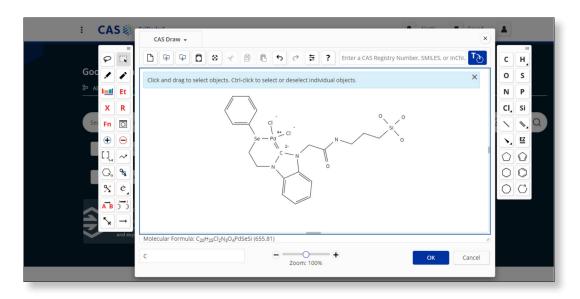
CAS SCIFINDER®

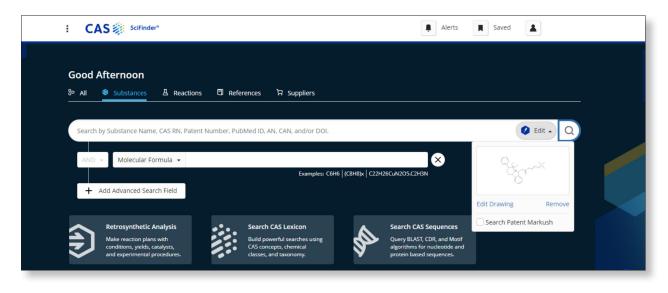
QUICK START GUIDE FOR PERFORMING A SEARCH

Get started using CAS SciFinder


This guide provides you with step-by-step instructions for performing various searches in CAS SciFinder. To begin, visit the login page on cas.org and enter the credentials provided by your organization. Once you are logged in, follow the steps below for your desired search type.

To search for Substances:

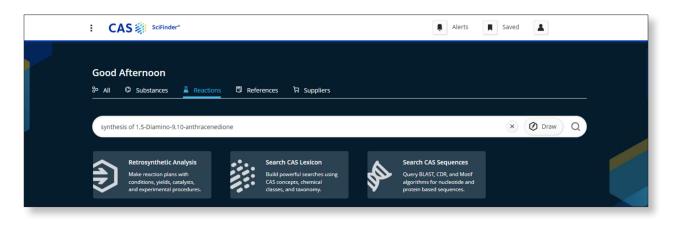
- 1. Select Substances on the search options menu above the main search query bar.
- 2. Using the main search bar, input substance names, CAS Registry Numbers[®], and/or document identifiers (such as patent number or DOI).
- 3. Press "Enter" or click the magnifying glass to submit your query.


E CAS 🔅 SciFinder"	
Good Morning 왕 All 🔹 Substances A Reactions 더 References 뉴 Suppliers	
2855128-96-8 X O Draw Q AND - Molecular Formula - X	
Examples: C6H6 (C8H8)x C22H26CuN2OS.C2H3N + Add Advanced Search Field	
Retrosynthetic Analysis Make reaction plans with conditions, yields, catalysts, and experimental procedures.	

- 4. If you prefer to search for a substance by chemical structure:
 - a. Click the Draw button on the right side of the main search bar.
 - b. Create your desired structure using CAS Draw.
 - c. Click the OK button to close the CAS Draw window and return to the home page.

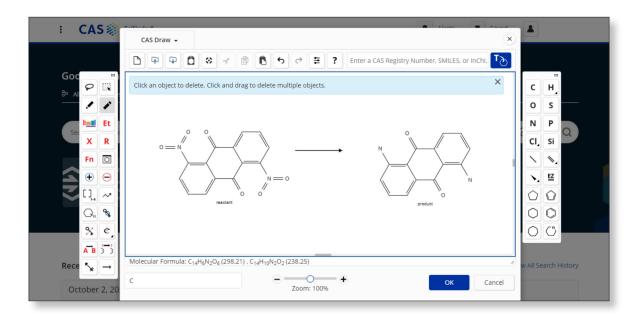
- d. Your structure now appears in the search bar. If further modifications to the search are needed, text can be combined with structure searches.
- e. Click the magnifying glass to submit your query.

- 5. When your search is submitted, relevant results are displayed. You can further refine your results with:
 - a. Structure Match Use the selection tool on the left to define the desired structure match (for structure queries).
 - b. Filter Select from a variety of filters found on the left-hand menu.
 - c. Sort Rearrange your results based on relevance, molecular weight, and more using the drop-down found above them.

