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PREDICTING
NEW CHEMISTRY
Impact of high-quality 
training data on prediction 
of reaction outcomes



In chemical synthesis planning applications, the goal is to generate sets of synthetic 
routes that are as diverse and accurate as possible to provide organic chemists with 
many plausible and distinct strategies to make their target molecules. However, 
data-driven computational applications can only be as good as the underpinning 
data. The quality of predicted results depends on the following main properties of 
the training data:

1.	 The diversity of the predictions is correlated to the breadth of the data source: 
how many reaction types are represented and how diverse the products and 
substrates are in each reaction.

2.	 The accuracy of the predictions depends on the quality and consistency of 
the data and its representation as well as its depth: the number of examples 
available for each reaction type and the spectrum of reactants, products, and 
reaction conditions are available.

In this study, we demonstrate the significant impact that even a moderately sized 
set of scientist-curated reactions from the CAS Content CollectionTM can have on 
the predictive power of a synthesis planning tool.  

A broad training set was enriched with examples targeting certain reaction types, 
which dramatically enhanced the predictive power of the machine learning models. 
This is a strong indication for the much greater potential for CAS content to drive AI 
applications in synthesis planning.

Enriching a training set with high quality, 
diverse CAS reactions had a significant 
impact on predictive power.
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Introduction
Computer-aided synthesis design (CASD) has been 
conceived more than a half a century ago, reflecting a 
convergence of two major paradigms–computer science 
and organic chemistry. Both fields have experienced 
dramatic advances during the preceding decade. In 
computer science, it has been the introduction of digital 
hardware, and the application and further growth of 
algorithmic approaches to solve complex mathematical 
problems. In organic chemistry, the synthesis of several 
natural products, such as vitamin A,1 prostaglandin,2 
and vitamin B12,3 contributes to the development of 
new methods, but more importantly led to a transition 
of organic synthesis from an art to a more scientific and 
methodic discipline. It was EJ Corey who first described a 
pseudo-algorithmic approach for synthesis planning in 
the form of retrosynthetic analysis,4 and not surprisingly, 
he followed his theoretical framework with a first-of-
its-kind implementation of the concept as a computer 
program, Organic Chemical Simulation of Synthesis 
(OCSS)5, that evolved into Logic and Heuristics Applied to 
Synthesis Analysis (LHASA)6 soon after.

LHASA and other systems from the foundational two 
decades of the field were expert systems, relying on 
manually coded knowledge bases to power the predictive 
capabilities.7,8 Chemical reactions, reaction rules, 
synthetic strategies, and knowledge bases designed 
to address aspects like chemical interference, stability, 
and feasibility of structures, had to be coded by experts 
using technology that was specifically developed for the 
ever-growing complexity and diversity of chemistry. Not 
surprisingly, these approaches could not keep up with the 
progress in organic chemistry. The advent of chemical and 
reaction databases, as well as data mining tools during 
the 1980s and 1990s, caused CASD to fall out of favor.9 
However, computational chemistry and cheminformatics 
methods continued to advance, and along with 
tremendous improvements in computer hardware and 
steady growth in chemical databases, they paved the way 

for the re-emergence of the field in the past decade. The 
availability of data with the sophistication of processing 
methods contributed to a transition from manual 
approaches of capturing knowledge to algorithmic 
approaches that can capture the breadth of chemistry 
and can remain up-to-date.10-15

As with any other data-driven methodology, to reliably 
automate extraction of chemical knowledge from 
databases for applications in CASD, comprehensive, 
high-quality data sources are required.16 To achieve 
good coverage of synthetic methods, the data source 
must cover a diverse set of reactions from a broad set 
of publications and a comprehensive set of examples 
from each class of reactions to capture the scope of 
the different methods. Quality of the source can be 
measured with various parameters, such as the accuracy 
of capturing the structures and the experimental details, 
the accuracy of atom mapping, which is essential for 
template- and rule-based approaches, and normalization 
of the data, including uniform representation of 
functional groups and handling of tautomerism and 
stereochemistry. This paper demonstrates the tight 
dependency between the quality and comprehensiveness 
of the training data and the predictive power of 
machine learning techniques. It lays out a case where 
machine learning models trained on a sizable reaction 
set provide poor predictive power for several classes of 
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reactions, likely due to sparsely populated areas in the 
corresponding chemical space. By filling the space with a 
targeted reaction data set from CAS, the resulting models 
show a significant increase in predictive accuracy in the 
targeted chemical space without loss of accuracy overall.

