	'REGISTRY	' E	ENTE	ERED
L3	16858932	S	11-	-27/RATC
L4	80356	S	LЗ	(S) 1 SI/REL
L5	9630	S	L4	(S)C O SI/RELF
L6	3952	S	L5	(S) OSIO?/ESS
L7	47	S	L5	(S) OSIOC2OC2O?/ESS

27 © 2023 American Chemical Society. All rights reserved.

3. Rings with multiple options

US20220127394 claims metal complexes in two forms

Formula I(a)

What is claimed is:

1. A catalyst compound represented by Formula I(a) or I(b):

Formula I(b)

RSD for two of the exemplified substances

Elemental	Elemental	Size of	Ring System	Ring
Analysis	Sequence	the Rings	Formula	Identifier
EA	ES	SZ	RF	RID
===========	=+===========	+===========	+==========	+=======+:
C2Ti-C2Ti-	TiC2-TiC2-	3-3-3-3-3-5-	C10N2OTi	1981.162.1
C2Ti-C2Ti-	TiC2-TiC2-	6	I	I I
C2Ti-CN2OTi-	- TiC2-NOTiNC-	·	1	I I
C5N	NC5	1	1	I I

Elemental	Elemental	Size of	Ring Syster	n Ring
Analysis	Sequence	the Rings	Formula	Identifier
EA	ES	SZ	RF	RID
========	+========	+=========	+==========	=+======+
C5N	NC5	6	C5N	46.156.30
C2Zr-C2Zr-	ZrC2-ZrC2-	3-3-3-3-3-3	3 C5NOZr	112.280.1
C2Zr-C2Zr-	ZrC2-ZrC2-	·	1	1 I
C2Zr-NOZr	ZrC2-NOZr	I.	1	1

Could we just search these two RIDs?

Compare results to structure based search

- L1 19 S 1981/RID(S)M/REL(S)10 C/REL(S)2 N/REL(S)1 O/REL(S)14/RATC
- L2 18 S 46.156.30/RID(L)(112/RID(S)M/REL(S)5 C/REL(S)1 N/REL(S)1 O/REL(S)8/RATC)
- L3 37 S L1 OR L2

L4		S	[RU	CTURE	E UPLOADED
L5	32	S	L4	SSS	FUL
L6	32	S	L3	AND	L5
L7	5	S	LЗ	NOT	L5

What are the 5 extra RSD hits we retrieved?

There were two main structure variations found in L7

HCI

These are mentioned in 4 prior publications potentially relevant as inventive step

- AN 2007:229702 CAPLUS Full-text
- DN 146:441913
- TI Mono and dinuclear iridium, rhodium and ruthenium complexes containing chelating carboxylato pyrazine ligands: Synthesis, molecular structure and electrochemistry
- AU Govindaswamy, Padavattan; Therrien, Bruno; Suess-Fink, Georg; Stepnicka, Petr; Ludvik, Jiri
- CS Institut de Chimie, Universite de Neuchatel, Neuchatel, CH-2009, Switz.
- SO Journal of Organometallic Chemistry (2007), 692(8), 1661-1671

Analyze by RSD

May be helpful to get an overview of possibilities

Analyze 37 answers available					
1-37	\downarrow Ascending, \rightarrow Ascending \bullet		Switch Axes]	
Select up to 2 fields to analyze		3-3-3-3-3	3-3-3-3-3-3	6	
Author / Inventor	112.180.1		10	10	
Assignee	112.280.1		8	8	
Publication Year Controlled Terms	1981.100.1	1			
Patent Country	1981.161.1	8		6	
 Cooperative Patent Classification International Patent 	1981.162.1	8		6	
Classification	1981.99.1	2		1	
 Custom Analyze sz 	46.150.1		2	2	
✓ rid	46.150.18	13	12	25	
	46.156.30		18	18	
Analyze Cancel	Loading Data: 100% cor	mplete			

32

Searching macrocyclic rings

Additional fusion allowed but no formation of bridges

Example taken from WO2023178235

1. A compound represented by Formula I:

or a pharmaceutically acceptable salt and/or a stereoisomer thereof; wherein

Ring A is a 6,5 or 6,6 fused bicyclic heteroaryl containing two, three, or four ring

nitrogens:

Ring B is a 6,5 or 6,6 fused bicyclic heteroaryl containing one, two or three ring

nitrogens; m is 1 or 2; Y is selected from the group consisting of O, N(R^a), S(O)_w, CH₂ and a bond;

n is 0 or 1; Z is selected from the group consisting of N(R^a) and O;

Effectively creating an 11-19membered macrocycle that has 2 times a 5,6 or 6,6membered ring fused into the ring with 4-10 nitrogens; 0-2 oxygens; 0-1 sulfurs

Developing the search strategy

Converting known elements and ring sizes to RSD search fields

- L1 258474 S 11-19/SZS(S)((2 5/SZS(S)2 6/SZS) OR (1 5/SZS(S)3 6/SZS) OR 4 6/SZS)
- L2 42901 S L1(S) 4-10 N/REL
- L3 31669 S L2(NOTS)M/REL
- L4 28823 S L3(NOTS) >2 O/REL
- L5 28299 S L4(NOTS) >1 S/REL
- L6 19277 S L5(S)5/NRRS

It is not possible to search for 0-2 O/REL since the zero value is not searchable. Alternatively, we exclude using (NOTS) rings with more than 2 oxygen atoms, and more than 1 sulfur atom in the ring

Display one of the results

=> D STR RSD

L6 ANSWER 1 OF 19277 REGISTRY COPYRIGHT 2023 ACS on STN

Absolute stereochemistry shown

There is not an option to force rings A and B to be the fused bicyclic 5-6 or 6-6 rings, with the NH group separating them, other than running a substructure search within the results in L6

Creating the structure query

The ring size is either 5-6 or 6-6 for both rings connecting to N-H

Create multiple attachment points for R1 and R2 (except the repeating group Since it is unknown which atoms in these rings are C, N, O, S, use variable A Make sure that the bonds from R1-N and N-R2 are rings bonds!

Run the structure search as a subset of L6

Structure L7 is too broad to be run by itself

L1 258474 S 11-19/SZS(S)((2 5/SZS(S)2 6/SZS) OR (1 5/SZS(S)3 6/SZS) OR 4 6/SZS)

- L2 42901 S L1(S) 4-10 N/REL
- L3 31669 S L2 (NOTS) M/REL
- L4 28823 S L3(NOTS) >2 O/REL
- L5 28299 S L4(NOTS) >1 S/REL
- L6 19277 S L5(S)5/NRRS
- L7STRUCTURE UPLOADEDL815 S L7 SSS FULSUB=L6
 - FILE 'CAPLUS' ENTERED
- L9 2 S L8

Displaying two answers

These are the most recent and oldest structures of L8

Absolute stereochemistry shown

RN 2987998-75-2 in WO2023178235

Elemental	Elemental	Size of	Ring System	m Ring	RID
Analysis	Sequence	the Rings	Formula	Identifier	Occurrence
EA	ES	SZ	RF	RID	Count
========	=+===========	=+=========	=+==========	=+==========	+========
C2N3-C3N2-	- N3C2-NCNC2-	5-5-6-6-14	4 C16N80	208217.21.1	1
C4N2-C6-	NC2NC2-C6-		1	1	I
C10N30	NC2NC2NC2OC4	4	1	1	I.

RN 2390553-28-1 in J Med Chem (2019), p.9418

Elemental	Elemental	Size of	Ring System	n Ring	RID
Analysis	Sequence	the Rings	Formula	Identifier	Occurrence
EA	ES ES	SZ	RF	RID	Count
	+=========	+=========	+==========	+========	+========
C3N2-C4N2-	N2C3-NCNC3-	5-6-6-6-14	1 C20N6O	201064.1.1	1
C5N-C6-C11N20	NC5-C6-	1	1		I.
	NC3NC30C5	1	1	1	I.

Summary of Ring System Data

Search Ring System Data to refine broad substance searches.

Create a subset when structure queries exceed system limits.

Analyze and search RIDs for easy templates.

Searching RSD is cost effective and faster than structure search.

See HELP SRING; HELP SFIELDS; HELP SEARCH SUBSET

Between problems and progress are connections that matter

Paul Peters Director, Customer Success Specialists ppeters@acs-i.org

CAS help@cas.org cas.org

CONTACT

FIZ Karlsruhe EMEAhelp@cas.org stn-international.de

40 © 2023 American Chemical Society. All rights reserved.

