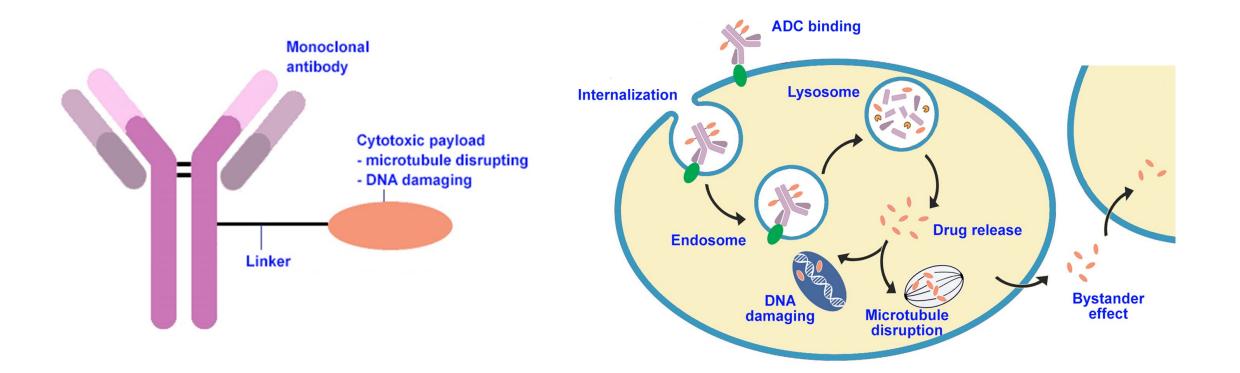
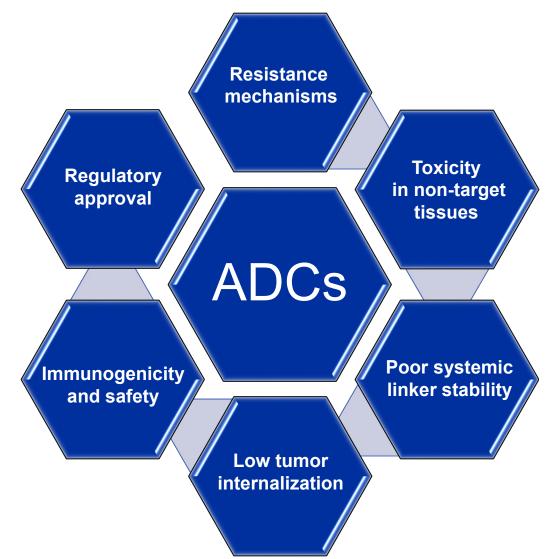
ANTIBODY-DRUG CONJUGATES

A landscape analysis of recent research advancement

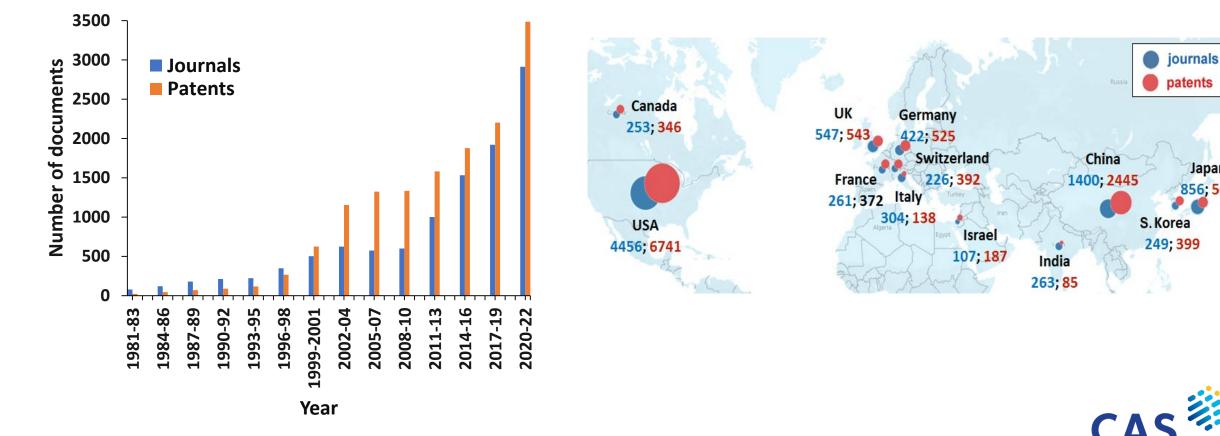

Yacid Rodriguez, Janet Sasso, Rumiana Tenchov, Robert Bird, Kavita Iyer, Krittika Ralhan, Angela Zhou

© 2023 American Chemical Society. All rights reserved.


