
BIOMATERIALS
EIGHT EMERGING
AREAS RESHAPING
MEDICINE

CAS INSIGHTS™



BIOMATERIALS INSIGHT REPORT  |  3

The research and development of materials used 
in biomedical applications, or biomaterials, has 
seen rapid expansion and diversification over the 
last 20 years. From highly engineered synthetic 
polymers to biodegradable metals to naturally 
derived substances, their unique properties can 
be used for diverse functions and applications in 
medicine. In this report, we have selected eight 
topic areas that represent the most active and 
promising biomaterials research fields, ranging 
from more established fields such as protein-
based materials to rapidly expanding ones 
like bioinks.

To identify these key topics, we used natural 
language processing to identify candidate 
concepts with a high growth rate in journal and 
patent publications between 2020–2022, then 
classified and narrowed these candidates further 
based on discussions between subject matter 
experts (SMEs) at CAS and Westlake University. 

After using this method to identify eight 
key topics, we analyzed the most prominent 
materials, material classes, applications, and other 
parameters within each topic. Our data source 
was the CAS Content Collection� — the world’s 
largest repository of diverse scientific knowledge.

To identify the relevant set of documents for each 
topic from the CAS Content Collection, search 
queries were developed and iteratively optimized 
by SMEs. The number of documents extracted for 
each topic ranged from around 4,000 to 120,000.

Through this report, we aim to provide a 
comprehensive overview of the evolving 
landscape of biomaterials research and offer 
insights that may be useful for determining future 
research directions.

Introduction

Protein-based materials

Protein-based materials include well-known examples such as silk,1–3 collagen,4,5 and keratin.6–8 Due to 
their natural origin, many exhibit desirable properties such as biocompatibility, bio-absorbability, and self- 
assembly that are crucial for their widespread use in biomedical applications.1 However, the development 
of new hybrid or composite materials based on naturally occurring protein materials9,10 is a much more 
recent endeavor.

Proteins offer ideal mechanical and physical properties for use in the biomedical field, for example, in 
drug delivery,11–13 tissue engineering,14–17 hydrogels,10,18,19 wound healing,20,21 surface functionalization of 
implants,22–24 and electronic skin.25,26

Publication trends 

We observed a sustained increase in interest in protein-based materials, evidenced by the growing 
number of journal publications over the last two decades. Compared to journal publications, the growth 
in patent publications appears to be relatively flat. This suggests that researchers in the field are more 
focused on solving fundamental scientific challenges over-commercialization.
 
Key materials and applications 

Based on their function, protein-based materials can be split into four categories: structural, 
elastomeric, adhesive, and others.

We found the most active class in terms of research activity to be structural proteins (Figure 1). In this 
category, publications related to collagen have shown a moderate increase since 2003, particularly post-
2019. Silk-based materials have also shown a steady rise in publications since 2003, reflecting their wide 
usage. Mussel foot protein and elastomeric proteins such as elastin and resilin also showed a steady 
increase (Figure 2A and B).
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Collagen
Gelatin
Albumins
Silk
Fibrins and fibrinogen
Osteopontin (ECM 
[extracellular matrix] protein)
Keratin
Laminins (ECM protein)
α smooth muscle actin (SMA)
Vimentins (ECM protein)

486 33,070

Structural
Mussel foot protein (MFP)
Hydrophobins

18 276

Adhesive

Cadherin (CDH1)
Osteocalcins
Multi-task protein (MTP)
Suckerins
Chitin-binding proteins
Cuticular proteins (CuPs)

2 1,678

Others

Elastin
Resilin

111 2,347

Elastomeric

Structural

Figure 1. Distribution of proteins in publications (journals and patents) from 2003–2023. The size of the colored circles corresponds 
to the number of publications. Materials marked with an orange dot (•) demonstrated considerable growth in recent years.

Publication growth over the last two decades indicates an upward trend across all applications of protein-based 
materials. Drug delivery remains the top category, though we noted a sharp increase in bioprinting27–29 and 
electronic skin30,31 after 2014 and 2020, respectively. Wound healing32,33 and hydrogels34,35 also showed considerable 
growth (Figure 2C).
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Figure 2. (A and B) Emerging trends of protein-based materials; (C) Growth in applications of protein-based materials based on 
data from the CAS Content Collection from 2003–2023.

Future challenges 

Proteins will continue to play a large role in biomedical 
materials, and through recent advances, researchers 
have been able to identify and characterize new 
methodologies to accelerate the development of new 
protein-based materials. However, challenges 

 
remain, including yield and consistency in recombinant 
proteins36–38 and finding new approaches to increase 
the practical usability of protein-based materials in 
new biomedical applications.39–41
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Lipid-based materials

Traditionally, drug delivery has been a complex puzzle, often challenged by the limited solubility, stability, 
and bioavailability of many therapeutic agents. Among the transformative advancements in drug delivery 
technologies, lipid-based drug delivery systems have emerged as a formidable force, offering a dynamic 
range of solutions that transcend traditional pharmaceutical boundaries. This is due to their inherent 
biocompatibility and versatility, which allows lipid-based drug delivery systems to encapsulate, transport, 
and release a wide array of therapeutic agents, including drugs, genes, and biologics.

