

CAS STNEXT® COFFEE LECTURE

EXPLORE ENGINEERING CONTENT

Sarah W. Stokes, FIZ Karlsruhe

© 2024 American Chemical Society. All rights reserved.

- Engineering content on CAS STNext
- Database clusters
- INDEX search
- Use cases

Databases in this presentation:

- **PRODUCER:** Institution of Engineering and Technnology (IET)
- **CONTENT:** All areas of science and technology. Bibliographic information, abstracts, and indexing
- TIME COVERAGE: 1898-present
- FILE SIZE: >24.5 million records
- **FEATURES:** CT (Controlled Terms, incl. thesaurus), IPC classification codes, 2.9M citations available

COMPENDEX

- PRODUCER: Elsevier
- **CONTENT:** All areas of science and technology. Bibliographic information, abstracts, and indexing
- TIME COVERAGE: 1970-present
- FILE SIZE: >20.5 million records
- **FEATURES:** CT (Controlled Terms, incl. thesaurus), CC (Classification Code), STN numeric property search

🏡 TEMA

- **PRODUCER:** WTI Frankfurt
- **CONTENT:** Engineering and technology. Bibliographic information, indexing (no thesaurus), and abstracts.
- TIME COVERAGE: 1968-present
- FILE SIZE: >6.8 million records
- **FEATURES:** Records in German and/or English, Controlled terms in English (CT) and German (CTDE), STN numeric property search

- PRODUCER: ProQuest LLC
- **CONTENT:** All areas of science and technology. Bibliographic information, abstracts, and indexing
- TIME COVERAGE: 1962-present
- FILE SIZE: >33.5 million records
- **FEATURES:** Uncontrolled terms (UT) are searched with CT and BI, STN numeric property search

- Engineering content on CAS STNext
- Database Clusters
- INDEX search
- Use cases

Database-groups: CLUSTER

- CLUSTER = predefined group of files with analogous or complementary subject coverage
- Opening a cluster = opening of all the included files
- Define your custom CLUSTER by SET CLUSTER
- Use INDEX (or FILE) command to open a cluster

Enters all databases of a CLUSTER

Enters STNindex of CLUSTER (or specified files)

The Engineering & Material Science clusters

STN Database Summary Sheets are the authoritative source of database specific search information

- Contains content of database and subject coverage
- Update frequency
- Value-added information
- How to search and display various fields
- Database producer contact information

Link in STNext database tab:

WWW.STN-INTERNATIONAL.COM

https://stn-international.com/en/customersupport/database-summary-sheets

STN Databases A to Z, concise description with all fields, all formats, many				
examples.	E			
	F			
1MOBILITY Global Mobility Bibliographic database	G			
2MOBILITY Global Mobility Standards database	Н			

INSPEC Database Summary Sheet content

INSPEC		THE CHOICE OF PATENT EXPERTS **			
Subject Coverage	 Atomic and molecular physics Circuit theory and circuits Classical areas of phenomene Communications Components_electronic device 	ology es and materials			
Coverage	1898-present				
Updates	Weekly				
Database Producer	The Institution of Engineering a Michael Faraday House, Six Hi Stevenage, Herts SG1 2AY, Ur	nd Technology (IET) Is Way ited Kingdom			
Sources	 Journals Reports Conferences 	 Books Dissertations Patents (until 1976) 			

Search fields

Search and Display Field Codes

Fields that allow left truncation are indicated by an asterisk (*).

