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MICROPLASTICS:
TACKLING THE 
INVISIBLE ENEMY  



Plastic pollution is a serious global concern. 
Although a relatively new phenomenon, the extent 
of the environmental damage caused by plastics 
is now well documented. Plastic packaging, such 
as water bottles, single-use plastic bags, and 
disposable medical supplies are some of the more 
recognizable offenders. Removal and recycling 
of these bigger plastic pieces (macroplastics) has 
been a growing priority in recent years. Meanwhile, 
microplastics — small plastic pieces or particles 
between 1 μm and 5 mm in diameter — have been 
mostly ignored while they stealthily make their way 
into our water, food, air, and soil.1 Scientists have 

seen microplastics nearly everywhere they have 
looked, from falling rain, to arctic snow, to human 
cells.2 Their ubiquitous nature has led researchers to 
investigate the global impact of these tiny  
specks of plastic. 

In this white paper, we analyze the CAS Content 
Collection™ to provide an overview of the research 
trends in the growing field of microplastics to 
understand the general progress of the field, as 
well as the classes of materials and concepts driving 
research and innovation. 

Introduction
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Microplastics — where do they come from?

To help us understand how microplastics came to be 
found all over the globe, it’s important to consider  
where they come from. The term ‘microplastics’ was first 
coined in 2004 to describe plastic particles smaller than 
5 mm in diameter.2 Microplastics can be broadly divided 
into two categories: primary microplastics and  
secondary microplastics. 

Primary microplastics are intentionally manufactured as 
tiny plastic particles measuring 5 mm or less. These can 
include microbeads in exfoliating hand cleansers and 
facial scrubs, as well as cleaning agents with abrasive 
qualities.3,4 Primary microplastics can also take the form 
of microfibers: synthetic fibers with a diameter less 
than 10 μm (approximately 1/100th of the diameter of 
the human hair).5 These are typically found in synthetic 
textiles and are made up of polyester, nylon, or acrylic. 
They are released from textiles during manufacturing 
and laundering.6,7

Secondary microplastics are formed from the 
breakdown of larger plastic particles. This breakdown 
is usually caused by exposure to environmental factors, 
such as the sun’s radiation. Chemical, physical, and 
biologic exposure can also contribute to the formation of 
secondary microplastics.8 Examples include:

–	 Small debris produced by the abrasion of vehicle tires 
on road surfaces (natural rubber, styrene-butadiene 
rubber, polybutadiene rubber, and butyl rubber)4,9

–	 Particles released due to the deterioration of paint, 
road markings, and marine coatings10

–	 Polyester, acrylic, and polypropylene fibers from 
textile industry in the form of microfibers9



Figure 1. The extensive reach of microplastics

In air, sea, and soil: the extensive reach of microplastics

With the vast array of microplastic sources, it’s easy to see how these pollutants are so prevalent in our environment. 
Everyday activities, from washing our faces to driving our cars, can contribute to the release of microplastics (Figure 1). 
To understand the reach of microplastics, we have reviewed the key evidence from studies of the sea, soil, and  
other sources.  
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The sea

The presence of microplastics in water has been 
widely studied and well-established. In 2010, the 
oceans were estimated to contain 490,000 tons 
of plastic.11 Yet, while larger plastic debris like food 
containers and bottle caps are typically thought 
to be the main culprits, microplastics that float in 
the world’s oceans account for a greater amount of 
plastic pollution.12 In native sea water, 400 particles of 
microplastics were found per 1000 L of water, while 
the microplastic concentration in the North Pacific 
Subtropical Gyre (a collection of marine debris in the 
North Pacific Ocean) is approximately 33 per 1000 L 
of water (or 250 mg microplastics/m3).13,14

Microplastics, as with most plastic pollution, start 
out on land. They mainly come from household 
and commercial waste, entering the ocean from 
sewer discharges and wastewater treatment plants 
(WWTPs).15,16 The smallest microplastic detected in 
the oceans to date is 1.6 μm in diameter, though 
the uneven shapes of the particles found suggests 
that further fragmentation is possible.15 The majority 
of oceanic microplastics (69–85%) are secondary 
in origin, derived from the fragmentation of larger 
plastic pieces. The remaining 15–31% are estimated 
to be from primary sources, mainly derived from 
textile fibers (35%), tire wear particles (28%),  
and cosmetics (2%).17