There are various types of lipid nanocarriers, including solid lipid nanoparticles, nanostructured lipid 
carriers, liposomes, lipid-based micelles, and lipid prodrugs.42 They have revolutionized drug delivery by 
overcoming limitations related to drug solubility, stability, bioavailability, and targeted delivery, and they 
continue to play a pivotal role in expanding treatment options and enhancing patient outcomes across a 
wide spectrum of diseases and conditions.

Publication trends 

The overall growth in patent publications across the last decade shows a positive upward trend. However, 
the actual number of patents for lipid-based materials remains relatively low. Journal publications have 
seen more steady growth but, in combination with the more modest increase in patents, could represent 
unmet commercial potential. 

Key materials and applications 

Key materials used in the development and application of lipid-based materials can be broadly broken 
down into lipids, payloads, and emulsifiers. Lipids can be further dissected, as shown in Figure 3.

Of the identified lipids, cationic lipids and the Polyethylene glycol (PEG)-lipid conjugate 1,2-dimyrisotyl-sn-
glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] (DMPE-mPEG) exhibited a sharp increase in 
publications after 2018. Part of the sharp growth of interest in a diverse range of lipids can be attributed to the use 
of lipids in COVID-19 vaccines.

Drug delivery is the major application for lipid-based materials, representing 86% of related entries in the CAS 
Content Collection from 2003–2023. Within this application, diverse types and subtypes of lipid nanocarriers 
are used for formulations administered via various routes, including oral, topical, transdermal, inhalation, 
and parenteral. We can see from Figure 4 that most lipid nanocarriers show a distinct preference for one 
administration route over the others, a pattern pronounced for exosomes and ethosomes.

Dipalmitoyl phosphatidylcholine (DPPC)
Dioleoyl phosphatidylethanolamine (DOPE)
Distearoyl phosphatidylethanolamine (DSPE)
Palmitoyloleoyl phosphatidylcholine (POPC)
Egg lecithin
Dioleoyl phosphatidylcholine (DOPC)
Distearoyl phosphatidylcholine (DSPC)
Dipalmitoyl phosphatidylglycerol (DPPG)
Dipalmitoyl phosphatidylcholine (DMPC)
Palmitoyloleoyl phosphatidylethanolamine (POPE)
Dipalmitoyl phosphatidylethanolamine (DPPE)
Dioleoyl phosphatidylcholine (DOPS)
Distearoyl phosphatidylglycerol (DSPG)
Egg phosphatidylcholine (EPC)
Hydrogenated soy phosphatidylcholine (HSPC)
Dimyristoyl phosphatidylethanolamine (DMPE)
Dimyristoyl phosphatidylglycerol (DMPG)
Dierucoyl phosphatidylcholine (DEPC)

38 1,778

Phospholipids

Phospholipids

Sterols

Glycerides

Cationic
lipids

Oils and
waxes

EG-lipid 
conjugates

Sphingo-
lipids

8 639

Glycerides

Glyceryl stearate
Monoolein (glyceryl monooleate)
Tristearin
Tripalmitin
Trimyristin
Triolein
Tricaprilin
Glyceryl behenate
Miglyol 812
Witepsol bases

22 702

Cationic lipids

DOTAP
DDAB
DOTMA
DC-Chol
DOGS
SM-102
DMRIE
ALC-0315
EDOPC
DOSPA
EDMPC

194 630

Oils and waxes

Soybean oil
Beeswax
Cetyl palmitate
Paraffin

4 582

Oils and waxes

DSPE-PEG
ESPE-mPEG
DMG-PEG
PEG-cholesterol
ALC-0159
DOPE-PEG
DMPE-mPEG
mPEG-cholesterol

Figure 3. Distribution of lipids in publications (journals and patents) from 2012–2023. The size of the colored circles corresponds to 
the number of publications. Materials marked with an orange dot  (•) demonstrated considerable growth in recent years.
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Figure 4. Heat map depicting co-occurrences of various types of lipid nanocarriers with modes of delivery in the field of lipid-based 
materials based on CAS Content Collection data from 2003–2023.

Future challenges 

Challenges in the development of lipid nanocarriers include drug-limited loading capacity and 
encapsulation43,44 as well as stability issues,45,46 scale-up complexities,47 biocompatibility concerns,48 drug release 
control, regulatory hurdles,49 cost considerations,50 and long-term storage requirements.45 Ongoing research 
and innovation in lipid-based drug delivery systems aim to overcome these challenges to harness the full 
potential of these systems.