What is an antibody-drug conjugate (ADC)?

Structure and mechanism of action

Challenges in ADC development



© 2023 American Chemical Society. All rights reserved.

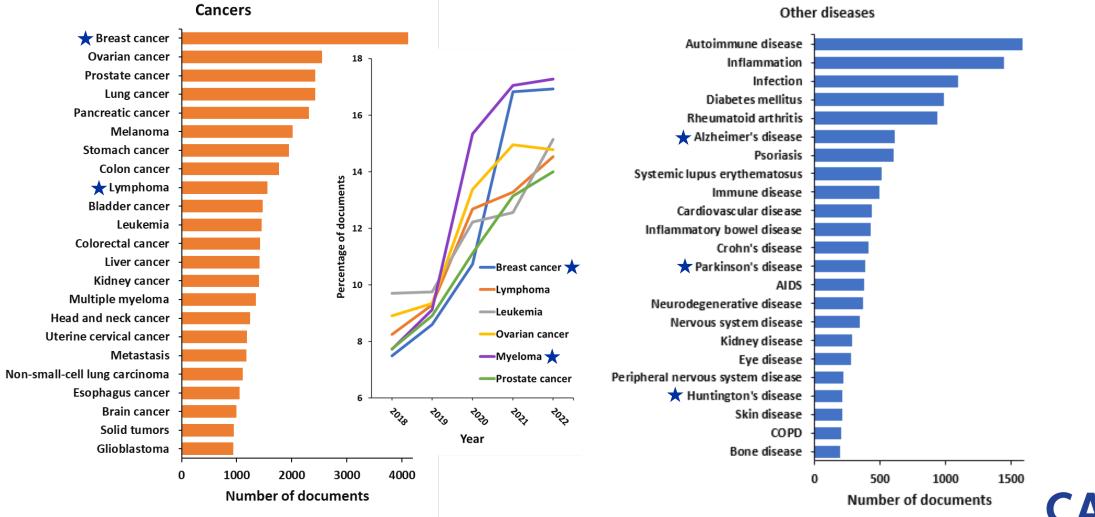
Growth of research publications

ADCs continue to be an active area of research and development

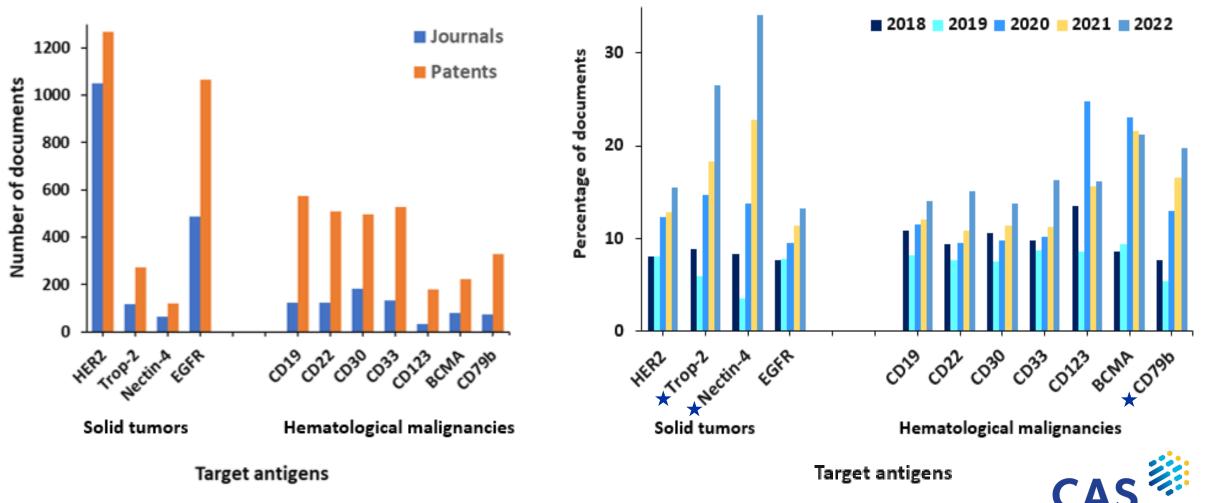
Japan

856; 502

Organizations publishing on ADC-related technologies


Journal and patent activity dominated by commercial entities

Organization	No. Journal Articles	Assignee (Companies)	No. Patents	Assignee (Universities / Hospitals)	No. Patents	
Genentech	155	Genentech	196	University of California	141	
The Scripps Research Institute	87	Immunomedics Regeneron Pharmaceuticals	113 100	University of Texas	75	
University of California	76	Seattle Genetics	91	US Dept. Health & Human Services	60	
Chinese Academy of Sciences	58	ImmunoGen MedImmune	66 63	Massachusetts Institute of Technology	53	
ImmunoGen	56	Novartis	59	Abbott Laboratories	50	