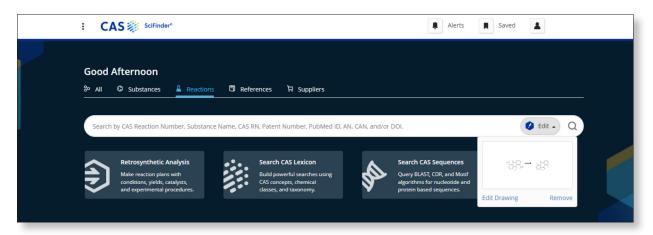

	pliers 👻					© ,↓,		Save and Alert
Filtering:	Similarity: 3	3 Selected 👻 🗙	Number of (Components: 1	×			Clear All Filters
25 Res	sults					Sort: F	elevance 👻	View: Partial
1		100 •••	2		79 •••	3		70 •••
285512	8-96-8	к И	2226475-	06-3	× الا	152342-19	9-3	К
(catHar(b)		\sim	CartherClaNa	Jeffer J		() CasHarNaQ	Ri	~~
C20H25CI2I	v ₃ 0 ₄ Pusesi		C24H23CI2IN3	OPus		N-Butyl-2-ph		
1 Reference	e Reactions	₽ 0 Suppliers	1 Reference	☐ 6 Reactions	₩ 0 Suppliers	1 Reference	☐ 3 Reactions	1 Supplier
4		70 •••	5		69 •••	6		68 •••
	25 Res ☐ 1 2855128 C ₂₀ H ₂₅ Cl ₂ t ■ 1 Reference	 25 Results 1 2855128-96-8 C₂₀H₂₅Cl₂N₃O₄PdSesi 1 1 Reference 24 Reactions 	25 Results 1 100 2855128-96-8 ► \$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 25 \text{ Results} \\ \hline 1 & 100 & \cdots \\ \hline 2855128 \cdot 96 \cdot 8 & & \\ \hline \\ \hline \\ \hline \\ C_{20}H_{25}Cl_2N_3O_4PdSesi \\ \hline \\ \hline \\ Reference \\ \hline \\ Reactions \\ \hline \\ \end{array} \begin{array}{c} 0 \\ \hline \end{array} \begin{array}{c} 0 \\ \hline \\ \end{array} \begin{array}{c} 0 \\ \hline \end{array} \begin{array}{c} 0 \\ \hline \\ \end{array} \begin{array}{c} 0 \\ \hline \end{array} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} 25 \text{ Results} \\ \hline 1 \\ 2855128-96-8 \\ \bigcirc \\ C_{20}H_{25}Cl_2N_{3}O_4PdSesi \\ \hline 1 \\ Reference \\ Reactions \\ \hline 1 \\ Reference \\ Reference \\ \hline 1 \\ Reference \\ Reference \\ Reference \\ Reference \\ Reference \\ Reference \\ Referen$

6. Clicking a CAS Registry Number opens the substance detail view, which provides information such as experimental properties, predicted properties, experimental spectra, predicted spectra, other names, synonyms, and more.

E CAS SciFinder" Substances - Enter	er a query	🔮 Edit 🗸 Q	
CAS Registry Number: 152342-19-3			
Reference (1)			▲ Save -
C ₂₂ H ₂₃ N ₃ O 4 <i>H</i> -Pyrrolo[1,2- <i>a</i>]benzimidazole-4-acetamide, <i>N</i> -butyl-2-phenyl		~~	
Key Physical Properties	Value	Condition	
Molecular Weight	345.44	-	
Boiling Point (Predicted)	467.6±45.0 °C	Press: 760 Torr	
Density (Predicted)	1.16±0.1 g/cm ³	Temp: 20 °C; Press: 760 Torr	


To search for Reactions:

- 1. Select **Reactions** on the search options menu above the main search query bar.
- 2. Using the main search bar, input substance names, CAS Registry Numbers, CAS Reaction Numbers, and/or document identifiers (such as patent number or DOI).
- 3. Press "Enter" or click the magnifying glass to submit your query.

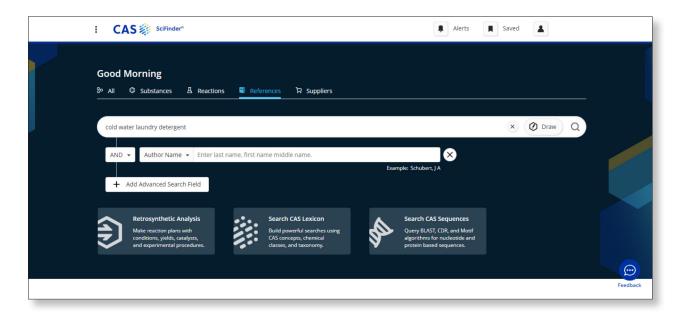


- 4. If you prefer to search for reactions using chemical structures:
 - a. Click the Draw button on the right side of the main search bar.
 - b. Create your desired structures to form a reaction using CAS Draw.
 - c. Click the OK button to close the CAS Draw window and return to the home page.