2.0% 40.0% 0.1% 0.0% 0.0% 0.1% 1.1% 12.7% 5.4% 4.4% 23.7% 0.7% 9.7% 0.0%

Modes of delivery PEGylated  
liposomes

Vesicles Echogenic 
liposomes

Stimuli-
responsive 
liposomes

Bubble  
liposomes

Hexosomes Cubosomes Solid lipid
nanoparticles

Nanostructured
lipid carriers

Ethosomes Exosomes Virus-like
partiicles

Emulsions Lipid 
prodrugs

Intravenous 28.2% 8.0% 21.1% 0.0% 0.0% 4.2% 3.2% 2.8% 3.6% 0.1% 3.8% 8.0% 0.7% 14.3%

Intramuscular 1.4% 3.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.6% 0.6% 0.1% 1.4% 8.8% 0.6% 0.0%

Subcutaneous 3.1% 4.0% 0.0% 0.0% 0.0% 0.0% 0.5% 1.1% 0.8% 0.8% 2.0% 11.2% 1.0% 0.0%

Epidural 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%

Intracerebroventricular 0.8% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.0% 0.3% 0.0% 0.1% 0.0%

Intracardiac 0.6% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0%

Intradermal 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 0.5% 0.3% 0.1% 0.4% 0.5% 2.4% 0.3% 0.0%

Intraperitoneal 4.7% 2.6% 0.0% 0.0% 0.0% 0.0% 0.5% 0.3% 0.6% 0.0% 1.6% 5.6% 0.1% 0.0%

Intraperitoneal 0.8% 1.4% 0.0% 0.0% 0.0% 0.0% 0.5% 0.2% 0.0% 0.0% 1.0% 0.0% 0.0% 0.0%

Transdermal/topical 11.2% 32.0% 15.8% 50.0% 0.0% 50.0% 28.6% 31.5% 43.9% 84.7% 5.5% 17.6% 53.0% 14.3%

Ophthalmic 3.9% 8.5% 10.5% 12.5% 25.0% 4.2% 19.0% 11.2% 13.4% 1.8% 2.3% 2.4% 11.6% 14.3%

Oral 7.3% 14.2% 5.3% 0.0% 25.0% 20.8% 21.7% 20.3% 15.8% 3.7% 3.9% 8.0% 10.0% 42.9%

Sublingual 0.0% 1.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.3% 3.2% 0.2% 0.0%

Buccal 0.0% 1.4% 0.0% 0.0% 0.0% 4.2% 0.5% 1.0% 0.5% 0.5% 0.3% 2.4% 0.9% 0.0%

Rectal 8.7% 4.5% 0.0% 0.0% 0.0% 0.0% 2.6% 3.4% 1.7% 0.8% 0.5% 1.6% 1.6% 0.0%

Vaginal 0.3% 2.2% 0.0% 0.0% 0.0% 0.0% 1.1% 1.0% 0.5% 1.5% 0.5% 3.2% 1.0% 0.0%

Nasal 2.8% 6.0% 0.0% 0.0% 0.0% 0.0% 5.3% 6.7% 7.2% 1.5% 2.8% 12.0% 5.5% 0.0%

Inhalation 5.0% 8.7% 10.5% 0.0% 0.0% 8.3% 1.6% 7.6% 2.0% 0.1% 1.3% 4.8% 3.9% 0.0%

Otic 21.2% 0.6% 36.8% 37.5% 50.0% 8.3% 3.8% 11.7% 9.0% 3.9% 71.8% 8.8% 8.8% 14.3%
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Bioelectronic materials

Bioelectronics is an interdisciplinary field in which electronic devices interface with biological systems, 
including the human body,51–55 through implantation or attachment to the skin. It involves the 
development of new devices, often using novel materials and methodologies, that allow electronic 
systems to communicate with biological components at the molecular, cellular, and organ levels. 
This approach capitalizes on the intrinsic ability of living organisms to sense, process, and respond to 
external stimuli in combination with the precision and speed of modern electronics. It has unlocked 
a diverse range of applications that hold significant promise across various sectors, such as real-time 
monitoring of brain activity or heart rate, delivering therapeutic electrical signals, chemical sensing, 
and new prosthetic devices.

As bioelectronics requires effective integration with biological tissue, the materials used in devices are 
engineered to have specific, application-dependent properties that are critical to their performance. 
These can include multiple properties that are not commonly found in a single material like 
softness, stretchability, and electrical conductivity. Achieving this usually involves combining multiple 
substances into one hybrid or composite material.

BIOMATERIALS INSIGHT REPORT  |  9
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Publication trends 

We observed a substantial increase in journal publications from 2017 to 2022, though the number of patent 
publications did not show an equivalent trend. This suggests an increase in academic research in the last five 
years, which has yet to result in commercialization.
 
Key materials and applications 

Classifying biomaterials by chemical substance, we note several key groups:
- Metals and inorganic compounds, which include the most commonly mentioned substances from 2003–2023.
- Polymers, including conductive polymers, notably poly(3,4-ethylenedioxythiophene) (PEDOT), hydrogel-

forming polymers, biodegradable polymers, and polymers derived from natural sources. This group has shown 
significant research interest in recent years, as highlighted in Figure 5.

- Carbon nanomaterials, which have unique properties that make them particularly useful for bioelectronic 
applications.

In terms of device function, we found the majority of bioelectronic materials are used in active sensor components 
and at the interface between electronic components and biological tissues (Figure 6).