General Search Fields

Search Field Name	Search Code	Search Examples	Display Codes
Basic Index* (contains single words from abstract (AB), controlled term (CT), supplementary term (ST), controlled term original (CTO), and title (TI) fields)	None or /BI	S MICROELECTRON? S QUANTUM HALL S LIQUID(A)CRYST? S AL203-NA20 S ?LASER?	0AB, CT, CTO, ST, TI
Abstract* Accession Number	/AB /AN	S NEUTRON ?RADIATION?/AB S 1990:3615482/AN	AB AN
Application Year (1)	/AD /AY	S AD = AFR 1909 S AY = 1970	AI
Astronomical Object	/AO	S WESTERBORK-53 80/AO S "1130+34"/AO	AO
Author (editor, patent inventor)	/AU	S SMITH S/AU S SMITH, S/AU	AU
Availability (2)	/AV	S NASA CENTER/AV	AV
Chemical Indexing (5,6)	/CHI	S BA DOP/CHI	CHI

9

Property search field

Property Fields 1,2)

Field Code	Property		Unit
/AGE	Age	yr	(Year)
/ALT	Altitude	M	(Metre)
/BAW	Bandwidth	Hz	(Hertz)
/BIR	Bit Rate	bit/s	(Bit per Second)
/BYR	Byte Rate	Bvte/s	(Byte per Second)
/CAP	Capacitance	F	(Farad)
/COE	Computer Execution Rate	IPS	(Instruct, per Second)
/CON	Conductance	S	(Siemens)
/COS	Computer Speed	FLOPS	(Eloating Point Operations per Second)
/CUR	Curren		(Amp)
/DEP	Denth	m	(Metre)
	Distance	m	(Metro)
	Electric Conductivity	S/m	(Neue) (Siemene per Metre)
	Electron Volt Energy	5/11	(Siemens per Metre)
	Electron volt Energy	ev	(Electron volt)
/EFF	Efficiency	percent	
/ENE	Energy	J	(Joule)
/EREST (or /REE)	Electrical Resistivity	Ohm	(Ohm Metre)
/FRE	Frequency	Hz	(Hertz)
/GAD	Galactic Distance	Pc	(Parsec)
/GAI	Gain	dB	(Decibel)

Physical Properties (/PHP) Thesaurus

Code	Content	Examples
ALL	All Associated Terms	E CURRENT+ALL/PHP
NOTE	Notes associated with the Terms (SELF, INSPEC, CGS, ENG, FPS, MKS, SI, STN, OTHERS, DEF, DA)	E ALTITUDE+NOTE/PHP
PFT	All Preferred, Forbidden Terms (SELF, UTP, USE, UF)	E APPARENT POWER+PFT/PHP
UF	Used For (Preferred and Forbidden Terms)	E SIZE+UF/PHP
UNITE	Unit (SELF, FQS, INSPEC, CGS, ENG, FPS, MKS, SI, STN, OTHERS)	E STORAGE CAPACITY+UNIT/PHP
USE	Use (Forbidden and Preferred Terms)	E RADIUS+USE/PHP

PHP Thesaurus Field Descriptors

Code	Content
SELF FQS INSPEC CGS	Self Term, Descriptor Field Qualifier Search Unit given by INSPEC CGS Unit Symbol
ENG	Engineering Unit Symbol

Display fields and formats

DISPLAY and PRINT Formats

Any combination of formats may be used to display or print answers. Multiple codes must be separated by spaces or commas, e.g., D L1 1-5 TI AU. The fields are displayed or printed in the order requested.

Hit-term highlighting is available for all fields. Highlighting must be ON during SEARCH to use the HIT, KWIC, and OCC formats.

Format	Content	Examples
AB	Abstract	D TI AB
AI	Application Information	
AN	Accession Number	D 1-5 AN
AO	Astronomical Object	D AO
AU	Author	D AU TI
CC	Classification Code	D CC
CCO	Classification Code, Original	D CCO
CHI	Chemical Indexing	D CHI
CS	Corporate Source (format includes AU)	D CS
СТ	Controlled Term	D CT
СТО	Controlled Term, Original	D CTO
CY	Country	D CY
DN	Document Number	D AN DN
DT	Document Type (incl. Treatment Code)	D DT

- Engineering content on CAS STNext
- Database Clusters
- INDEX search
- Use cases

