A landscape view

EXOSOMES IN THERAPEUTICS AND DIAGNOSTICS

Chun-An (Andy) Chen, Information Scientist

© 2023 American Chemical Society. All rights reserved.
What are exosomes?

Function and Characterization
Why exosomes?

Natural

Innate stability | Biocompatibility | Low immunogenicity | Crosses blood-brain barrier

Synthetic

Low bioavailability | Rapid bloodstream clearance | Cytotoxicity
Exosomes at the human scale
For both therapeutics and diagnostic applications

Therapeutics

- exogenous
- autologous
- isolation
- combined

Diagnostics

- PCR
- Sequencing
- Proteomics
Exosome publications has increased over time
Research in exosomes is outpacing LNP
Cancer leads the way amongst a wide range of diseases.
There’s a challenge: isolating and purifying exosomes
With a wide range of approaches…

Ultracentrifugation
Density and size based sequential separations
- purity

Ultrafiltration
Filter membrane with defined size-exclusion limit
- purity, integrity

Immunoaffinity
Antigen–antibody specific recognition and binding
- yield, speed

Polymer precipitation
Polymer adhering and precipitating exosomes
- purity, speed

Size exclusion chromatography
Hydrodynamic radii exosome separation
- throughput, automation

Microfluidics
Imunoaffinity, size, density
- scale, speed
Advanced microfluidics are leading due to efficiency, speed, and high grade of purity.
Exosome donor cells and disease correlation

Therapy and diagnostics

<table>
<thead>
<tr>
<th>Disease Type</th>
<th>Dendritic Cells</th>
<th>Leucocytes</th>
<th>Endothelial Cells</th>
<th>Antigen-presenting Cells</th>
<th>Stem Cells</th>
<th>Erythrocytes</th>
<th>Platelets</th>
<th>Lymphocytes</th>
<th>Immune Cells</th>
<th>T-cells</th>
<th>Natural Killer Cells</th>
<th>Macrophages</th>
<th>Adipocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>50</td>
<td>41</td>
<td>39</td>
<td>56</td>
<td>37</td>
<td>35</td>
<td>37</td>
<td>46</td>
<td>49</td>
<td>46</td>
<td>57</td>
<td>39</td>
<td>33</td>
</tr>
<tr>
<td>Inflammation</td>
<td>18</td>
<td>26</td>
<td>24</td>
<td>14</td>
<td>28</td>
<td>20</td>
<td>25</td>
<td>24</td>
<td>25</td>
<td>21</td>
<td>14</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>Infection</td>
<td>15</td>
<td>15</td>
<td>9</td>
<td>18</td>
<td>14</td>
<td>11</td>
<td>15</td>
<td>13</td>
<td>17</td>
<td>12</td>
<td>13</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular Disease</td>
<td>4</td>
<td>6</td>
<td>13</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Neurodegeneration</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Alzheimer's Disease</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Parkinson's Disease</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Diabetes</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>17</td>
</tr>
</tbody>
</table>
Therapeutic and diagnostic growing in equal shares over time

Therapeutics lead in publication numbers

<table>
<thead>
<tr>
<th>Year</th>
<th>Therapy</th>
<th>Diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2013</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2014</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2015</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2018</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2019</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2020</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2021</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Therapy: 44%
- Diagnostics: 56%
Twice as many pre-clinical studies
Suggests a wave of new drugs across a wide range of diseases

<table>
<thead>
<tr>
<th>Exosomes in clinical studies</th>
<th>Therapeutic Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>bmMSC-derived exosomes</td>
<td>ARDS, IBD</td>
</tr>
<tr>
<td>bmMSC-derived exosomes</td>
<td>Wound healing</td>
</tr>
<tr>
<td>amniotic fluid derived exosomes</td>
<td>ARDS</td>
</tr>
<tr>
<td>Purified exosome product</td>
<td>Wound healing/Myocardial infarction</td>
</tr>
<tr>
<td>exosome with ASO-STAT6</td>
<td>Hepatocellular Carcinoma</td>
</tr>
<tr>
<td>umbilical cord derived exosomes</td>
<td>ARDS</td>
</tr>
<tr>
<td>ginger exosomes</td>
<td>IBD</td>
</tr>
<tr>
<td>MSCs-derived exosome with KrasG12D siRNA</td>
<td>Pancreatic cancer</td>
</tr>
</tbody>
</table>
Exosome commercialization, from bench to bedside

Companies and their targeted diseases

- Anjarium Biosciences
- Carmine Therapeutics
- Citoa
- EV Therapeutics
- Unicyte
- Ilias Biologics
- Aethlon Medical
- Codiak Biosciences
- Aruna Bio
- Celltex Therapeutics
- Evox
- Florica Therapeutics
- Innocan Pharma
- ReNeuron
- VivaZome
- Capricor Therapeutics
- MDimune
- Xollent
- Organicell
- OmniSpirant
- Exogenus Therapeutics
- Aegle Therapeutics
- Avalon Globocare
- Direct Biologics
- Exopharm
- Vitti Labs
- Kimera Labs
- ExoCoBio
- RION
- Cells for Cells
- Evora BioSciences

Diseases:
- Cancer
- Neurological disease
- Lung disease
- Skin disease
- Infectious disease
- Wound healing
- Osteoarthritis
- Gastrointestinal disease
- Reproductive disorder
- Inflammatory disease
- Kidney disease
- Rare genetic disease
- Graft vs Host disease
- Organ transplant rejection
- Alopecia
- Heart disease
- Diabetes
- Bone disease
- Fibrotic disease
- Wound healing
- Ischemia
- Liver disease
- Eye disease
Acknowledgement
CAS colleagues and teammates

- Rumiana Tenchov

- Janet Sasso

- Wen-Shing Liaw

- Xinmei Wang

- Qiongqiong Angela Zhou
Gain insights on the emerging landscape of exosomes and more

Peer reviewed journal article
cas.org/exosomes

Subscribe to stay connected and up to date:
https://www.cas.org/cas-insights-subscribe
linked.com/company/cas
@CASchemistry