Nucleic acids
Chitosan
Cellulose
Collagen
Gelatin
Polysaccharides
Alginate
Silk
Carbohydrates
Hyaluronic acids
Keratin
Chitin

56 11,013

Natural polymers

PDMS
PMMA
PET
Polystyrene
Polyethylene
PTFE
PVC
Plyether ether ketone
Poly(vinylidene fluoride)
Parylene
Polypropylene
SU-8
Parylene C

229 3,432

Inert polymers

PEDOT
PSS
Polypyrrole
Polyaniline
PVP
PolyDADMAC

205 902

Conductive polymers

Inert polymers

Natural polymers

33 815

Biodegradable synthetic
polymers

Polycaprolactone
Poly(L-lysine)
Poly(glycolic acid)
Polydioxanone
Poly(3-hydroxybutrate)
GeIMA

Poly(lactic acid)
PEG
PVA
PAA
PAAM
PLGA
pHEMA

107 1,194

Hydrogel-forming
synthetic polymers

Figure 5. Distribution of polymers used in the field of bioelectronic materials in publications (journals and patents) from 
2003–2023. The size of the colored circles corresponds to the number of publications. Materials marked with an orange dot  (•) 
demonstrated considerable growth in recent years.

58.3% 31.1% 2.9% 2.6% 2.4% 1.0% 0.8% 0.6% 0.4%

Chemical  
sensors/ 
immunosensors

Electronic 
/tissue 
interface

Optoelectronic 
material

Signal 
processing

Mechanical 
sensor

Piezoelectric Temperature 
sensor

Actuator Microelectro 
mechanical 
systems

Alumina 1.3% 1.8% 2.5% 3.6% 1.7% 1.1% 1.1% 1.5% 2.1%

Aluminum 1.1% 2.1% 4.4% 4.8% 3.4% 5.7% 4.1% 3.5% 4.6%

Cellulose 0.3% 0.5% 1.1% 0.4% 2.0% 0.8% 2.0% 3.0% 0.6%

Chitosan 6.3% 4.0% 2.0% 0.6% 1.7% 1.9% 1.1% 3.0% 0.6%

Copper 2.6% 3.6% 4.2% 6.1% 7.4% 3.3% 7.5% 4.0% 2.9%

Gold 32.2% 26.5% 18.4% 15.9% 13.0% 26.8% 13.9% 13.6% 22.3%

Graphene 12.4% 9.6% 5.8% 4.3% 9.3% 4.2% 6.4% 4.0% 0.8%

Indium tin oxide 5.8% 5.1% 7.5% 4.1% 3.2% 3.1% 1.8% 1.0% 1.3%

Iron 0.4% 0.6% 0.4% 0.8% 1.1% 0.4% 1.4% 1.5% 0.4%

Nickel 1.7% 1.8% 1.3% 2.8% 1.9% 1.5% 3.0% 3.5% 2.9%

Platinum 9.9% 10.2% 3.6% 8.9% 3.6% 6.3% 8.9% 11.1% 11.0%

Poly(3,4-ethylenedioxythiophene) 2.3% 2.6% 2.2% 1.4% 3.4% 2.7% 2.7% 6.0% 0.4%

Poly(dimethylsiloxane) 0.6% 1.4% 2.4% 0.8% 6.6% 2.7% 2.7% 1.0% 2.7%

Poly (ethylene terephthalate) 1.0% 1.6% 2.8% 1.6% 5.8% 3.1% 5.9% 4.5% 0.8%

Poly (lactic acid) 0.1% 0.3% 0.6% 0.3% 0.3% 1.0% 0.7% 2.0% 0.6%

Poly (methyl methacrylate) 0.9% 1.3% 3.7% 2.6% 2.0% 1.9% 2.7% 3.0% 1.0%

Poly (styrenesulfonic acid) 1.5% 1.5% 1.8% 0.9% 2.5% 1.5% 1.4% 4.5% 0.2%

Poly (vinylalcohol) 0.7% 1.1% 1.8% 1.1% 4.2% 2.1% 3.6% 2.5% 1.0%

Polycaprolactone 0.0% 0.2% 0.2% 0.1% 0.3% 0.2% 0.2% 1.0% 0.2%

Polyethylene glycol 0.6% 1.0% 1.8% 1.0% 0.4% 0.8% 0.9% 1.5% 1.7%

Quartz 0.4% 0.5% 0.7% 0.9% 1.2% 4.0% 0.7% 1.0% 1.3%

Silicon 4.8% 7.1% 15.7% 15.0% 5.0% 9.6% 9.3% 9.0% 26.5%

Silver 5.9% 7.0% 7.1% 9.6% 13.2% 6.1% 10.7% 7.5% 4.4%

Tin oxide 0.4% 0.4% 0.4% 1.0% 0.1% 0.0% 0.5% 0.0% 0.0%

Titania 2.2% 2.0% 2.3% 2.8% 0.7% 0.8% 1.1% 1.5% 0.6%

Titanium 2.1% 3.7% 2.6% 6.1% 2.9% 2.9% 3.6% 3.5% 6.9%

Zinc 0.2% 0.5% 0.7% 0.5% 0.9% 0.2% 1.4% 0.5% 0.2%

Zinc oxide 2.4% 2.0% 2.2% 1.8% 2.2% 5.4% 0.7% 1.0% 1.9%

High

Low

Figure 6. Heat map of co-occurrence between of the most used substances in bioelectronic materials with their most common 
applications, based on CAS Content Collection data from 2003–2023. Note that the electronic/tissue interface category also 
includes electrical sensing and stimulation.