Seattle Genetics	54	Amgen	47	Scripps Research Institute	49	
University of Utah	49	Daiichi Sankyo Company Genmab	43 38	Dana-Farber Cancer Institute	39	
Sichuan University	48	Bristol-Myers Squibb Company	36			
University of Washington	48	Biogen	34	Fudan University	37	
		Jiangsu Hengrui Med. / Shanghai Hengrui Pharm.	33	Johns Hopkins University	36	
Harvard Medical School	45	Medarex	32	Agency for Science, Technology and Research	34	
Northeastern University	40	Pfizer	32			
University of Texas	40	Pierre Fabre Medicament	32	Yale University	30	
		Innovent Biologics (Suzhou) Seagen	31 31	Duke University	29	
Memorial Sloan Kettering Cancer Center	39	AbbVie	29	General Hospital Corporation	29	
Zhejiang University	39	Human Genome Sciences	29		25	
University of Michigan	38	Janssen Biotech	29	Memorial Sloan Kettering Cancer Center	29	

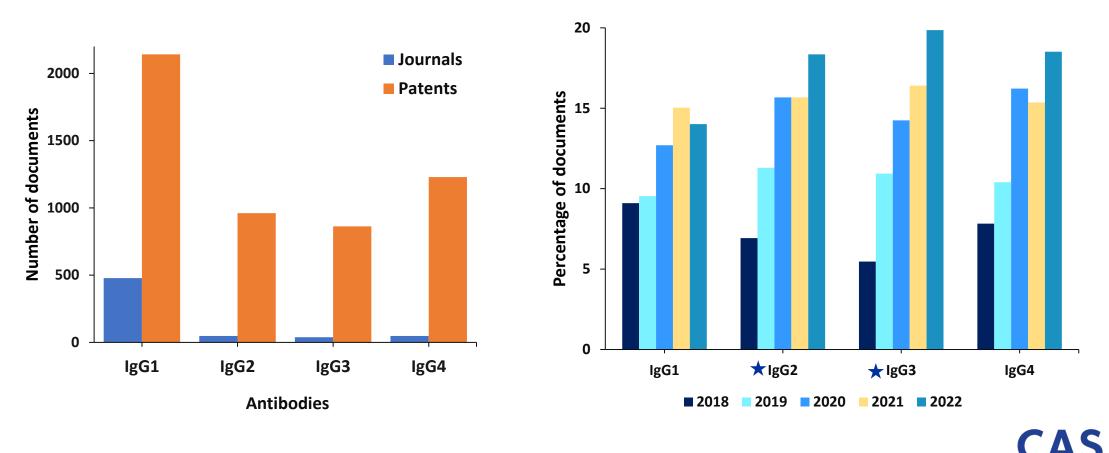

Diseases explored with ADCs

Cancers and non-cancerous diseases

Target antigens

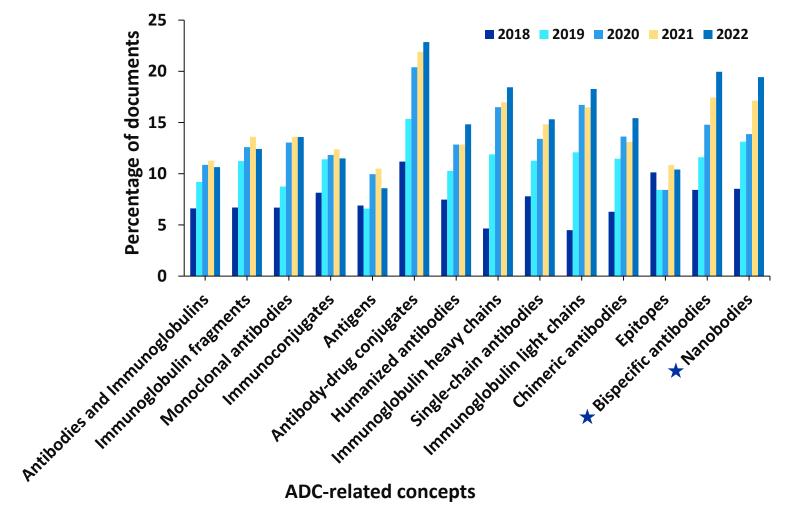
HER2 and EGFR most widely explored for solid tumors