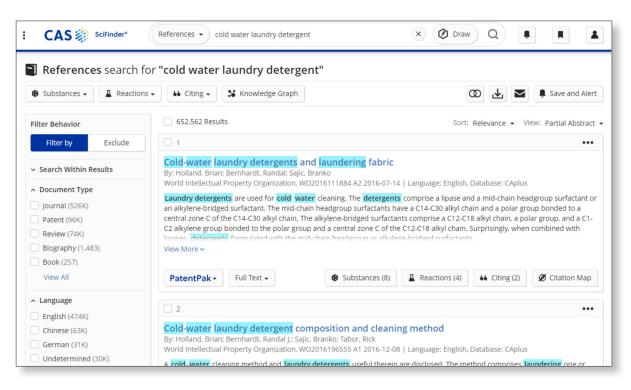
- d. Your reaction now appears in the search bar. If further modifications to the search are needed, text can be combined with reaction searches.
- e. Click the magnifying glass to submit your query.

- 5. When your search is submitted, relevant results are displayed. You can further refine your results with:
 - a. Structure Match Use the selection tool on the left to define the desired structure match (for structure queries).
 - b. Filter Select from a variety of filters found on the left-hand menu.
 - c. Sort Rearrange your results based on relevance, molecular weight, and more using the drop-down found above them.

Reactions search fo	r drawn structure	
References +		O L Save and Alert
Structure Match	6 Results	Group: By Scheme + Sort: Relevance + View: Expanded
As Drawn (6)	Scheme 1 (1 Reaction)	Steps: 1 Yield: 94% •••
Similarity (237K) Filter Behavior Filter by Exclude	Suppliers (36)	► Suppliers (75)
Search Within Results	31-522-CAS-7415743 Steps:	1 Yield: 94% ••• Synthesis of aminoanthraquinones by sodium borohydride
	31-522-CAS-7415743 Steps: 1.1 Reagents: Sodium borohydride	1 Yield: 94% •••• Synthesis of aminoanthraquinones by sodium borohydride reductions of nitroanthraquinones By: Morley, John O. Synthesis (1976), (8), 528-30 Full Text •


6. Clicking a CAS Reaction Number opens the reaction detail view, which provides information such as the reagents, solvents, catalysts, and reaction conditions; source reference bibliography; reaction notes; and reaction transformation.

Detune to Desults					Draw (Ccho	mo 2 Departion 1 of 1) Next
 Return to Results 				<i>~</i>	Prev (Scher	me 2, Reaction 1 of 1) Next
CAS Reaction Numb	per: 31-522	2-CAS-15114748				
Get Similar Reactions						🛓 🖬 🔳 Save
	+	-	→ …	<u>}</u>	+	
Y Suppliers (42)		🦌 Suppliers (36)	📜 St	uppliers (75)		🐂 Suppliers (13)
Reaction Overview	Step 1	🐂 Suppliers (36)) , St	uppliers (75)		🐂 Suppliers (13)
Reaction Overview	Step 1 Stage	F Suppliers (36)	THE ST	Solvents	Condition	
Reaction Overview	-					
Reaction Overview Steps: 1 Yield: -	Stage	Reagents		Solvents		15



To search for References:

- 1. Select **References** on the search options menu above the main search query bar.
- 2. Using the main search bar, input research topics, keywords, concepts, substance names, CAS Registry Numbers, and/or document identifiers (such as Accession Number, PubMed ID, DOI, or patent number).
- 3. Press "Enter" or click the magnifying glass to submit your query.

- 4. When your search is submitted, relevant results are displayed. You can further refine your results with:
 - a. Filter Select from a variety of filters, such as Document Type or Author, found on the left-hand menu. Multiple filters can be selected to manage and refine results.
 - b. Sort Rearrange your results based on relevance, publication date, and more using the Sort drop-down found above them.

5. Clicking a reference title opens the reference detail view, which provides bibliographic information, full-text options, patent information, similar references, indexed concepts, indexed substances, indexed formulations, indexed analytical protocols, and cited documents.