Finally, looking at the parts of the body where bioelectronic materials are used, we found that they are most 
applied in the facial region (e.g., retinal implants),56,57 followed by the brain and nervous system (e.g., deep 
brain stimulation),58–60 but also have applications in the spinal cord, heart, skin, and other organs or regions of 
the body such as arms and legs.

Future challenges 

The bioelectronics field has seen a surge in research, though, as mentioned, patent activity has not grown 
as quickly. So far, work in this area has focused on combining highly engineered materials into hybrid or 
composite devices to impart them with necessary and often unique properties.

The most significant challenges ahead include developing a better understanding of the biocompatibility, 
toxicity, and immune response of materials, device degradation,61,62 and avoiding mismatches in mechanical 
properties between human tissues and devices.63
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Bioinks

Bioinks are composed of a complex mixture of substances, often containing desired cell types with 
natural or synthetic polymers and other supporting materials. 

Bioprinting can use bioinks to fabricate biological structures, including three-dimensional scaffolds, 
tissues, and organs. This approach can be used in tissue engineering, as well as wound healing,64–66 
disease modeling,67–69 personalized medicine,70,71 drug testing and development,72,73 and even drug 
delivery.74–77

Bioprinting encompasses various established methods, including laser-assisted, droplet-based, and 
extrusion-based techniques.78–80 Selecting the appropriate bioink and bioprinting technique depends 
on several factors, such as the intended structure, the mechanical design of the bioprinter, and the 
bioink's inherent properties.78,80,81

Publication trends 

Interest in bioinks has steadily increased over the last two decades, with an acceleration around 2015. 
In general, journal publications outnumber patent publications in this field by a ratio of 5:1 in 2022, 
indicating that the field is still in its nascent stages (Figure 7). This accelerated interest has led to an 
expansion in different aspects of bioprinting, including the types of materials used in bioinks, the 
bioprinting technique itself, and various application fields.

It’s worth noting that, despite an upward trend, the overall number of publications in this field is still 
relatively small.

Key materials and applications 

Live cells are one of the primary building blocks of bioinks, including stem cells,82–85 endothelial cells,86 and tissue-
specific cells.87–89 Growth factors are used to stimulate specific behaviors and enhance development,90–96 synthetic 
polymers can be incorporated to provide mechanical strength and structure,97–102 and natural polymers like 
collagen,93,96 fibrin,103 and gelatin104–106 offer bioactivity and biocompatibility. Our research found that each of these 
categories of bioink materials has shown notable growth, often with a few key materials leading the way. Figure 8 
provides details of the various material groups and highlights emerging materials within them.

Figure 7. Number of journal and patent publications per year in the field of bioinks over the period of 2003–2023. *The data for 2023 
only includes months from January to August.
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Poly(ethylene oxide) (PEO)
Polycaprolactone (PCL)
Polyethylene glycol diacrylate (PEGDA)
Poly(lactic acid) (PLA)
Polyvinyl alcohol (PVA)
Ethylene oxide-propylene oxide triblock copolymer
Trimethylsilyl-terninated poly (dimethylsiloxane) (PDMS)
Poly(lactic-co-glycolic acid) (PLGA)
Poly(acrylic acid)
Polystyrene
Hyaluronice acid methacrylate (HAMA)
Poly(vinylpyrrolidone) (PVP)
Polyethylene glycol dimethacrylate (PEGDMA)
Poly(methyl methacrylate) (PMMA)
Poly(N-isopropylacrylamide) (PNIPAM)
Gelatin methacryloyl (GelMA)
Poly(2-hydroxyethyl methacrylate (HEMA)
Polyetrafluoroethylene (PTFE)
Poly(ethylene terephthalate) (PET)
Polydioxanone (PDO)
Poly(propylene fumarate) (PPF)
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)

5 447

Synthetic polymers

2 1,058

Protein-based

Gelatin
Collagen
Peptide
Silk
Agarose
Fibrin and fibrinogen
Poly(dopamine)
Caf1

44 1,209

Polysaccharides

Alginate
Hyaluronic acid
Cellulose
Chitosan
Dextran
Gellan gum
Heparin
Chondroitin sulfate
Carrageenan
Starch
Xanthan bum
Guar gum
Pectin

48 468

Others

Nucleic acids
Polyglycolide (PGA)

Natural polymers

Synthetic
polymers

Cell-basedStem cells
Extracellular matrix (ECM)
Growth factor-based bioink
Fibroblasts
Endothelial cells
Chondrocytes
Progeritor cells
Cell aggregates
Blood cells
Cell spheroids
Osteocytes

11 1,487

Cell-based

Carbon
Hydroxyapatite
Graphene
Bioceramics
Carboxymethylated cellulose nanocrystals (CCNC)

34 249

Others

Poly- 
saccharides

Protein-
based

Figure 8. Distribution of materials in the field of bioinks in publications (journals and patents) from 2003–2023. The size of the colored 
circles corresponds to the number of publications. Materials marked with orange dot (•) demonstrated considerable growth in 
recent years.

While bioinks are typically associated with tissue engineering, various other applications have been gaining 
momentum in recent years. We found that personalized medicine, drug testing, wound healing, drug  
delivery, disease modeling, and antibacterial applications all showed strong relative publication growth in  
the past decade.