Soil and sediments

Though microplastics have been more extensively 
studied in liquids, solids — particularly soils, 
sediments, and sewage sludge — are another source 
of microplastic contamination. Microplastics have 
been recorded in a diverse range of locations, from 
a Brazilian beach to an Indian shipbreaking yard 
and Tasmanian sediments.14 Furthermore, sewage 
sludge from North America and Europe is estimated 
to contribute 700,000 tons of microplastic waste per 
year, while agricultural films are estimated to add 
150,000 tons of plastic per year to Chinese soil.18

The air

Microplastics can be transported in the 
atmosphere,19–21 and fall to the ground with snow, 
rain, or dusty winds. They can also be transported 
to the Litosphere/Earth's crust via precipitation and 
wind. Tiny plastic particles and fibers have been 
found in remote parts of the French Pyrenees and 
in snow from the Fram Strait (which lies between 
Greenland and Svalbard); these have likely been 
transported from urban areas via the air. Preliminary 
data suggest atmospheric microplastics may 
influence cloud formation and could even contribute 
towards climate change via warming or cooling the 
atmosphere depending on their location.22

Drinking water

Worryingly, microplastics have made their way into 
the water we drink. Microplastics of around 960 
μm in size23,24 have been found in tap water at a 
concentration of around 5500 particles per 1000 L.11 
While there is often a perception that bottled water 
is cleaner, the presence of smaller microplastics 
(90% measured at less than 5 μm)23,24 indicates that 
drinking water treatment plants are not completely 
effective in eliminating microplastics.25

Food and the food chain

Microplastics can make their way into the human 
body through the food chain, and have been 
recorded in table salt, honey, tea bags, and beer.26 
Overall, 39,000–52,000 microplastic particles were 
estimated to be consumed per person annually 
with food, both from the food itself and from 
particles deposited from the air onto plates and 
silverware.27,28 In fact, one study estimated that an 
average adult is consuming 2000 microplastics per 
year through the consumption of salt alone.26 
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The impact of microplastics on human health and natural ecosystems

While the full extent of microplastics pollution has become known, the full impact of this contamination has 
yet to be revealed. However, research is accumulating regarding the detrimental effects of microplastics 
on the health of humans and animals. We are continuously inhaling and ingesting microplastics, and the 
scientific community is working hard to understand the health-related consequences. 

Animals

The effects of microplastics have been studied in 
a variety of aquatic single-cell and multicellular 
organisms. Through this research, scientists 
have observed negative effects ranging 
from inhibition of photosynthesis to reduced 
reproduction.11,13,14,29–38 

Detrimental effects have also been observed in 
mouse models, with microplastics shown to cause 
gastrointestinal disturbances from disruptions to 
the microbiome to impacts on mucus production. 
Murine studies also indicate that microplastics can 
contribute to hepatotoxicity, lead to reproduction 
disorders, and even cause neurotoxic effects.21,39

While the mechanisms for these harmful 
effects are still unclear, evidence suggests 
that microplastics may be able to transport 
toxic compounds (e.g., phthalates, unreacted 
monomers, flame retardants, persistent organic 
pollutants (POP), pharmaceutical agents, or 
metals) in a synergistic process thought to further 
accelerate health-related harm.30 Evidence 
suggests that this phenomenon contributes 
to detrimental biological processes such as 
gastrointestinal inflammation (mussels),37 
reduced feeding (lugworms),33 and altered lipid 
metabolism (European sea bass).36 

It's important to consider the cumulative effects 
of microplastic pollution in the food chain. 
Shellfish and other water-borne organisms act 
both as sinks for microplastics and present as 
a source of microplastics for the environment 
and animals that may eat them. For instance, 
mussels have been reported to contain 0–4600 
particles per kilogram of wet mass, with Chinese 
mussels containing larger counts of particles than 
European mussels.13,40

