Immune responses and immune memory to SARS-CoV-2 and COVID-19 vaccination: lessons for future vaccines

Shane Crotty, Ph.D.
Professor and CSO, La Jolla Institute for Immunology (LJI)
Director, LJI Center for Vaccine Innovation

La Jolla Institute
FOR IMMUNOLOGY

UCSD School of Medicine
Dept. of Medicine
COVID-19 has killed more Americans than all the wars of the 20th century combined
Do people develop immune memory to COVID-19?

Shane Crotty & Alex Sette
La Jolla Institute FOR IMMUNOLOGY

INTRODUCTION: Immunological memory is the basis for durable protective immunity after infections or vaccinations. Duration of immunological memory after severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and COVID-19 is unclear. Immunological memory can consist of memory B cells, antibodies, memory CD4+ T cells, and/or memory CD8+ T cells. Knowledge of the kinetics and interrelationships among these four types of memory in humans is limited. Understanding immune memory to SARS-CoV-2 has implications for understanding protective immunity against COVID-19 and assessing the likely future course of the COVID-19 pandemic.

RATIONALE: Assessing virus-specific immune memory over at least a 6-month period is likely necessary to ascertain the durability of immune memory to SARS-CoV-2. Given the evidence that antibodies, CD4+ T cells, and CD8+ T cells can all participate in protective immunity to SARS-CoV-2, we measured antigen-specific antibody, memory B cells, CD4+ T cells, and CD8+ T cells in the blood from subjects who recovered from COVID-19, up to 8 months after infection.

RESULTS: The study involved 254 samples from 188 subjects of 254 samples, including 64 samples from 60 to 8 months after infection. Fifty-one subjects in the study provided longitudinal blood samples, allowing for both cross-sectional and longitudinal analyses of SARS-CoV-2-specific immune memory. Antibodies against SARS-CoV-2 spike and receptor binding domain (RBD) declined moderately over 8 months, comparable to several other reports. Memory B cells against SARS-CoV-2 spike actually increased between 1 month and 8 months after infection. Memory CD8+ T cells and memory CD4+ T cells declined with an initial half-life of 3 to 5 months. This is the largest antigen-specific study to date of the four major types of immune memory for any viral infection.

Among the antibody responses, spike immunoglobulin G (IgG), RBD IgG, and neutralizing antibody titers exhibited similar kinetics. Spike IgG was still present in the large majority of subjects at 6 to 8 months after infection. Among the memory B cell responses, IgM was the dominant isoform, with a minor population of IgG memory B cells. IgM memory B cells appeared to be short-lived. CD8+ T cells and CD4+ T cell memory was measured for all SARS-CoV-2 proteins. Although ~70% of individuals possessed detectable CD8+ T cell memory at 1 month after infection, that proportion declined to ~50% by 6 to 8 months after infection. For CD4+ T cell memory, 98% of subjects had detectable SARS-CoV-2 memory at 1 month after infection, and the proportion of subjects positive for CD4+ T cells (39%) remained high at 6 to 8 months after infection. SARS-CoV-2 spike-specific memory CD4+ T cells and receptor binding domain (RBD) declined moderately over 8 months, comparable to several other reports. Memory B cells against SARS-CoV-2 spike actually increased between 1 month and 8 months after infection. Memory CD8+ T cells and memory CD4+ T cells declined with an initial half-life of 3 to 5 months. This is the largest antigen-specific study to date of the four major types of immune memory for any viral infection.

CONCLUSION: Substantial immune memory is generated after COVID-19, involving all four major types of immune memory. About 95% of subjects retained immune memory at ~6 months after infection. Circulating antibody titers were not predictive of T cell memory. Thus, simple serological tests for SARS-CoV-2 antibodies do not reflect the fidelity and durability of immune memory to SARS-CoV-2. This work expands our understanding of immune memory in humans. These results have implications for protective immunity against SARS-CoV-2 and recurrent COVID-19.

*These authors contributed equally to this work.
[Corresponding author. Email: shore@jji.org (S.C.); kato@jji.org (K.M.)]

This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cite this as: J. M. Dan et al., Science 373, eabd4653 (2021). DOI: 10.1126/science.abd4653

READ THE FULL ARTICLE AT
https://doi.org/10.1126/science.abd4653
How long does immunological memory to SARS-CoV-2 last?

- **PSV Neutralizing Titer**
 - $t_{1/2} = 125 \text{d}$

- **SARS-CoV-2-specific CD8^+ T cells (%)**
 - $t_{1/2} = 94 \text{d}$
Immune response trajectories in COVID-19

*“Innate” = innate immune response plasma signature

Sette and Crotty, Cell 2021
Layered defenses
Or the swiss cheese model of immunity

Immunological Reviews, 2022
Head-to-head comparison of immune memory to four COVID-19 vaccines

Prof. Daniela Weiskopf
Comparison of immune memory to four COVID-19 vaccines

T1 = baseline
T2 = 14 days
T3 = 35-42 days
T4 = 3 months
T5 = 6 months
Comparison of immune memory to four COVID-19 vaccines

Carolyn Rydzynski Moderbacher, PhD
Jose Mateus, PhD

Cell 2022
Comparison of immune memory to four COVID-19 vaccines

Camila Coelho, PhD
Head-to-head comparison of immune memory to four COVID-19 vaccines
Germinal centers
Lymph node fine needle aspirates (LN FNAs) allow for sampling of the lymph node longitudinally.
Germinal centers can last for > 6 months after an optimized priming immunization.