Future challenges

Despite being a relatively new field, commercially available bioinks are already starting to appear on the market. 
Similarly, commercially available bioprinters are also on the rise.107 However, further advancements are required to 
increase cell viability, minimize cell loss, maximize cellular interactions, improve the physical, chemical, mechanical, 
and rheological properties of bioinks, and make them compatible and scalable for clinical applications.

Self-healing materials

Self-healing materials are defined by their ability to recover from mechanical, thermal, and chemical-
induced damage to restore their original properties without external assistance. 

For example, a self-healing polymer-based gel can be designed with reversible crosslinks that are 
broken when it experiences shear forces during injection, allowing it to flow like a liquid through a 
narrow needle. After the material is at rest inside the body, the crosslinks are reformed, restoring its 
gel-like rheological properties.108 The same approach can be used to repair cracks, cuts, or breaks 
in bulk material under static conditions. When two disconnected faces of a self-healing material are 
placed into contact, reversible bonds can be reformed, which, combined with interdiffusion, results 
in the joining of the two faces. In biomedical applications, this can make wound dressings, implanted 
devices, and scaffolds109 more resilient, robust, and reliable.110,111

Self-healing has been extensively studied in polymers, polymer composites, ceramics, concrete 
materials, and metals. Of these, self-healing polymers are the most widely used in biomedical 
applications, primarily because of the ease of chemical functionalization and modification of polymeric 
systems, the relatively low temperature required to induce mobility over the short-length scales required 
for self-healing, and the biocompatibility of many polymers.112
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Figure 9. Number of journal and patent publications per year in the field of self-healing biomaterials over the period of 2003–2023. 
*Partial year data for 2023.

Publication trends 

We found a steady growth in journal publications in the past 20 years, and the number of patent publications 
also showed similar growth, with some deceleration from 2020–2022. The increase in the journal-to-patent ratio 
in 2021 and 2022 suggests that research into self-healing materials is focused on early-stage research rather than 
commercial development (Figure 9).

Key materials and applications 

A variety of reversible chemical interactions can be used to impart self-healing properties to polymers. These include 
hydrogen bonding,113,114 as well as other non-covalent115-118 and dynamic covalent interactions.122-124 It is also common  
to use multiple self-healing chemical functionalities in the same material to cover many mechanical properties and 
self-healing time scales.125–127 

We found that the most frequently used self-healing approaches involve hydrogen bonding (with a marked increase in 
publications, most notably from 2019), Schiff base formation, and metal coordination bonding. Publications relating to 
these mechanisms are shown in Figure 10.

Polymers make up the largest group of substances used in self-healing biomaterials research and development 
(Figure 11).

Figure 10. Number of journal and patent publications referencing self-healing mechanisms from 2013–2022.
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Figure 11. Distribution of substances used in self-healing biomaterials in publications (journals and patents) from 2003–2023. 
The size of the colored circles corresponds to the number of publications. Materials marked with an orange dot (•) demonstrated 
considerable growth in recent years.

The materials that have shown the most relative 
growth in journal and patent publications in the 
last five years are diisocyanates (which are used to 
produce polyurethanes), followed by alcohols, the 
natural polymers chitosan and sodium alginate, 
and graphene.  

The most common uses for self-healing materials 
are wound healing/dressings (representing 
27.6% of documents), drug delivery (25.7%), 
sensors (17.7%), pharmaceutical hydrogels (9.8%), 
prosthetics/implants (8.3%), tissue engineering 
(6.7%), and 3D printing (4.1%). 

Future challenges

Self-healing materials have shown significant 
potential in many biomedical applications. However, 
further development is needed for these materials 
to reach their full potential. This includes efforts 
to develop multifunctional devices that combine 
self-healing with other functions such as sensing.128 
In this area, more extensive use of computational 
tools to predict the properties of multifunctional 
composites should reduce the experimental costs of 
developing self-healing materials.
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Figure 12. Distribution of substances used in self-healing biomaterials in publications (journals and patents) from 2003–2023. 
The size of the colored circles corresponds to the number of publications. Materials marked with an orange dot (•) demonstrated 
considerable growth in recent years.

Programmable materials

Programmable materials can change their morphology, physical properties, and/or chemical 
functionalities in a pre-determined sequence in response to an external stimulus or a change in the 
surrounding environment.129 This is useful in applications such as drug delivery, where they can enable 
additional, time-dependent methods of control.130 Programmable materials are also used in implants, 
sensors, and other areas of biomedicine.

The substances used in programmable biomedical materials include natural and synthetic polymers,131 
lipids, metal alloys (such as the nickel-titanium alloy nitinol), metallic nanoparticles, DNA-based materials, 
and others. The programmability of these materials originates from their ability to respond to small 
changes in their environment, for example, pH,132,133 temperature,134 light,135,136 electrical137 and magnetic 
fields,138,139 and a specific chemical or biological signal.140 DNA-based materials represent a special class 
of programmable biomaterials.148 One reason for this is that DNA offers precise structural tunability 
through base pairings. Directed self-assembly of single-stranded DNA can lead to diverse 2D and 3D 
structures, the formation and dynamics of which can be controlled at the molecular level. DNA can also be 
engineered to respond to specific cues or chemical environments or through using CRISPR technology.