Humans

Humans are constantly inhaling and ingesting 
microplastics. However, the statistics relating to 
microplastic consumption vary. For example, one 
study estimated that each person ingests 14–714 mg 
of microplastics per day,41 and a simulation method 
estimated that as many as 100,000 microplastic 
particles could be inhaled by individuals 
annually.27,42 Microplastics are taken in by organisms 
via ingestion, inhalation, and skin exposure. Once 
taken in, the microplastics are transported into cells 
by membrane translocation or through the placenta 
or epithelial tissues, through the gaps between 
epithelial cells, and by endocytosis.43

Inhalation and ingestion are not the only ways 
microplastics can get into our bodies. The use of 
plastic-containing implants in humans and other 
mammals has been a known source of microplastic 
deposition, leading to fibrin deposition and necrosis 
in nearby joint areas, while macrophages can take 
up the polymer. In fact, particles were found in 
the aorta of a dog who had received an implant 
eighteen months earlier, indicating that sufficiently 
small microplastic particles can be transported to 
distant sites in the body.44

Microplastics and their associated chemicals and 
additives are thought to be exerting numerous 
negative effects on our health, contributing to the 
development of chronic inflammatory diseases 
and cancer.45,46 Chemical additives in microplastics 
(e.g., plasticizers and flame retardants) can cause 
harmful biologic effects such as carcinogenicity or 
endocrine disruption. The presence of ground glass 
nodules, microfibers, and microplastics has been 
observed in lung lesions, where it was discovered 
that the number of microplastics correlated 
positively with age and the detection of cancer.45 
Additionally, analyses of human feces of people 
with inflammatory bowel disease (IBD) revealed the 
presence of smaller microplastic particles (<30 μm) 
compared with the feces of individuals without IBD. 
Importantly, the number of fecal particles correlated 
positively with the severity of IBD.46
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The CAS Content Collection: monitoring publication trends in 
microplastics

The widespread damage caused by microplastics and 
their impact on the environment and human health is of 
paramount concern. Using data from the CAS Content 
Collection, the largest human-curated collection 
of published scientific knowledge, we explored the 
research trends in this field via analysis of academic and 
patent literature from 2011 to 2021. The CAS Content 
Collection covers publications in more than 50,000 
scientific journals from around the world in a wide range 
of disciplines. Our search formulaa resulted in a final 
pool of articles totaling 9,403 (7,789 academic journals 
and 1,614 patents).

Our analysis revealed that there has been a surge in 
microplastics research in the last decade. We observed a 
more than 30-fold increase in microplastic publications 
in the ten-year period from 2011 (n=81) to 2021 (n=2,811). 
In contrast, patent publications have not experienced 
such drastic growth. Although there was almost a three-
fold increase in the number of patent publications from 
2015 (n=104) to 2020 (n=283), there was a slight reduction 
in publication numbers in 2021 (Figure 2). 

Figure 2. Publication trends of academic journals and patents from 2010 to 2021

aFull search query for analysis was (((microfiber? or microplastic? or micro-plastic? or nanoplastic?) and (pollu? or sustainab? or 
contamin? or health or "synthetic polymeric fiber" or dyes or waste or "synthetic fiber" or "eco-friendly" or toxicity or environment? 
or ingestion or "fast fashion" or textile or ecosystem or vector or wastewater or soil or remed? or blood or feces or fecal or "human 
body" or inflamm? or microbi? or recycl? or aquatic or metal or inhal? or indoor or freshwater or circular or seawater or marine or 
bioaccumul?)) not (fragrance or inhibitor or sensor or cof or "covalent organic framework" or spinning or electrospinning or surgery) 
and 2010-2022/py).
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We further examined the distribution of publications by 
country (Figure 3). China is leading the way in publishing 
microplastic data, followed by the US, Germany, South 
Korea, and Italy. Between 2011 and 2021, China published 
both the highest number of journal (n=2,291) and patent 
(n=715) publications, and was found to be the originator of 
10 out of 15 patent assignees associated with publications. 
Other top-ranking organizations in terms of journal 
articles and patents include those from the US (Biomass 

Energy Enhancements LLC and North Carolina State 
University), UK (GE Healthcare UK Limited), and Germany 
(Carl Freudenberg KG). 