The majority of current CASD systems use either a rule- 
or template-based approach. These approaches lend 
themselves most easily to linking between predictions 
and evidence from the training, making the results easy 
to interpret and rationalize. Template-free approaches 
that typically use a string-based description of chemical 
reactions and leverage techniques from language 
processing applications in AI for CASD have also gained 
attention in recent years and show some promise. 
Although this paper discusses the data dependence of 
structure-based approaches, many of the lessons would 
apply to template-free methods as well.

Methods
In this study, we evaluated results of two of the 
three neural networks described by Segler et al.,11 
specifically the policy expansion network and the in-
scope network. The policy expansion neural network 
receives a target molecule as input and selects the most 
promising templates that can be used as transforms. 
Applying the templates in the retrosynthetic direction 
generates sets of precursors, or the educts that are 
necessary for synthesizing the target. The in-scope 
neural network checks if each reaction is feasible. In 
this system it is called the viability filter, as its goal is 
to filter out transformations that are unlikely to work. 

These two networks are therefore vital in generating the 
qualified components of the retrosynthesis pipeline. 
The mechanism by which synthetic plans are created is 
beyond the scope of this paper, but the synthetic accuracy 
and diversity is by and large determined by the above two 
networks. The results below focus on the performance of 
the in-scope filter. 



Figure 1. Size and fraction of reaction classes present 
in our dataset

Training set Make-up

V1-base
Commercially available 
positive data and synthetic  
negative data (32 million)

V2-cas
V1-base reactions over 32 
million curated CAS reactions  
for specific templates (14.5K)

V3-neg
V1-base reactions (32 million) 
plus negative reactions  
from Bayer’s ELN library (135K)

Table 1: Data sets used in this study as different 
combinations of available data sources

Additional data sets were used to quantify the predictive 
capability of the viability filter. A second training data set 
(V2-cas) was created by expanding V1-base with 14.5K 
positive CAS reactions. These reactions were custom 
curated to provide additional examples to templates 
with relatively few reactions associated. The curated CAS 
reactions for specific templates comprise only 0.05% of 
the total reactions in the V2-cas training set.
A third training data set (V3-neg) was created by 
expanding V1-base with 135K negative reactions extracted 
from Bayer’s electronic lab notebooks (ELNs). These 
negative reactions were obtained from real-life negative 
experiments and were randomly sampled to be a 
representative subset of Bayer’s ELN library. This data set 
was chosen to measure the effectiveness of both filters 
when dealing with unseen chemistry, as neither filter has 
seen real negative reactions before.
We trained and tested the models using the data set 
combinations summarized in Table 1. The data sets were 
all split to training, validation, and testing sets - V1-base is 
in a 70/10/20 split, while both V2-cas and V3-neg data sets 
are in a more traditional 80/10/10 split.

Our base training set includes 8 millon reactions from 
a commercially available database. These reactions are 
a subset of 17.5 million reactions, restricted to machine-
readable reactions with at most two reactants and one 
product. A template extraction process was applied 
that identified about 10K templates with at least 25 
examples. Frequency of the templates varied strongly in 
the reactions set and the number of reactions available 
for training the viability filter for each template varied 
accordingly. Additionally, the number of available 
example reactions varied significantly from class to class. 
The Pareto plot in Figure 1 shows statistics on the size and 
distribution of all available  
transformation classes. 
 
Additionally, 24 million implied negative reactions 
were created using the reaction set and the extracted 
templates in a procedure akin to the one described in 
Segler et al. These reactions, together with the 8 million 
positive reactions, made up the V1-base training set.

Data
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Model training

CAS reaction collection
The vast and diverse CAS reaction collection is updated 
daily by scientists from a wide variety of patents, 
journals, and other reference works from 1840 to the 
present. Reactions link directly to the CAS REGISTRY® 
substance database to identify reaction participants. 
Structure representations for reactions match directly 
to the structure representations in CAS REGISTRY. 
Accurate data collection reflects the specific policies 
used to define the collection and recording of reaction 
data. For example, careful delineation of which reaction 
participants contribute carbons to reaction products and 
which do not, make the data particularly useful for further 
analysis, as in the case of the work described in this paper. 
Analysts also carefully differentiate between catalysts, 
which are present in sub stoichiometric amounts or 
are common reaction catalysts, and reagents used in 
stoichiometric amounts. Reaction indexing includes 
data for yields, times, temperatures, pressures, and pH 
when authors provide this information. Added tags, such 
as stereoselective, highlight key aspects of reactions. 
Mapping of atoms from reactants to products serves as a 
quality check for the indexing of molecules participating 
in the reactions. CAS audits reactions to additionally 
check accuracy and ensure high quality. 