Publication trends 

Journal publications referencing programmable materials increased significantly from 2003 to 2023, 
though patent activity has grown more slowly, particularly since 2015.
 
Key materials and applications 

Figure 12 shows the most frequently referenced substances in publications on programmable 
biomaterials. Not all these materials are intrinsically programmable. Generally, the non-programmable 
materials found in these publications serve other complementary purposes in combination with a 
programmable material.
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Figure 14. Heat map showing co-occurrence between the most commonly used substances in programmable materials with their most 
common applications, based on CAS Content Collection data from 2003–2023.

Future challenges

To enable more widespread use of programmable 
materials in biomedical applications, a few challenges 
must be overcome, including scale-up and cost 
optimization,130 the ability to combine multiple 
independent functions in a single material while 
reducing interference between them,146,147 and coupling  

 
 
the direction of the stimulus to the direction of the 
response.147 In addition, there are concerns regarding 
the use of programmable materials in the human body, 
and therefore, extensive in vivo testing is required 
before use in clinical settings.130 In particular, long-term 
safety is a concern that must be addressed.120,148

We found drug delivery to be the most common biomedical application of programmable materials, followed 
by implants and sensors (Figure 14). DNA has been separated from other materials as it is not classified as a 
single chemical substance. Although the journal and patent publication frequency for DNA has not increased 
as much as other materials, publications in the specific areas of sensors/diagnosis, drug delivery, and 
antitumor agents have rapidly increased since around 2010.

Figure 13. Normalized frequency of representative materials in journal and patent publications from 2013–2022.
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Emerging materials that have increased in use in the last five years include lignin, likely due to its natural 
abundance, biodegradability, and ability to confer a wide range of stimulus responses through chemical 
modification,141–144 as well as the versatile metal-organic frameworks (MOFs).145 This can be seen from the increase 
in publications from 2013 to 2022 (Figure 13).
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The use of biomaterials to target and deliver antibiotics 
has accounted for nearly 12,000 publications in the 
last two decades. Biomaterials such as antimicrobial 
peptides, enzymes, and biopolymers are being used 
effectively in this field.150 Other major applications 

involve the use of antibacterial biomaterials in the 
design and fabrication of medical apparatuses, devices, 
and implants to reduce the risk of infections (Figure 16).

Figure 16. (A) Distribution of applications in the antibacterial biomaterials field (B) and growth in publications related to these 
applications over 2003–2023 based on data from the CAS Content Collection.

Future challenges

The biggest challenge remains antimicrobial resistance,159 
which is developing faster in bacterial species than novel 
antibiotics are being created.160,161 Other challenges 
include individual host differences leading to differential 
results,162 more challenging Gram-negative bacteria,163,164 
and reduced incentive to invest due to limited market 
size, short treatment duration, and reduced price of 
antibiotic agents.165  

Various emerging approaches, such as the use of 
antimicrobial peptides, enzymes, bacteriophages, and  
CRISPR-Cas technology, are being explored to enhance 
the efficacy of antibiotics and counter the rapid 
development of antimicrobial resistance. However, 
continued advancements are needed to translate more 
antibacterial materials into various clinical applications.

Antibacterial materials

Various classes of antibacterial drugs have been developed since the discovery of Penicillin G in 
the 1940s. Antibacterial resistance has become an urgent problem, designated by the World Health 
Organization (WHO) as one of the top 10 global health threats.149

Traditional small molecule-based antibiotics continue to be developed to counter increasing drug 
resistance. However, development has been slow, and novel classes remain elusive. The continued 
necessity for newer antibiotics and the lack of novel small-molecule antibiotic classes have led researchers 
to explore other avenues. In addition to traditional antibacterials, biomaterials containing polymers, 
metals, nano-based materials, antimicrobial peptides (AMPs), bacteriophages, and antimicrobial enzymes 
are being explored as alternatives to traditional antibacterials.150–154

Publication trends 

The interest in this field is exemplified by the increase in journal publications on antibacterial biomaterials 
over the last two decades. Growth in patent publications appears to be more modest, indicating a gap 
between the research and commercialization of antibacterial biomaterials.

Staphylococcus and Escherichia species accounted for half of all publications focused on bacterial 
species. Strong interest was also expressed for species with drug-resistant strains identified and 
classified as threats by the WHO and Centers for Disease Control and Prevention (CDC).

Key materials and applications 

Polymers, organic molecules, and metals form the most prominent groups of materials occurring in 
antibacterial research, as well as carbon and protein-based and other materials.

Relative publication growth of a selection of emerging materials in the last 20 years is shown below in  
Figure 15A, as well as that for the most prolific classes of antibiotics in Figure 15B. Established 
classes such as tetracyclines, macrolides, and others have reportedly been used in conjunction with 
biomaterials, often to aid in their delivery and to boost their antibacterial effectiveness in applications 
such as tissue engineering and wound healing.155–158

Figure 15. Growth in publications for (A) emerging materials and (B) major classes of antibiotic drugs in the antibacterial biomaterials 
field from the CAS Content Collection for 2003–2022. Data includes both journal and patent publications.
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Figure 17. Distribution of substances used in sustainable biomaterials publications (journals and patents) from 2003–2023. The size of 
the colored circles corresponds to the number of publications. Materials marked with an orange dot (•) demonstrated considerable 
growth in recent years.