Testing search queries: INDEX command

- INDEX opens any number of files (≥ 2) or clusters
- EXPAND and SEARCH commands are available
- Use the INDEX environment to...
 - Identify files which have results in response to your query
 - See how many hits you receive
 - Rank files according to their hits
- ! **INDEX does not create answer sets** (only queries display of documents is not possible)
 - Subsequently open relevant files with the FILE command
 - **SEARCH** in open files to create answer sets

Searching for Engineering Content: workflow

- 1. Enter STNindex with the INDEX command (e.g. INDEX ENGINEERING)
- 2. Run your search in STNindex (alternatively, use the EXPAND command)
- 3. Enter the database(s) that contain answers based on an STNindex scan.
- 4. Search the query in the database(s).
- 5. Remove duplicates.
- 6. Review results.

- Engineering content on CAS STNext
- Database Clusters
- INDEX search
- Use cases

Use Case: Tungsten materials and photonic crystals

- Use INDEX search to find candidate engineering databases with relevant hits
- Enter files with most relevant results and execute search query to create answer sets
- Leverage file-specific data (controlled terminology, value-added indexing) and features to enhance retrieval
- Remove duplicates and DISPLAY results

Enter the ENGINEERING Cluster

=> INDEX ENGINEERING COST IN U.S. DOLLARS SINCE FILE TOTAL ENTRY SESSION FULL ESTIMATED COST 0.35 0.35 INDEX '1MOBILITY, 2MOBILITY, APOLLIT, AUPATFULL, BIOTECHNO, CANPATFULL, CAPLUS, CEABA, CIN, CNFULL, COMPENDEX, DEFULL, EPFULL, FRFULL, GBFULL, GEOREF, IFIALL, INFULL, INSPEC, JPFULL, KRFULL, NTIS, PCTFULL, PIRA, PQSCITECH, RAPRA, RDISCLOSURE, RUFULL, ...' ENTERED AT 11:13:58 ON 02 MAY 2024

40 FILES IN THE FILE LIST IN STNINDEX

18

Enter SET DETAIL ON to see search term postings or to view search error messages that display as 0* with SET DETAIL OFF.

INDEX tests search query in all cluster files

=> S TUNGSTEN (5A) (MONOLAYER? OR MONO LAYER? OR NANOFILM? OR NANO FILM?)

- 19 FILE AUPATFULL
- 20 FILE CANPATFULL
- 2977 FILE CAPLUS
- 21 FILE CEABA
- 272 FILE CNFULL
- 588 FILE COMPENDEX
- 146 FILE WPINDEX
- 146 FILE WPIX

19

All files with hits are shown in alphabetical order by file name

The search query is saved for later use in full database searches

30 FILES HAVE ONE OR MORE ANSWERS, 40 FILES SEARCHED IN STNINDEX

L1 QUE TUNGSTEN (5A) (MONOLAYER? OR MONO LAYER? OR NANOFILM? OR NANO FILM?)

D RANK sorts by number of hits

=> D RANK

F1	2781	CAPLUS
F2	711	INSPEC
F3	606	SCISEARCH
F4	588	COMPENDEX
F5	135	PQSCITECH
F6	120	TEMA
F7	21	CEABA
F8	13	NTIS
F9	6	RAPRA
F10	4	PIRA

Sorting by number of records per database helps determine highly relevant files to investigate more closely

Add further refinements if needed:

=> S L1 NOT	PATENT/DT		
2781	FILE CAPLUS		
21	FILE CEABA		
588	FILE COMPENDEX		
711	FILE INSPEC	Adding additi	onal querv
13	FILE NTIS	requirements nar	rows results to
4	FILE PIRA	more manageabl	e answer sets
135	FILE PQSCITECH		
6	FILE RAPRA		
606	FILE SCISEARCH		
120	FILE TEMA		
10 FILES H	AVE ONE OR MORE ANSWERS,	40 FILES SEARCHED IN STNINDEX	