Generally, we observed that academic institutions 
remain dominant in patent publications, with smaller 
contributions from the private industry. This may be 
due to the lack of economic incentives associated with 
resolving the issue of microplastics.

Figure 3. Journal and patent publications on microplastics by top organization countries/regions both including China (A) and  
excluding China (B)
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Using data from the CAS Content Collection, we 
examined the substances most mentioned in 
microplastics publications (Figure 4). These results 
revealed that the number of journal articles far exceeded 
the number of patent publications for each registered 
substance. The top five substances were shown to be 
ethene homopolymer (polyethylene), polystyrene, 
1-propene homopolymer (polypropylene), polyethylene 
terephthalate (PET), and polyvinyl chloride (PVC). These 
five substances happen to be the same polymers most 
commonly found in environmental microplastics.47–49 

The sixth mentioned substance was cellulose, which is 
considered a microplastic in some studies.50–52 However, 
its presence on the list may reflect attempts to use this 
substance as a replacement for synthetic polymers 
in applications such as electronics, textiles and in 
sustainable biomaterials. Cellulose has also been studied 
for its potential ability to remove microplastics from the 
environment.53–58 

Figure 4. Top registered substances in microplastic publications
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Analysis of the substance class distribution of the total 
of substances recorded per year reveals several research 
trends (Figure 5). There has been a notable rise in the 
recorded number of polymers, reflecting an increase 
in interest in studying microplastics as a phenomenon. 
However, the substance class that has seen the largest 
increase in research interest is ‘organic/inorganic small 
molecules’ from 2017 onwards. This is potentially due 
to several factors, including the identification and 
measurement of small molecules and monomers 
released as plastic degradation occurs, the transfer of 
pollutants from the environment into living organisms 
via microplastics, and the study of individual chemical 
additives to plastics that can seep from microplastics.59–64

Another substance class that has seen a rise in research 
activity is the ‘element’ class, with the number of 
publications increasing significantly in 2020 and 
2021. This is likely to be due to the growing interest 
in carbon (specifically activated carbon) for water 
treatment and purification, including the removal 
of microplastics.65 Carbon is also mentioned across 
several diverse microplastics publications due to the 
impact of microplastics on processes involving this 
essential element, such as the carbon cycle.66–70 Other 
elements featuring in microplastics research include 
As, Cd, Cr, Cu, Pb, Mn, and Zn. This is potentially due to 
the identification of microplastics as vectors for these 
particular elements.71,72

Figure 5. Substance class distribution of total registered substances per year from 2011–2021 in microplastics research
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Measuring the impact of microplastics

Eliminating microplastics from the environment

Analysis of the CAS Content Collection indicates 
that microplastics research is growing. While the 
analysis paints a picture of the type of research being 
conducted, the true impact of microplastics is more 
challenging to measure. 

We know that microplastics are everywhere, from 
the water we drink to the air that we breathe. 
However, following ingestion, it is difficult to 
quantify the proportion of microplastics that are 
excreted compared with those that are retained in 
biological systems. We know that microplastics can 
be excreted in a variety of ways: by transfer to bile, 
urine, exhalation, cerebrospinal fluid, and even 
breast milk.44

Though the uptake of microplastics has not 
been fully elucidated, the shape and surface 
functionalization of microplastic particles are 
likely to have an impact on their uptake, biological 
activity within the body, and their toxicities. We 
know that smaller particles are more readily taken 
up compared with larger particles. Shape is another 
key factor that impacts on levels of retention, 
with particles thought to be more readily retained 
than fibers.44,73 Therefore, refinement of analytical 
tools to detect and quantify smaller microplastic 
particles (nanoplastics) is essential for us to confirm 
exposures and effects.