Sustainable materials for biomedical applications

This final section will focus on the increasing use of sustainable materials in the context of how they are 
being developed for biomedical applications. Here, sustainability involves the use of materials that are 
biodegradable or compostable, are made using bio-based, naturally abundant, and/or renewable raw 
material sources, or are otherwise more environmentally benign compared to the incumbent materials. 
Examples of biomedical applications where sustainable materials can be used include personal protective 
equipment (PPE), medical packaging, textiles, and other single-use, disposable lab or clinic supplies in health 
and life science settings.

In general, the desired properties of these materials include biocompatibility, non-toxicity, mechanical 
and thermal stability, processability, as well as other application-specific functionality.166,167 A major theme 
in sustainable biomaterials is adapting, modifying, or combining intrinsically sustainable materials (such as 
biodegradable polymers and naturally derived materials) with other substances to give them these properties.

Publication trends 

Compared with other areas in this report, the number of journal and patent publications is low but has 
been growing quickly since 2015. Journal publication frequency has shown a steady increase since 2003, 
with China showing greater academic research activity than other countries. Patent publication activity 
has also generally increased since 2003, but less quickly, though a rise was observed from 2019 to 2021. 
 
Key materials and applications 

The substances that appear most frequently in sustainable materials-related publications can be 
grouped into polymers (natural and synthetic), inorganic and organic small molecules, salts, elements 
(metals and nonmetals), alloys, minerals, and coordination compounds (Figure 17). Natural polymers, 
primarily cellulose, starch, and chitosan, appear prominently in the data set, likely due to desirable 
properties like abundance, high biodegradability, and low cost.168–173
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Conclusions

The exploration of biomaterials across the sections 
of this report demonstrates the significant 
advancements that are being made in this 
continually evolving field. These materials hold 
the potential to refine and revolutionize areas 
of healthcare. Notably, a representative list of 
substances that appear in this report includes 
naturally derived polymers, such as silk, chitosan, 
and DNA, chemically modified and synthetic 
polymers, including PEDOT: PSS, metals, alloys, 
and nanoscale materials such as carbon nanotubes.

Notable applications include drug delivery, wound 
healing, tissue engineering, implantable devices, 
and sensors, among others.

Though all topics were chosen based on their 
high publication growth, the fields of bioinks and 
self-healing materials have both seen around a 
tenfold increase in publication frequency in the last 
decade. In areas where patent activity is relatively 
flat, including programmable, protein-based, and, 
to a lesser extent, lipid-based materials, there may 
be fundamental material challenges preventing 
widespread commercialization that still need to 
be solved through scientific research. Indeed, in 
all areas, challenges persist. Due to their complex 
applications, there is a need for materials that 
combine highly controlled and specific functions 

with durability, resilience, and predictable 
functioning in the body. Overcoming these 
challenges will involve extensive in vivo and clinical 
testing, which is made more complex by using 
materials not traditionally found in biomedical 
applications and materials whose structure and 
properties are affected by conditions used in their 
synthesis. For some of the materials discussed 
here, economically viable, high-quality, high-yield 
manufacturing processes do not yet exist.

As shown by the data presented in this report, 
researchers are tackling these challenges through 
extensive research into both novel materials and 
materials repurposed for biomedical applications. 
A less explored area, but one with immense 
potential, is the use of artificial intelligence (AI), 
computational modeling, and other computing 
tools to aid in the development of biomaterials.197 

The combination of diverse material types, coupled 
with engineered stimuli-response behavior and 
AI tools, represents multifaceted approaches to 
address current challenges, paving the way for 
reshaping healthcare practices through the use of 
new materials.

From this data set, the prevalent applications of sustainable biomaterials can be broken down into three  
major areas:

– Disposable medical clinic and laboratory supplies, such as face masks, gloves, surgical gowns, bandages,  
and labware
• Materials used in face masks include poly(lactic acid) (PLA),174,175 poly(butylene succinate),176 cellulose,177 and 

chitosan.178 For mask filter applications, electrospinning is a prominent technique for forming nanoscale 
fibers from these materials.179–181

• The performance of these materials can be further enhanced by embedding antimicrobials,182 or through the 
incorporation of polar functionality in the filter, for example, by adding chitosan.175

– Packaging used in medical settings
• Sustainable materials such as algae-derived starch, PLA, and lignin have been used in this area.171,183,184

– Materials used for various medical purposes, manufactured using alternative or novel methods that are 
environmentally benign compared to traditional methods
• Examples include gold,185 silver, platinum,186 and ZnO187–189 nanoparticles, mxenes,190 and polyesters (through 

lipase catalysts).191

Outlook and challenges

Overall, packaging accounts for nearly 40% of all plastics produced.192 For these reasons, research attention has 
been directed towards developing sustainable packaging for biomedical applications.193 
 
Challenges to the wider adoption of sustainable biomaterials in biomedical applications include their sensitivity 
towards common sterilization methods,194 high costs of synthesis and fabrication compared to incumbent non-
sustainable materials,179,195 faster degradation in performance, hydrophilicity, and difficulty with processing.179,196 
Addressing these issues is an active area of research.
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