Correlation between cancer and ADC target antigens


Solid tumors	HER2	Trop-2	Nectin-4	EGFR
breast cancer	67	9	2	22
ovarian cancer	45	13	6	37
prostate cancer	43	13	5	39
lung cancer	43	12	5	40
pancreatic cancer	38	20	7	35
cervical/uterine cancer	43	15	4	38
stomach cancer	45	13	5	37

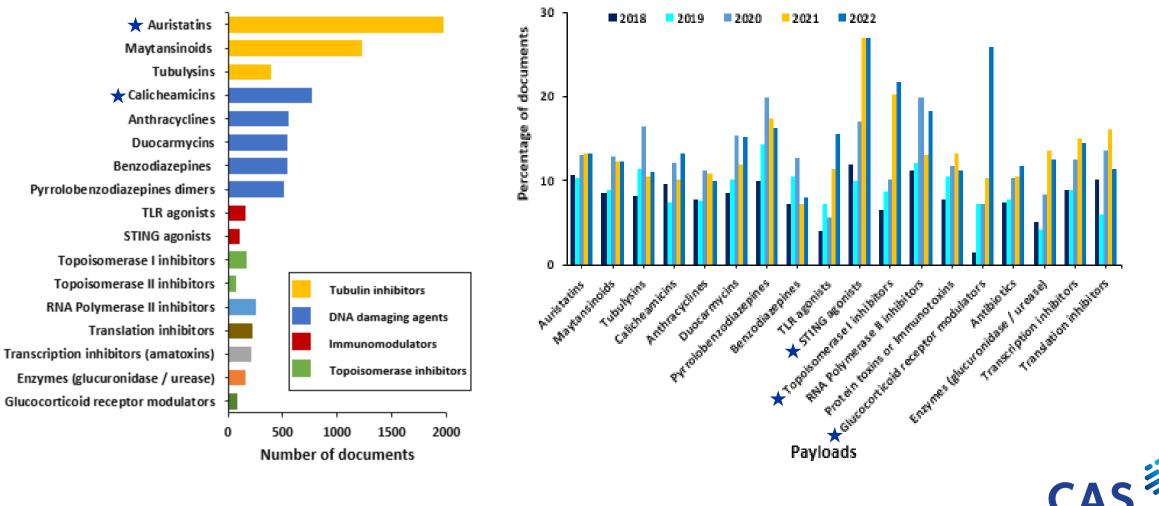
Hematological malignancies	CD19	CD22	CD30	CD33	CD123	BCMA	CD79b
lymphoma	21	21	22	15	5	7	10
leukemia	21	19	15	24	7	7	7
myeloma	18	16	16	16	6	22	7

Antibodies


IgG1 and IgG4 are most frequently used in ADCs

Growing areas of research

Bispecific antibodies and nanobodies



© 2023 American Chemical Society. All rights reserved

Common Payloads

Tubulin inhibitor Auristatins and DNA-damaging Calicheamicins

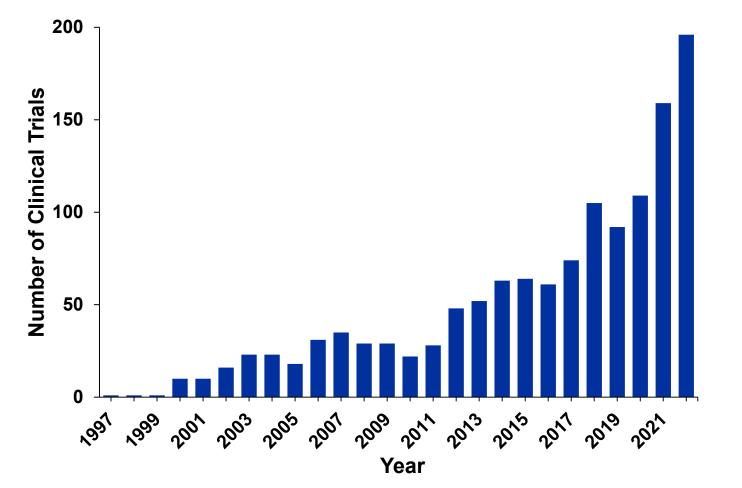
Correlation between cancer and ADC antibodies and payloads

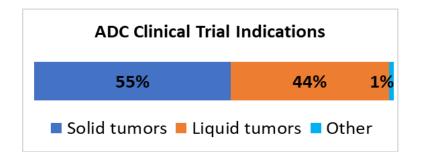
myeloma

Solid tumors	lgG1	lgG2	lgG3	lgG4
breast cancer	50	17	14	19
ovarian cancer	38	20	18	25
prostate cancer	37	20	18	25
lung cancer	39	19	17	24
pancreatic cancer	38	19	18	25
cervical/uterine cancer	38	20	18	24
stomach cancer	37	20	18	24