Substances (3) A Reaction	ons (0) 👪 Citing (1) 🔳 💋 Citation Map	, 🕹 , 💌 🔳 Save 🗸
OURNAL	By: Gao, Jinpeng: Khan, Rubel Md: Wu, Yuchen; Hawker, Dustin Kellermeier, Matthias 🕒 Chen, Zhan 🗈	D.; Gutowski, Kelth E.; Konradi, Rupert; Mayr, Lukas; Hankett, Jeanne M.;
Source		
angmuir		it excellent antifouling properties, which have been proposed/used for
/olume: 39		ructures in marine environments, as well as active ingredients in laundry. This study aimed to elucidate the mol. behavior of a copolymer
ssue: 13	poly(MMA-co-MPEGMA) containing antiadhesive PEG side chain	
Pages: 4557-4570	polymer/solution interface. Polyethylene terephthalate (PET) wa	
ournal; Article 2023		ed to examine the interfacial behavior of the copolymer at PET/solution
025		adsorption on PET and subsequent antiadhesion against protein
0.1021/acs.langmuir.2c03056	foulants were probed by quartz-crystal microbalance experiment	nts with dissipation monitoring (QCM-D). Both applied techniques show
	that poly(MMA-co-MPEGMA) adsorbs significantly to the PET/so	olution interface at bulk polymer solution concentrations as low as 2 ppm
ODEN: LANGD5		drophobic MMA segments provide an anchor for the copolymer to bind
-ISSN: 1520-5827		are more disordered but contain ordered interfacial water. In the
SSN-L: 0743-7463	presence of considerable amounts of dissolved surfactants, pol	
	remained stable at the surface upon washing with hot and cold	d water or surfactant solution In addition, it was found that adsorbed
Database Information	remained stable at the surface upon washing with hot and cold poly(MMA-co-MPEGMA) provided the PET surface with antiadhe	d water or surfactant solution in addition, it was found that adsorbed esive properties and could prevent protein deposition, highlighting the
Database Information AN: 2023:574706	remained stable at the surface upon washing with hot and cold poly(MMA-co-MPEGMA) provided the PET surface with antiadhe superior surface affinity and antifouling performance of the cop	water or surfactant solution In addition, it was found that adsorbed esive properties and could prevent protein deposition, highlighting the polymer. The results obtained in this work demonstrate that amphiphilic
Database Information AN: 2023:574706 PubMed ID: 36947877	remained stable at the surface upon washing with hot and cold poly(MMA-co-MPEGMA) provided the PET surface with antiadhe superior surface affinity and antifouling performance of the cop	d water or surfactant solution in addition, it was found that adsorbed esive properties and could prevent protein deposition, highlighting the polymer. The results obtained in this work demonstrate that amphiphilic be used in detergent formulations to modify polyester surfaces during
Database Information NN: 2023:574706 PubMed ID: 36947877 CAplus and MEDLINE	remained stable at the surface upon washing with hot and colo poly(MMA-co-MPEGMA) provided the PET surface with antiadhe superior surface affinity and antifouling performance of the cop copolymers containing PMMA anchors and PEG side chains can	d water or surfactant solution in addition, it was found that adsorbed esive properties and could prevent protein deposition, highlighting the polymer. The results obtained in this work demonstrate that amphiphilic be used in detergent formulations to modify polyester surfaces during
Database Information NN: 2023:574706 PubMed ID: 36947877 CAplus and MEDLINE	remained stable at the surface upon washing with hot and colo poly(MMA-co-MPEGMA) provided the PET surface with antiadhe superior surface affinity and antifouling performance of the cop copolymers containing PMMA anchors and PEG side chains can	a water or surfactant solution in addition, it was found that adsorbed esive properties and could prevent protein deposition, highlighting the polymer. The results obtained in this work demonstrate that amphiphilic be used in detergent formulations to modify polyester surfaces during
Database Information NY: 2023:574706 UMDMed ID: 36947877 Aplus and MEDLINE Company/Organization Department of Chemistry	remained stable at the surface upon washing with hot and colo poly(MMA-co-MPEGMA) provided the PET surface with antiadhe superior surface affinity and antifouling performance of the cop copolymers containing PMMA anchors and PEG side chains can	d water or surfactant solution in addition, it was found that adsorbed esive properties and could prevent protein deposition, highlighting the polymer. The results obtained in this work demonstrate that amphiphilic be used in detergent formulations to modify polyester surfaces during
Database Information NN: 2023:574706 PubMed ID: 36947877 Aplus and MEDLINE Company/Organization Department of Chemistry Inversity of Michigan	remained stable at the surface upon washing with hot and colo poly(MMA-co-MPEGMA) provided the PET surface with antiadhe superior surface affinity and antifouling performance of the cop copolymers containing PMMA anchors and PEG side chains can	d water or surfactant solution in addition, it was found that adsorbed esive properties and could prevent protein deposition, highlighting the polymer. The results obtained in this work demonstrate that amphiphilic be used in detergent formulations to modify polyester surfaces during