L2 QUE L1 NOT PATENT/DT

Use FILE command to enter full databases and execute saved search query

=> FILE F2-F6; S L2

- L3 711 FILE INSPEC
- L4 606 FILE SCISEARCH
- L5 588 FILE COMPENDEX
- L6 135 FILE PQSCITECH
- L7 120 FILE TEMA

TOTAL FOR ALL FILES

L8 2160 L2

Preview results from each file

	L18 ANSWER 20 OF 25 TEMA COPYRIGHT 2024 WTI-FRANKFURT-DIGITAL G	MBH on STN.
L18	ANSWER 23 OF 25 PQSCITECH COPYRIGHT 2024 ProQuest LCC on STN.	
AN	2022:47955 PQSCITECH Full-text	
DN	2627807713	
TI	Optical Mode Tuning of <mark>Monolayer</mark> Tungsten Diselenide (WSe2) by	de (WS2)
	Integrating with One-Dimensional Photonic Crystal through	c crystal
	Exciton- <mark>Photon</mark> Coupling	
AU	Konthoujam James Singh; Hao-Hsuan Ciou; Ya-Hui, Chang ; Yen-Shou, Lin ;	1; Sn1, Le1;
	Hsiang-Ting, Lin ; Po-Cheng, Tsai ; Shih-Yen, Lin ; Min-Hsiung Shih;	sta Kay
	Min-Hsiung Shih; Hao-Chung, Kuo ; Hao-Chung, Kuo	nu n
SO	Nanomaterials, Vol. 12, No. 3, 20220101 E-ISSN: 2079-4991	Seiten 5
	DOI: https://doi.org/10.3390/nano12030425	our con, o
	Published by: MDPI AG, Basel	
DT	Journal; Article	
LA	English	
ED	Entered STN: 22 Feb 2022	
	Last updated on STN: 27 Dec 2023	
	6	

(

FIZ Karlsruhe

Leibniz Institute for Information Infrastructure

A division of the

American Chemical Society

File-specific indexing can enhance search strategies

```
=> S L3 AND (?PHOTON? (2A) ?CRYSTAL?)
        515085 ?PHOTON?
       2060488 ?CRYSTAL?
         51968 ?PHOTON? (2A) ?CRYSTAL?
            11 L3 AND (?PHOTON? (2A) ?CRYSTAL?)
L9
=> ANA 1- CT
           ANALYZE L9 1- CT : 42 TERMS
L10
```


File-specific indexing can enhance search strategies

=> S	L3 AND	(?рнот	ION? (2A) ?	CRYSTAL?)		
	TERM #	# OCC	# DOC	% DOC	СТ		
	1	11	11	100.00	TUNGSTEN COMPOUNDS		
	2	10	10	90.91	MONOLAYERS	INSPEC controlled termine	logy oddo
	3	10	10	90.91	PHOTONIC CRYSTALS	INSPEC controlled termino	
1.0	4	5	5	45.45	EXCITONS	specificity to search re	Suits
L9	5	4	4	36.36	POLARITONS		
	6	3	3	27.27	LASER CAVITY RESONATORS		
=> AN	7	3	3	27.27	LIGHT POLARISATION		
	8	3	3	27.27	SEMICONDUCTOR LASERS		
	9	3	3	27.27	SILICON COMPOUNDS		
L10	10	2	2	18.18	BOUND STATES		
	11	2	2	18.18	INTEGRATED OPTICS		
	12	2	2	18.18	LASER MODES		
	13	2	2	18.18	PHOTOLUMINESCENCE		
	14	2	2	18.18	Q-FACTOR		I
	15	2	2	18.18	RADIATIVE LIFETIMES		

25 © 2024 American Chemical Society. All rights reserved.