Dramatically larger and more durable germinal centers than conventional alum-based immunization.

Lee & Sutton et al. Nature 2022
Long-lasting virus-specific germinal centers

Farber and Crotty labs.
Science Immunology 2021
Germinal centers
Hybrid immunity results in potent neutralizing antibody breadth, also with breakthrough infections.
Omicron and memory B cells

SCIENCE IMMUNOLOGY | REPORT

CORONAVIRUS

SARS-CoV-2 Omicron-neutralizing memory B cells are elicited by two doses of BNT162b2 mRNA vaccine

Ryutaro Kotaki t, Yu Adachi t, Saya Moriyama t, Taishi Onodera t, Shoetsu Fukushima, Takaki Nagakura, Keisuke Tonouchi, Kazutaka Terahara, Lin Sun, Tomohiro Takeo, Ayae Nishiyama, Masaharu Shinkai, Kunihiro Oba, Fukumi Nakamura-Uchiyama, Hidefumi Shizumizu, Tadaki Suzuki, Takayuki Matsumura, Masanori Isogawa, Yoshishama Takahashi * t

Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost

https://doi.org/10.1038/s41586-022-04778-y

Received: 13 February 2022
Accepted: 26 April 2022
Published online: 21 April 2022

Open access

A

B

C

D

E

RBD-binding IgG resting B_{L_{pl}} cells

Single-cell sorting

Clonal expansion and IgG secretion

Screening Wuhan RBD-binding clones

NT activity of mAbs in the supernatants

First screening for Wuhan NT

Wuhan PV-NT

% Infection

IC_{50} (ng m^{-1})

Vax 2 Vax 3

Vaccinated

1.3 m 1 m

0.0023 0.60 0.049

290 182 111

0.0001

<0.0003 0.0004

33 3.8 7.1 12.4

0.0001

10^{-1}

10^{-2}

10^{-3}

10^{-4}

WT (R683G)

Delta-RBD (R683G)

Omicron (R683G)

Vax 2 Vax 3

IC_{50} (ng m^{-1})

Vax 2 Vax 3

Vax 2 Vax 3
Head-to-head comparison of immune memory to four COVID-19 vaccines

Prof. Daniela Weiskopf

Zhang, Mateus, Coelho, Dan, Moderbacher et al. Cell 2022
Layered defenses
Or the swiss cheese model of immunity

Immunological Reviews, 2022
Anatomy of immunity to SARS-CoV-2

It is all a race
A race between the virus and your immune system.
Memory change the race. You then have the headstart instead of the virus.
Layered defenses
Or the swiss cheese model of immunity
THE TEAM

Crotty Lab
Current
Parham Ramezani-Rad
Numana Bhat
Harry Sutton
Ester Marina Zarate
Sydney Ramirez
Carolyn Rydzynski
Moderbacher
Brian Freeman
Ivy Phung
Patrick Madden
Hannah Stacey
Sonya Haupt

Former
Prof. Camila Coelho
Prof. Zeli Zhang
Prof. Jennifer Dan
JH Lee
Alex Kato
Prof. Robert Abbott
Kim Cirelli
Colin Havenar-Daughton
Prof. Youn Soo Choi

Prof. Jinyong Choi
Prof. Michela Locci
Simon Belanger

Research Techs
Christina Kim
Amber Myers
Ben Goodwin
Nate Bloom
Paul Lopez
Eleanor Crotty
Tasha Altheide
Monolina Shil

Sette Lab
Prof. Alex Sette
Alba Grifoni
Alison Tarke
Esther Yu
Ricardo Da Silva
Antunes
Nils Methot
Jenna Memollo
Alison Tarke
April Frazier

Weiskopf Lab
Jose Mateus
James Chang

Farber Lab
Prof. Donna Farber
Maya Poon
Ksenia Rybkina

Saphire Lab
Erica Ollmann Saphire
Kathryn Hastie

Clinical Studies Core
Gina Levi
Shariza Bautista
Quinn Bui
Jasmine Cardenas

LJI Flow Cytometry Core
Denise Hinz
Cheryl Kim

LJI Bioinformatics Core
Jason Greenbaum

UCSD
Stephen Rawlings
Davey Smith

Baric Lab - UNC
Long Ping
Victor Tse
Ralph Baric

Vanderbilt University
Simon Mallal

Mt. Sinai Med
Florian Krammer
Viviana Simon

JCVI
Richard Scheuermann