A key research priority in microplastics research is 
remediation — removing existing microplastics from 
the environment. But is this an achievable goal? 
Several methods have been proposed specifically 
for microplastic removal from water, including:

–	 Adding microplastic-capturing filters to cargo 
ships, allowing microplastic particles to be 
collected while ships are in motion74

–	 Using the ship’s ballast system to filter 
microplastics from water before it is discharged 
back to the sea75–77 

–	 Use of plastic waste collecting systems called 
‘interceptors’, which can float on the surface of 
oceans and rivers and collect plastic debris. While 
these systems are not designed specifically for 
microplastics, they are thought to be effective in 
capturing particles of a certain size (smaller  
than 0.5 cm)78

–	 The use of mussels, where, following ingestion 
of microplastics, their fecal waste floats on the 
water’s surface in the form of pellets, which can 
be collected easily79 
 

Despite these techniques yielding some promising 
results, the sheer volume of ocean water means 
that removing microplastics directly from it 
would require large amounts of time and effort. 
Furthermore, related research in the area is sparse. 
A more feasible approach may be to focus on 
stopping microplastics entering the environment 
in the first place. Examples of such methods 
mentioned in the literature include:

–	 Wastewater treatment plants that are proven to 
be effective at microplastic removal, especially 
at the tertiary level (e.g., dissolved air flotation, 
rapid sand filtration, membrane bioreactors). 
However, complete system removal may be 
unlikely; for example, microplastics diverted into 
sewage will end up in the water supply again80–82 

–	 Laundry accessories to prevent the release 
of microfibers from synthetic textiles into 
wastewater systems83

–	 Reassessment of clothes manufacturing 
processes to minimize friction, improve the 
mechanical integrity of garments, and use 
biodegradable, rather than plastic materials84,85
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Figure 6 shows the number of publications involving 
various keywords related to microplastics removal. The 
number of publications for most keywords grew sharply 
since the mid-2010s, suggesting a growing awareness 
of the microplastics issue. Consequently, we have also 
seen an increase in publications related to microplastic 
removal. Yet, it’s important to be mindful of nuances that 
could skew our interpretation of the data. For instance, 
some terms such as “filtration” and “WWTP” could 

be misleading as there is overlap with other studies 
that do not specifically relate to microplastic removal. 
However, the trends do give us an indication of the level 
of research interest in different methods being explored. 
Membrane bioreactors were featured in several studies, 
suggesting the popularity of this newer, highly efficient 
removal method. In contrast, document counts for 
“coagulation”, “flotation”, and “flocculation” are low, 
reflecting less interest in these basic removal techniques.

Figure 6. Publication volume related to some microplastics removal techniques  
(MBR, membrane bioreactor; WWTP, wastewater treatment plant)
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Regulating microplastic production and use

Conclusions

In the past few years, we’ve seen official regulations 
around plastic use passed in several countries 
including the U.S., China, Canada, and parts of 
the EU. A notable milestone is the banning or 
restriction of cosmetics and drugs containing plastic 
microbeads.86–88 However, microbeads account for 
only 2% of primary microplastics, which themselves 
comprise only about 20–30% of all microplastics.83 
Although synthetic microfibers make up 35% of 
primary microplastics, regulations concerning these 
have been non-existent, with the exception of a law 
in France requiring microfiber filters to be installed in 
new washing machines by 2025.89

Regulating the manufacturing, use, and  
recycling of plastic products is a critical aspect of 
secondary microplastic control, as these appear 
in the environment over time following plastic 
degradation. Single-use plastics, such as straws, 
plates, and polystyrene cups/containers are now 
banned in many countries,90 while plastic bag levies 
are commonplace.91,92 It is hoped that regulations 
such as these will help address the issue of  
secondary microplastics.

Microplastics are a growing global concern, with 
particles being found in water, salt, foods, soil, and 
even in the air. Emerging evidence suggests that 
these microscopic particles and their associated 
chemicals are detrimental to the health of animals 
and humans. However, the exact cause and 
magnitude of harm is not yet clear. 

As an expert-curated resource, the CAS Content 
Collection was employed to perform quantitative 
analysis of microplastic-related publications over 

time, across countries/regions, specific research 
areas, and substances. The analysis indicated a 
worrying lack of innovation in microplastics research, 
with patents comprising only a small proportion 
of the total publications. Furthermore, academic 
institutions dominate both journal and patent 
publications, indicating a general lack of industry 
investment. Yet, we need a concerted effort among 
scientists, entrepreneurs, governments, and the 
public to combat microplastic pollution.
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environment, see our 
publication in ACS Nano at 
cas.org/microplastics
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