Database Information NN: 2023:574706 TubMed ID: 36947877 Aplus and MEDLINE Company/Organization Department of Chemistry Jniversity of Michigan on Arbor, Michigan 48109	remained stable at the surface upon washing with hot and colo poly(MMA-co-MPEGMA) provided the PET surface with antiadhe superior surface affinity and antifouling performance of the cop copolymers containing PMMA anchors and PEG side chains can	a water or surfactant solution in addition, it was found that adsorbed esive properties and could prevent protein deposition, highlighting the polymer. The results obtained in this work demonstrate that amphiphilic be used in detergent formulations to modify polyester surfaces during
Database Information NN: 2023:574706 PubMed ID: 36947877 Caplus and MEDLINE Company/Organization Department of Chemistry Jniversity of Michigan nn Arbor, Michigan 48109	remained stable at the surface upon washing with hot and colo poly(MMA-co-MPEGMA) provided the PET surface with antiadhe superior surface affinity and antifouling performance of the cop copolymers containing PMMA anchors and PEG side chains can	a water or surfactant solution in addition, it was found that adsorbed esive properties and could prevent protein deposition, highlighting the polymer. The results obtained in this work demonstrate that amphiphilic be used in detergent formulations to modify polyester surfaces during
Database Information NN: 2023:574706 PubMed ID: 36947877 Aplus and MEDLINE Company/Organization Department of Chemistry Juniversity of Michigan Ann Arbor, Michigan 48109 Jnited States	remained stable at the surface upon washing with hot and colo poly(MMA-co-MPEGMA) provided the PET surface with antiadhe superior surface affinity and antifouling performance of the cop copolymers containing PMMA anchors and PEG side chains can	a water or surfactant solution in addition, it was found that adsorbed esive properties and could prevent protein deposition, highlighting the polymer. The results obtained in this work demonstrate that amphiphilic be used in detergent formulations to modify polyester surfaces during
Database Information ANI: 2023:574706 PubMed ID: 36947877 CAplus and MEDLINE Company/Organization Department of Chemistry Juniversity of Michigan Ann Arbor, Michigan 48109 Junited States Publisher	remained stable at the surface upon washing with hot and colo poly(MMA-co-MPEGMA) provided the PET surface with antiadhe superior surface affinity and antifouling performance of the cop copolymers containing PMMA anchors and PEG side chains can	d water or surfactant solution in addition, it was found that adsorbed esive properties and could prevent protein deposition, highlighting the polymer. The results obtained in this work demonstrate that amphiphilic be used in detergent formulations to modify polyester surfaces during
Database Information ANI: 2023:574706 PubMed ID: 36947877 CAplus and MEDLINE Company/Organization Department of Chemistry Juniversity of Michigan Ann Arbor, Michigan 48109 Junited States Publisher	remained stable at the surface upon washing with hot and colo poly(MMA-co-MPEGMA) provided the PET surface with antiadhe superior surface affinity and antifouling performance of the cop copolymers containing PMMA anchors and PEG side chains can	d water or surfactant solution in addition, it was found that adsorbed esive properties and could prevent protein deposition, highlighting the polymer. The results obtained in this work demonstrate that amphiphilic be used in detergent formulations to modify polyester surfaces during
Database Information AN: 2023:574706 PubMed ID: 36947877 CAplus and MEDLINE Company/Organization Department of Chemistry University of Michigan Ann Arbor, Michigan 48109 United States Publisher American Chemical Society Language	remained stable at the surface upon washing with hot and colo poly(MMA-co-MPEGMA) provided the PET surface with antiadhe superior surface affinity and antifouling performance of the cop copolymers containing PMMA anchors and PEG side chains can	d water or surfactant solution in addition, it was found that adsorbed esive properties and could prevent protein deposition, highlighting the polymer. The results obtained in this work demonstrate that amphiphilic be used in detergent formulations to modify polyester surfaces during

For additional training, visit the Training page on cas.org or view the Help and Support section accessible from within CAS SciFinder.

For questions, reach out to the CAS Customer Center at **help@cas.org.**

Solution images are included for illustrative purposes only. Your experience may vary based on recent enhancements or product license.

© 2024 American Chemical Society. All rights reserved.