A small subset of the CAS reaction collection was utilized 
for this project. The team at Bayer supplied example 
reactions for a range of chemical transformations to 
the CAS Custom ServicesSM team and asked for related 
reactions from the CAS Content Collection. Analysts 
utilized SMARTS strings for the transformations of 
interest to search, combine, and deduplicate results. CAS 
information scientists with synthetic organic chemistry 
backgrounds performed a final quality assurance step. As 
a result, 14.5K reactions were identified that were highly 
underrepresented in the initial V1-base data set and were 
used to bolster reaction examples across the targeted six  
reaction types.

All models share the same architecture, a fully Connected 
Network with ReLu activation and Sigmoid output. The 
input to the network is the concatenation of two ECFP 
fingerprints (radius=2, features=8192), giving a final input 
dimension of 2 x 8192 = 16384. Each ECFP fingerprint 
is the embedding of a product and a reactant. The 
single hidden layer‘s dimension is 32, and its kernel is 
regularized with both L1 and L2 penalties (1e-5 and 1e-4 
respectively). The output is a single sigmoid neuron, 
where a reaction is only considered likely to succeed if 
its value is >= 0.6. The model was trained using Adam as 
optimizer (learning rate = 1e-4)  

and it was trained until convergence. A successful 
prediction has been defined as the ability to predict that 
the fingerprints of a given product and reactant lead to a 
successful reaction.



Results and discussion
To quantify the predictive capability of the viability filter 
with different data sources, supplemental data added to 
the V1-base training set were analyzed independently. 
Accuracy was measured as the percentage of cases where 
the neural network would correctly determine whether a 
reaction would be successful or not.

The reaction classes that initially had limited examples 
available were specifically tested, as these may indicate 
areas of chemistry that are not as frequently explored. 
Predictions in these rare classes may reveal new chemistry 
and increase the number of plausible strategies 
uncovered to make target molecules. Training on the 
V1-base data set and testing against the selected reaction 
classes shows a poor predictive power of 16% (Table 2). 
By adding CAS reactions, the accuracy in rare reaction 
classes increases to 48% a boost of 32 percentage points.

There is no statistically significant loss of accuracy 
when testing over the negative data and the strong 
regularization in our current architecture precludes the 
presence of an overfitting effect.

Table 3 shows that the smaller datasets that 
supplemented the V1-base training set have virtually 
no effect on the overall predictive accuracy of the 
model in the context of the full set. This is expected as 
the supplemental data sets are an order of magnitude 
smaller than the V1-base set. Additionally, the majority of 
reaction classes in the test set are unrelated to the classes 
represented in the CAS reaction set.

The increase in prediction accuracy of rare reaction 
classes seen with CAS reaction data has no statistically 
significant impact on the predictive accuracy across all 
reaction classes as observed when testing with the  
full set.

Training set

Test set
V1-base V2-cas

V1-base 97% 97%

V2-cas 97% 97%

V3-neg 94% 94%

Table 3: Accuracy for entire datasets
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Conclusion
A well-documented challenge in our fast-filter 
architecture is that the model is not great at generalizing 
and has trouble identifying chemistry that it has not 
seen in training. This limitation is inherent to template-
based approaches, especially when the templates are 
not designed to capture the essence of the reactions and 
ignore the structural and functional context. Rule-based 
and template-free approaches offer better generalization, 
but they, as well, depend on the breadth and accuracy of 
their training sets. By measuring how different types of 
data affect the training, we can make stronger assertions 
regarding the novelty of the chemistry included in each 
type of data set. 

This study shows that supplementing a large data source 
with comprehensive sets of reactions in specific domains 
may enhance the predictive power in those domains 
without impacting the overall predictive performance. 
By utilizing data not typically found in data sources for 
these domains, understanding into useful, new chemistry 
is expanded. This enhanced predictive power in ‘rare’ 
categories may open previously difficult areas of science.

These findings illustrate that the performance of neural 
networks depends on the amount, quality, and diversity 
of the training set. In this case, the effect was seen on a 
small class of reactions. However, it can be expected that 
predictive gains would increase relative to the number of 
templates with underrepresented reaction examples that 
are reinforced. More so, should the base training data 
begin with strong amount, quality, and diversity across all 
templates, the gains in predictive power would be  
even greater.

Enhanced predictive power in ‘rare’ 
categories may open previously difficult 
areas of science.
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