Hematological

malignancies				
lymphoma	40	18	17	25
leukemia	39	18	18	25
myeloma	38	18	18	26


	atins	Maya _{nsinoids}	sins	alichennic _{in}	duo cormucins	benzo. diazepino.	topoisomerase inhibitor	RNA Dolymerase inhibitors
Solid tumors	auristatins	Mell	tubulysins	Calich	duo G	benzo diazen	topoisome inhibitors	RN4 Polyn Inhibi
breast cancer	27	38	4	9	5	7	10	1
ovarian cancer	23	23	5	16	9	12	10	1
prostate cancer	22	22	5	16	9	13	12	1
lung cancer	25	24	5	15	8	12	11	1
pancreatic cancer	24	21	5	16	10	12	10	1
cervical / uterine cancer	22	23	4	17	10	11	12	1
stomach cancer	23	22	6	15	9	12	12	2
Hematological								
malignancies Iymphoma	26	21	5	16	9	14	9	1
leukemia	21	21	4	20	9	15	8	2



e.

Clinical trials

ADCs are accelerating in clinical development

© 2023 American Chemical Society. All rights reserved.

Approved ADCs

15 with regulatory approval anywhere in the world

Drug	Trade name	CAS RN ®	Maker	Condition	Target	Approval Year	mAb	Linker	Payload	Payload Action	DAR	Conju gation	No. docs
Trastuzumab deruxtecan ^{63,} ⁶⁴	Enhertu	1826843-81-5	AstraZeneca/ Daiichi Sankyo	unresectable or metastatic HER2-positive breast cancer	HER2	2019	humanized IgG1	maleimide– GGFG enzyme cleavable	DXd/ Camptothecin	TOPO1 Inhibitor	8	Cys	291
Sacituzumab govitecan ^{65,} ⁶⁸	Trodelvy	1491917-83-9	lmmuno- medics	metastatic triple-negative breast cancer	Trop-2	2020	humanized IgG1	CL2A acid cleavable	SN-38/ Camptothecin	TOPO1 Inhibitor	7.6	Cys	237
Loncastuxima b tesirine-lpyl ^{69, 70}	Zynlonta	1879918-31-6	ADC Therapeutics	large B-cell lymphoma	CD19	2021	lgG1	enzyme cleavable	SG3199/ PBD dimer	DNA cleavage	2.3	Cys	66
Tisotumab vedotin-tftv ^{71.} 72	Tivdak	1418731-10-8	Seagen Inc	recurrent or metastatic cervical cancer	Tissue factor	2021	lgG1	enzyme cleavable	MMAE/ Auristatin	microtubule Inhibitor	4	Cys	55
Cetuximab Sarotalocan 21, 73, 74	Akalux	2166339-33-7	Rakuten Medical	unresectable locally advanced, recurrent head & neck cancer	EGFR	2021	lgG1	N/A	IRDye700DX	photo- sensitizer	1.3– 3.8	Lys	2
Disitamab Vedotin ^{75, 76}	Aidixi	2136633-23-1	RemeGen	HER2- overexpressing gastric cancer	HER2	2021	lgG1	enzyme cleavable	MMAE	microtubule Inhibitor	4	Cys	15
Mirvetuximab soravtansine 77, 78	Elahere	1453084-37-1	ImmunoGen	platinum- resistant ovarian cancer	FRα	2022	lgG1	enzyme cleavable	DM4	microtubule inhibitor	3.4	Cys	87

Major perspectives on ADC development

Combination Therapies

Companion Diagnostics

- Combining ADCs with chemotherapies, radiation therapy, or other immunotherapies (checkpoint inhibitors)
- Overcome resistance mechanism and enhance therapeutic outcomes
- Recent FDA approval (April 2023)
 Padcev (Astellas Pharma) with Keytruda (Merck)

- Biomarker identification and patient stratification based on target expression levels or other predicative factors
- Help select the most appropriate patients for treatment and improve the clinical outcome of ADC treatment

Acknowledgement

CAS colleagues and teammates

- Janet Sasso
- Rumiana Tenchov
- Robert Bird
- Kavita Iyer
- Krittika Ralhan
- Qiongqiong Angela Zhou

Gain insights on emerging therapies and more

Yacid Rodriguez LS Capability Owner yrodriguez@cas.org

Executive Summaries

Insight Reports

Journal Publications

Subscribe to stay connected:

www.cas.org/insights

linkedin.com/company/cas