Explore /CT thesaurus in COMPENDEX

=> E TUNGSTEN COMPOUNDS/CT

E#	FREQUENCY	AT TLANG	TERM
E1	1		TUNGSTEN COBALT ALLOYS:WEAR RESISTING/CT
E2	1		TUNGSTEN COBALT CARBON ALLOYS/CT
E3	33683	24 EN>	TUNGSTEN COMPOUNDS/CT
E4	1		TUNGSTEN COMPOUNDS:ACTIVITY/CT
E5	1		TUNGSTEN COMPOUNDS: ADHESION/CT
E6	3		TUNGSTEN COMPOUNDS:ADSORPTION/CT
E7	1		TUNGSTEN COMPOUNDS:ALKYLATION/CT
E8	1		TUNGSTEN COMPOUNDS:ALLOYING/CT
E9	8		TUNGSTEN COMPOUNDS: AMORPHOUS/CT
E10	2		TUNGSTEN COMPOUNDS:ANALYSIS/CT
E11	1		TUNGSTEN COMPOUNDS:ANISOTROPY/CT
E12	23		TUNGSTEN COMPOUNDS: APPLICATIONS/CT

26 © 2024 American Chemical Society. All rights reserved.

Use Relationship Codes to expand into hierarchy

=> E E3+ALL

E1	50257	BT3 EN Materials/CT
E2	1	DE Werkstoffe/CT
E3	22736	BT2 EN Refractory materials/CT
E4	0	DE feuerfeste Stoffe/CT
E5	10782	BT4 EN Chemical compounds/CT
E6	0	DE chemische Verbindungen/CT
E7	24819	BT3 EN Metallic compounds/CT
E8	0	DE Metallverbindungen/CT
E9	13524	BT2 EN Transition metal compounds/CT
E10	0	DE Uebergangsmetallverbindungen/CT
E11	3250	BT1 EN Refractory metal compounds/CT
E12	0	DE hochschmelzende Metallverbindungen/CT
E13	33683	> EN Tungsten compounds/CT
E14	0	DE Wolframverbindungen/CT

HELP RCODES gives more information about available relationship codes in a specific database.

Classification Codes in COMPENDEX

=> E 804.1/CC

E1 804./CC 1 E2 804. 804./CC 1 E3 2483905 --> 804.1/CC F4 2481790 804.1 ORGANIC COMPOUNDS/CC E5 2045434 804.2/CC E6 2043640 804.2 INORGANIC COMPOUNDS/CC E7 27531 805/CC E8 27505 805 CHEMICAL ENGINEERING, GENERAL/CC E9 18496 805.1/CC E10 18465 805.1 CHEMICAL ENGINEERING/CC E11 42147 805.1.1/CC E12 41909 805.1.1 BIOCHEMICAL ENGINEERING/CC

28 © 2024 American Chemical Society. All rights reserved.

Remove duplicates

=> SET DUPORDER FILE

SET COMMAND COMPLETED

=> DUP REM L5 L3 L7 L6

SET DUPORDER FILE sets the order of preference for retaining documents based on the order the databases are entered in the command line

PROCESSING COMPLETED FOR L5

PROCESSING COMPLETED FOR L3

PROCESSING COMPLETED FOR L7

PROCESSING COMPLETED FOR L6

L12 1143 DUP REM L5 L3 L7 L6 (411 DUPLICATES REMOVED) ANSWERS '1-584' FROM FILE COMPENDEX ANSWERS '585-1046' FROM FILE INSPEC ANSWERS '1047-1080' FROM FILE TEMA ANSWERS '1081-1143' FROM FILE POSCITECH

411 Duplicates are removed, and the number of results from each file is shown.

KWIC shows search terms and surrounding info for context

=> D 1 11 20 23 KWIC

L18 ANSWER 1 OF 25 COMPENDEX COPYRIGHT 2024 EEI on STN. DUPLICATE 1

AB . . . BIC state. We show and experimentally validate a strategy to dramatically improve the state-of-the-art on both points, by embedding a tungsten disulfide (WS2) monolayer deep within a Bloch-surface-wave stack, where the photonic mode is moulded by a 1D photonic crystal with a compound periodicity. In particular, we introduce a deterministic placement principle to the design of the PhC, allowing to. . .

L18 ANSWER 11 OF 25 INSPEC COPYRIGHT 2024 IET on STN.

AB . . . challenging at room temperature. Here we show strong light-matter interaction enhancement and large exciton-polariton nonlinearities at room temperature by coupling monolayer tungsten disulfide excitons to a topologically protected bound state in the continuum moulded by a one-dimensional photonic crystal, and optimizing for the electric-field strength at the monolayer position

Full bibliographic records are available

- L18 ANSWER 20 OF 25 TEMA COPYRIGHT 2024 WTI-FRANKFURT-DIGITAL GMBH on STN. DUPLICATE 3
- AN 20200278459 TEMA Full-text
- DN 20200905028
- TI Enhanced directional emission of **monolayer tungsten** disulfide (WS2) with robust linear polarization via one-dimensional **photonic crystal** (PhC) slab
- AU Li, Han; Wang, Jiajun; Ma, Yating; Chu, Jiao; Cheng, Xiangai; Shi, Lei; Jiang, Tian
- CS National University of Defense Technology, Changsha, CN; State Key Laboratory of Surface Physics, Fudan University, Shanghai, CN
- SO Nanophotonics (2020), Volume 9, Number 14, pp. 4337-4345, 9 Seiten, 5 Bilder, 46 Quellen ISSN: 2192-8606 E-ISSN: 2192-8614
 - DOI: https://dx.doi.org/10.1515/nanoph-2020-0294
- DT Journal
- LA English

Full bibliographic records are available

- L18 ANSWER 23 OF 25 PQSCITECH COPYRIGHT 2024 ProQuest LCC on STN.
- AN 2022:47955 PQSCITECH Full-text
- DN 2627807713
- TI Optical Mode Tuning of **Monolayer Tungsten** Diselenide (WSe2) by Integrating with One-Dimensional **Photonic Crystal** through Exciton-**Photon** Coupling
- AU Konthoujam James Singh; Hao-Hsuan Ciou; Ya-Hui, Chang ; Yen-Shou, Lin ; Hsiang-Ting, Lin ; Po-Cheng, Tsai ; Shih-Yen, Lin ; Min-Hsiung Shih; Min-Hsiung Shih; Hao-Chung, Kuo ; Hao-Chung, Kuo
- SO Nanomaterials, Vol. 12, No. 3, 20220101 E-ISSN: 2079-4991 DOI: https://doi.org/10.3390/nano12030425

Published by: MDPI AG, Basel

- DT Journal; Article
- LA English
- ED Entered STN: 22 Feb 2022 Last updated on STN: 27 Dec 2023

Links to full-text articles available (depends on your institution's access policies)

Both free and fee-based retrieval options are available

Deterministic placement and effective-mass pinning of topological polariton bound states in the continuum

By: Maggiolini E. (1,2,3)

Journal of Physics: Conference Series; Journal of Physics: Conference Series (2024), Volume 2725, Number 1, arn: 012005, 9 refs. ISSN: 1742-6588 E-ISSN: 1742-6596 DOI: https://doi.org/10.1088/1742-6596/2725/1/012005 Published by: Institute of Physics Conference: 2023 Conference on Research and Innovations in Science and Technology of Material, CRISTMAS 2023, Paris, France, 13 Dec 2023 - 15 Dec 2023 URL (Document): http://iopscience.iop.org/journal/1742-6596

Web-based document resources

https://doi.org/10.1088/1742-6596/2725/1/012005

Fee-based document services

Order Document

- CAS STNext contains a wealth of engineering-related data, both patents and non-patent literature
- STN Database Clusters are groups of files with a common topic or structure/feature that can be searched simultaneously for efficient multifile retrieval
- The ENGINEERING and MATERIALS clusters are highly relevant for engineering searches
- INDEX searching allows you to preview a group of databases to see which files have results from a search query
- CAS STNext allows you to search multiple database producers in a single platform and remove duplicate records

For more information...

CONTACT

CAS help@cas.org cas.org FIZ Karlsruhe EMEAhelp@cas.org

FIZ Karlsruhe

